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Abatract

In this paper, we present five categories ot results by studying
the interrelationabips between properties for choice functions.
The +irst category of result is about the localization
assumption. The second category of result 18 about replication
invariance of the egalitarian sclution. The third categnr? of
result pravides ap axiomatic characterization of the equal loss
aolution. The fourth and fifth rategories consist of
lexicographic extensions of the equal loas and rel.tive

egalitarian solutions respectively.
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Some Remarks on Properties for Choice Functions

1 Introduction

The main problem in (multi-criteria economic) choice theory is to choose a vector from a compact,
convex, comprehensive subset of the non-negative orthant of a finite dimensional Euclidean space. In
addition to the above we assume such sets (which are called choice sets or choice problems) admit a
vector with strictly positive components. The reason why we may refer to them as mulli-cﬁlcria
economic choice problems is because they arise very naturally in problems of resource allocation in
a multi-sector economy, where the returns in each sector are measured by a concave, continuous, non-
decreasing, non-constant revenue function with no retumns accruing from zero investment. That any
finite dimensional choice problem arises from such an investment planning problem has been
established in Lahiri [1994].

A solution is a function defined on a class of choice problems, which selects from each admissible
choice problem a feasible vector. Axiomatic choice theory (which is more commonly known as
Axiomatic Bargaining Game Theory) is a body of mathematics which tries to uniquely characterize
solutions with the help of a finite number of axioms or properties which the solutions are required to
satisfy. The genesis of axiomatic choice theory is the paper by Nash [1950].

In the Nash {1950] paper a property called Independence of Irrelevant Alternatives (hereafter referred
to as NIIA) was used to characterize a solution which is known as the Nash solution, and which is
probably the most celebrated of all solutions known till date. However, the NIIA assumption was
found seriously wanting in relevance. A property suggested by Lensberg [1987] called localization,
has been used by Peters [1992] to characterize the family of all non-symmetric Nash solutions
originally proposed by Harsanyi and Selten [1972]. Our first two results in this paper is about the
localization assumption. Some consequences of our results are also discussed in this paper. These

two results are similar in spirit to the ones proved by Roth [1977] for NIIA.

Our next category of results has been inspired by the work reported in Thomson [1986). We begin
with two dimensional choice problems and then derive another choice problem from it, by replicating
each criteria an integer number of times. Thomson [1986) established a simple relationship between
the Nash solution for the replicated problem and a certain non-symmetric Nash solution for the original
problem. Thomson [1986] also established the same simple relationship between the relative
egalitarian solutions (due to Kalai and Smorodinsky {1975)) for the replicated and original problems.



We here establish the same simple relationship between the egalitarian solution (due to Kalai [1977))
for the replicated problem and a centain proportional solution (also due to Kalai {1977]) for the original

problem. .

Our third category of results concemns the equal loss solution due 10 Yu [1973] and Friemer and Yu
[1976). Chun [1988] was the first to characterize the equal loss solution axiomatically. A proposed

simpler proof appears here on a somewhat different domain.

Our fourth category of results concemns the lexicographic extension of the equal loss solution
(originally due to Chun and Peters [1991]. This solution is the lexicographic extension of the equal
loss solution cited above. On a somewhat different .domain than the one considered by Chun and
Peters [1991]), we propose a somewhat simpler proof, particularly for three dimensional problems. It

is our hunch that the proof carries through for higher dimensional problems.

Our fifth category of result concems a relatively original solution: the lexicographic relative
egalitarian solution. This is the lexicographic extension of the relative egalitarian solution due to Kalai
and Smorodinsky [1975]. We are able to obtain an axiomatic characterization which is very similar
to the axiomatic characterization for the lexicographic equal loss solution. However, the domains are
slightly different. In any event, the domain chosen for the last three categonies of results, reflects our
innate interest in modelling investment planning problems as choice problems--an endeavor which
lacks meaning in the presence of infinite free disposability assumed in earlier characterization results

for similar choice functions.

From the point of view of relevance the last three categories of results are the most rewarding as it
makes known results accessible to a much wider audience. The second category of results has been
presented to show that a certain method works once again. The first category of results can be viewed
as a re-statement of an existing characterization theorem for the family of non-symmetric Nash

solutions.

2 The Framework

A (n-dimensional) choice problem is a non-empty subset S of R?, satisfying the following properties:

i) S is compact, convex

ii) S is comprehensive i.e., 0 S y < x5 yeS



iii) 3 xes such that x » 0.

Let X denote the class of all choice problems. Let B be a nonempty subset of . A solution on B

is a function F : B= X such that F(S)es V SeB.

3 The Localization Axiom

We are interested in the interrelationship between the following axioms on a solution F: B K.

Axiom 1 rong Individual jonality):
F(S) >0V Seb

Axiom 2 (Weak Pareto Optimality):

F(S) € W(5) V seB where for seB, W(S) ={xeS/y > x, ye S).

Axiom 3 {Pareto Qptimality:

F(S)eP(S) V seB, where for

SeB, P(S) ={xeES5/y2x, yeS3y = x).

Axiom 4 (Scale Translation Covariance):

Let A = Diag(a,, ..., a,) be the n x n diagonal matrix with a, > 0 being the i* element on the
diagonal. Then F(AS) = AF(S) V seB when AS = {Ax/xeS}eB.

Axioms § {Localization):
Vs, TeB, if there exists a neighborhood U of F(S) such that uN s = uN 7, then F(T) = F(S).

Lemma 1:
If F satisfies Axioms 4 and S, on " then either:

@) F(S) =0V SeX or

(ii) F(S) eW(5) V SeX"

Lemma 2:

If F satisfies Axioms 1,4 and 5, on X" then F(S)eP(S) V SeX".



Proof of Lemma Li
Step 1:
We show that F(S) = 0 for some SeXI* 9 F(S) » 0 V SeX". .

Let F(S) = O for some seZXZ" and TeX~. Since S and T are comprehensive and contain a strictly
positive vector, there exists a neighborhood U of F(S) such that yN s =« UN T,

By Axiom S, F(T) = F(S) = 0.

Step 2:
Suppose F(S) # 0 for some seX". Then F(S) eW(S).

Towards a contradiction assume F(S) € W(S) . Hence

Jaek,, a={a,...,a,}),0<a <1Viel,..., n A=diag(a,...,a) such that
F(S) « y forsome y € A S. Hence there exists a neighborhood U of F(S) suchthatvN s = UN T
where T = AS.

By Axiom 5, F(S) = F(AS). By Axiom 4, F(AS) = AF(S) < F(S), since F(S) # 0 and
0<a <1Viel, ..., n. This contradiction establishes that F(S) € W(S) and proves the
lemma. QE.D.

Proof of Lemma 2:

Suppose F(S) ¢ P(S) for some SeX”. By Axiom 1, F(5) > 0. Now,F(S) € P(S) »3 yeSs
such that y > F(S). Suppose y; > F; (S). Considera =1for j # i, 0 < 3, <1 suchthata y,>F;
(S) and let A = diag(a,, ..., a,). By Axiom 4, F(as) # F(S) . However, if T = AS, then there exists
a neighborhood U of F(S) such that yN 7 = uN 5. By Axiom 5, F(AS) = F(T) = F(S). But this
is impossible since F, (S) > a, F; (S). Thus F(S) € P(S). QED

Let wel?, with E W, = 1. Define v*: "5 K, as follows:

ie]

V¥(S) = argmax H %

nes 1=



The family {v': ek, i; N, . 1} is called the family of non-symmetric Nash choice functions.

For v, = % Viel, ..., n, vvisdenoted N and is called the Nash choice function (see Harsanyi
and Selten [1972)).
Iheorem 1;

The only choice functions to satisfy Axioms 1, 4 and S on X~ are the non-symmetric Nash choice
functions.

Proof;
Our Lemma 2 and proof of Theorem 2.46 in Peters [1992]. Q.ED.

Let us now consider another axiom.

Axiom 6 Symmetry (SYM):

Given seB if 5 = x5 for all permutation matrices x, then F, (S) = F,(S) V i, je{1, ..., n}.

Note:
A permutation matrix is an n x n matrix % such that each row and each column of % has exactly one

entry with value 1 and the remaining entries are zero. Clearly nS = {nx / xeS}.

Theorem 2:

There are exactly two choice functions on X* which satisfy Axioms 4, 5 and 6. They are:

@) the dummy solution, p: £ > K suchthat D(S) = 0V seX"; and

(i) the Nash solution, N: 2" - R,
Proof:
Our lemma 1 and proof of Theorem 2.46 of Peters [1992]. Q.E.D.

4 Replication Invariance of the Proportional Solution

Let seZ? be given, as well as natural numbers m, 1. Let I, = (1, 2, ..., m} and



J={me+l,..m<+l} Forapelr(iel, xJ, let
8, 4t -{xet"/B(x{,xﬁ)es with x, = x;, x,-x{, x,»0 if k@ i,j]. '

The Thomson (mJ) replication of S is defined as s**¢ : = Conv{s, , / (4, ) € I, x J,}. ForTeZ*},
define E(T) = te™” where € » max{t 2 0/te™” ) and e’ is the (m + 1) dimensional vector

with all coordinates equal to 1. For Te £, define E*!(T) = _.L"I _.7) where

.s-max{sZO/(_7 L'II er}.
In the above E is called the egalitarian solution and E® is called the proportional solution,

Theorem 3;
In the above framework mE, (s=!) = Ef*?(S) V ieI, and 1E(S*?) = Ef"'(S) V ie1I,.

Proof:
Let (a,b) = E®*{(S) and suppose
a'x, + b'x; < a'a+ bV (x{,x)es. Thisis possible since E* satisfies Axiom 2. Thus if x

denotes a vector in SY, then a’x}7 + ¥/ x}’ S a’a + b'b

Now lety € S™. Then, there exists p,; 2 0 V i, jeI, x J, suchthat }° n,, xi3 2 y for

(2, })EIx J,

some x*1, (i, j) ¢ I, x J,, and Y B, =1.
(€T, x 7,

LY S Y By X if keI,

Je,

vy, < M, xit If ked,
1

ier,
Y 7 L
<. a yk*b’z .Yksaz Hyy X z uuxk
I res, e, fe3, res, fe1,
¢ 13 i3 13 4
=a ¥ By 7+ o Hiy %57 = Ry (a'xi? + b/ x;
(i, jyerx 3, 4, er x5, 4, jyelx J,

Sa’aob’b-a’z.%*b’jzg
€7,

ie!



Hence the vector 2eS™ , with =, = 2V Ze 1, and z,-%’VjeJ,belongswmeWuka

Optimal frontier of S** .

sm 51 - a_o>b
Now.a-"”I,b-"Nj1"oraome.s>0-—oﬁ j..l"leno(:zlls
defined above is equal to B{s*1). QED.

5 The Equal Loss Solution
Let I™ be the largest subset of I* on which the following function £*: I'" = K] is defined:

(a) Ei(S) - u(S) = Ej(S) - u(S)V i, jeNe (1, ..., n}

®) E*(S) eW(S) = {xeS/AyeS with y » x}

Here V ieN and Sel™, u(S) = max {x/xeS}. u(S) = (u(S). ..., u(S)) is called the ideal point of S.
E’ is called the equal loss solution.

Axiom 7: Translation Covariance (TC):
(TC) : V seB, V ack,
F(T) =FS) +a if

T ={zeX)/z< x+ a for some xeES}eB

Axiom 8: Strong Monotonicity with respect to the Ideal Point (SMON):

V S, Te, B with u(S) = u(T) and ScT = F(S) < F(T).
Theorem 4: The only solution on I' to satisfy Axioms 2, 6, 7 and 8 is E'.

Proof: It is easy to check that E’ satisfies the desired properties. Hence let F: ™ — & be a choice
function satisfying the above properties and let seI™.

Let x » (x,, ..., x,) ¢K be such that x, = max,,, { u,(5) - u,(9).
Let T = (yeR! /3 zeS withy S z + x}.

Thus u(T) = u(S) + x

Thus E'(T) = be where e R withe, = 1 Vi for some b> 0



Let V = comprehensive convex hull {5* (7), (u, (1), 0, ..y 0)s «vus (04 0, «vy 0y (D)
By SYM and WPO, F(V) = E(T) '

Nowu(V)=u(Mand Vv T

Thus by (SMON), F(T) 2 F(V) = E’ (T).

Case 1: E*(T)e{ycT/xeT, x2y— x=y}m P(T); then F(T) = E' (T)
Case 2: E*(T)e P(T)

Let T, = convex hull {ee + E'(T)} for e > 0.

E*(T)eP(T)=3 yeT such that y 2 E*(T), y # E*(T) = be
Let y, > b for some ieN

Thus w(T) > b.

Since u,(T) ® u,(T) V jeN, uy(T) > bV jeN.

Hence for € > 0, small, u(T) = u(T), Tc 7,.

But E'(T,) = ec + E(T) = (by case 1) F(T) = ee + E'(T)

By SMON, F(T) < F(T,) = ee + E'(T)

Thus E*(T) < F(T) < €e + E*(T) V £>0 sufficiently small. Letting € go to zero, we get
F(T) = EX(T). Note, E'(T) = E'(S) + x and F(T) = F(S) + x, both by (TC). Thus F(S) = E'(S).

6 The Lexicographic Equal Loss Solution
Let a: B* > R be defined as follows:

For xeR", a(x) is any arrangement of x in ascending order. For x, yeR*, define x >! y if and
only if either x, >y, or 31 < k<nsuchthat x, =y, V1 <i<kand x,,, >y,.,. Given .

Sel™, define L'(S) as follows:

L°(S) = u(S) + x° where x* = {z - u(S): z € S} and
a(x*) > a(y") Vyelz - u(s):zes}, y# x*. (L*: "> K is called the lexicographic equal
loss solution. Description and discussion in a rather extensive manner of the solution L’ can be found
in Chun and Peters [1991].)



Axlom 9 Weak Monotonimity (WMON):
For ses, dell, ..., n), let s, ={x, /(x, x)es}. (Here for i e[, ... n} and

xel', x =(x) .)V7TeB, if scrands,er, V iel, ..., n, then RT) 2F@).

Axiom 10; ndence of Irrelevant Altern
V 8,7TeB, if Sc T, u(s) = u(T and F(T)eS, then F(S) = F(T).

The issue here is the following theorem due to Chun and Peters [1991]:

JTheorem 5;
The_only solution on I'™ to satisfy Axioms 3, 6, 7,9 and 10is L".

In this paper we do not dispute the sequence of lemmas leading to the statement that L™ satisfies
Axioms 3, 6, 7, 9 and 10. What we submit is an altemative simpler proof of the statement that any
solution which satisfies Axioms 3, 6, 7, 9 and 10 must agree with L°. That too we suggest for the

case n = 3, with a conjecture that the proof may be adapted to higher dimensions.

Lemma 3:
If F: PR satisfies Axioms 3, 6, 7, 9 and 10 then F(S) 2 E'(S) where for
Sel®, E*(S) =u(S) - te, t =max(t 20/u(S) - te £5); € is the vector in B* with all

coordinates equal to 1. E’ is called the equal loss solution.

Proof:

Let F satisfy Axioms 3, 6,7, 9, and 10 and let seI®. By Axiom 7, assume u (S) = Ae for some
A>0. Let T be the comprehensive convex hull of the smallest symmetric set containing
$.,, 5,, S, and ES). By Axioms 3 and 6, F(T) =E'(S). Let ™ = comprehensive convex hull
{S-115.2:5,,E (5))]

u(T) » u(T) = u(S) = Ae
and ’c T

further F(T) = E*(S)eT
By Axiom 10, F(T') = F(T) = E*(S)
By Axiom 9, F(S) 2 F(T') = E*(S) Q.E.D.



Lemma 4;
If F: I 5 satisfies Axioms 3, 6, 7, 9, and 10 then F(S) = L(S).

Proof:
Let seX* and let T = comprehensive convex hull {s,, S,, S,, {L* (), (E(5)}}. Qeary
W) =u(S), E" (S)T, Tc S E*(T) = E*(S) . Similarly
ul(T) «u(S), Tc S, E*(T) = E~(S) and L*(S) ET L (T) = L*(S) .
By Lemma 3, F(T) 2 E*(T) = E* (S) .
By Axiom 3, FT) =L (T) = L(S). Now, Tc S, T, = S, Vi
implies by Axiom 9, F(S) 2 F(T) = L'(S). But since L® satisfies Axiom 3, F(S) = L(S).
Q.ED.

17 The Lexicographic Relative Egalitarian Solution
The relative egalitarian solution due to Kalai and Smorodinsky [1975] is defined as follows:

LK(S) = Eu(S) V SEX", where u(S) = (u,(S))

1EN

and u, (S) = max(x,/x€S} whenever SeX". As before U(S) is called the ideal point of S.
It is well known (see for instance Roth [1979]) that kK (S) € wW(S) V SeZ~ and that there exists SEX*
for which k(S5) ew(S) \ P(5) . We therefore consider the lexicographic completion of K, denoted

K, which is defined as follows:

V seX», such that u(S) = e, set K(S) = L* (S). (Clearly such an S would belong to T™ and hence
there is no problem with the above definition.) For all other SeX”, set K,(S) = u(S) x(s’) where

5,_[1 1 )s
T (5 T e ey

We now have the following theorem whose proof is analogous to the proof of Theorem 5.

Theorem 6:
The only solution on X" to satisfy Axioms 3, 4, 6, 9 and 10 is K,.

10



8 Conclusion

In this paper we have establishcd interrelationships between propertics for choice functions by using
a group of these propertics at a time to uniquely characterize a particular solution. With dhe sole
exception of section 4 (where the egalitarian solution was shown 10 satisfy replication invariance) the
other sections dealt with axiomatic characterizations. Some well known and some new solutions were
discussed. However, the entire discussion was restricted to a grand domain which makes the study

of investment planning problems meaningful.
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