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Learning Relationships Among Classes
Specified by Examples

S.Yegneshwar

Abstract

Learning by examples is a commonly used method of knowledge acquisition in expert systems.
The learning examples are past cases whose classification is known. When the number of classes is
high, learning relationships amongst classes aids in sequential classification and therefore results in
better explanations. A methodology to learn relationships amongst a given set of classes using a
distance measure is described in this paper. This distance which is shown to be a metric is evaluated
on the descriptions of the classes. The description of a class is learnt from its examples. The
relationship learnt using this distance metric is shown to converge in the limit. The methodology
described learns meaningful relationships for two applications commonly used by machine learning

research groups.



Acknowledgements

| thank Mr. David Aha of the University of California, Irvine for sending me the automobiles and
the thyroid disease databases which have been used to test the proposed system. The resource
support given by the seed money project on “An expert system for trouble shooting of hardware

failures in personal computers” is gratefully acknowledged.



Contents
1 Introduction

2 Learning Reference Class Description

2.1 Generation Tree for Binary Valued Attributes . . . . . ... ...........

2.1.1 Algorithm for Constructionof GT . ... ... ... ... ........

2.2 Real/Integer and Nominal Valued Attributes . ... ...............
2.2.1 Algorithm for Construction of GT for Real and Integer Valued At-

tributes . . .. e e

2.2.2. Algorithm for Construction of GT for Nominal Valued Attributes. . . .

3 Learning Elementary Class Description

3.1 Algorithm for Constructing GT of Elementary Class . . . . .. e e e e e

4 A Distance Measure for Generation Trees

4.1 Preliminaries . . . . . . . . . . e e e e
4.2 Distance Measure for Binary Attributes . . .. ... ... ... ... .. ...,
4.3 Metric Properties . . . . . . . . 0. . e e e e e e e
4.4 The Distance Measure for Non-Binary Attributes . . . . . . ... ... ... ..

5 Learning Relationships Among Classes

51 Concept Tree . . . v v v i v it i e e e e e e e e e e e e e e e e e e e e
5.2 Explanation of the MethodtoBuild CTs ... ... ... ... .........
5.3 Combinationof Classes . . ... .. ... .. ...y
5.4 Learning of Resultant Class Description . . .. .. .. ... .. ... ......

6 Practical Applications of KAHLE
6.1 Classification of cars basedonriskfactor. . . . .. . . .. ...« ... ...

6.2 Classification of thyroid diseases . . ... .. ... ... .............

7 Conclusion

13
13
14
16
18

22
22
23
25
29

33
33
34

36



Learning Relationships Among Classes Specified by

Examples

1 Introduction

Learning class description from examples is an important problem in artificial intelligence.
This method of learning is referred to as “instance based learning” or “learning from exam-
ples”. This is a learning paradigm which is used for knowledge acqusition in expert systems
for applications where past cases are available. Meta-DENDRAL [Buch 78] is one such pio-
neering learning system that induces rules of chemical structure from examples. However, this
is 2 domain-dependent system. The initial domain-independent works which demonstrated
the effectiveness are that of Michalski et. al. [Mich 80] and Quinlan [Quin 79]. Here,
examples of each class are used to learn the class description. Michalski’s INDUCE system
demonstrated that for a particular case of plant diseases, the inductively acquired knowledge
base performed better than the knowledge base acquired with the help of a knowledge engi-
neer. ID3 [Quin 79] demonstrated good performance in chess end-games and thyroid diseases
[Quin 87b]. Subsequently, IITN [Pao 82], Rule-Learning [Fu 85|, PRG [Lee 86], Rough sets
[Pawl 88], learning of causal relationships [Perl 88], CART [Craw 89], EG2 [Nunz 91}, and
a modified attribute selection for ID3 [Mant 91] followed.

In this learning paradigm, a teacher presents learning examples which’ are used to learn the
class description. An example is specified as a set of (attribute,value) pairs - for instance,
an example of the class “Default-Loans” could be ((turnover,50) (product,soap) (market-
share,20)) and a description for this class could be “All examples for which turnover is between
25 and 100, product manufactured is soap, and market-share is less than 25 percent”. The
learning of the class description can be in one shot where all the examples are presented

simultaneously, or it could be incremental. In the latter case, learning is invariably sequence



dependent. All the learning systems referred to above require all the learning examples to be
presented at one time. Using the learning examples, these systems learn the description of the
corresponding class. The class description learnt is represented either as a decision tree, or in
first order pn;dicate calculus, or as rules. The class description learnt can be used to describe
the class represented by the given set of examples, or to classify a test example.

A major drawback of all the learning systems referred to above is that a description for
each class is learnt but the inherent relationship among the classes is not learnt. Learning
relationships among the classes helps learn intermediate classes with their class description
and a hierarchy of classes. In this hierarchy, the root class is the most general and all nodes
lower down are progressively more specific. The hierarchy aids not only in sequential classifi-
cation but also results in better explanation during classification of test examples. Sequential
classification is possible because at the higher level nodes the description is more general and
hence the description consists of lesser number of attributes. As we go down the hierarchy,
more attribute values are requested from the user during classification of test examples.

The advantages of learning a hierarchy of classes led to the proposal of a learning system
called KAHLE [Yeg 90] (Knowledge Acquisition using Hierarchical Learning from Examples),
which first learns a reference class description. Each class description is learnt using the refer-
ence class description and its own learning examples. Subsequently, relationships among the
various classes is learnt using a distance measure. The description of each class is represented
as a binary tree called Generation Tree (GT), and distance is evaluated by tree traversal and
comparison of corresponding nodes. If the distance between two classes is low, then they are
combined to form an intermediate class which is more general than the constituent classes.
The comparison of classes is continued till no more combination is possible. The description
of an intermediate class is learnt from the description of its constituent classes. In this paper,
the method of learning individual class descriptions and the relationships among these classes
based on the “closeness” of the classes is described. Each class description is learnt using a
reference description and the “closeness” of classes is measured using a distance metric defined
on the class descriptions learnt.

Section 2 of the paper describes learning of the reference class description from examples
of all the classes. In section 3, learning of each class description from the reference class

description and its own learning examples is described. Section 4 explains the evaluation of



the distance between class descriptions. Section 5 describes learning of a hierarchy of classes
using the class descriptions and the distance measure. In section 6, the results of applying
this learning methodology to some problems is described. Section 7 concludes the work with

some suggestions for future work.

’

2 Learning Reference Class Description

The description and r¢lative comparison of a given set of classes is facilitated by learning
about the class of classes, which is referred to herein as the reference class. Learning of the
reference class description is particularly useful to identify attributes which take similar values
across a set of classes and attributes which take dissimilar values across this set of classes. The
attributes which take similar values characterise this set of classes and the attributes which
take dissimilar values discriminate each class from every other class in this set. The learning
of the reference class description is enabled by the mazimum representation criterion defined
as one which maximises the number of examples (of the specified class) taking a particular
value for an attribute (corresponding to the specified class). We define the Generation Tree
(GT) in the sequel as the tree representation of a class, each of whose nodes represents the
attribute with respect to which the branching is done and whose directed arcs from root to
leaves carry the attribute value along with the proportionate number of examples taking this
value. The node attributes are selected using the maximum representation criterion at each
node. The structure of the reference tree is a binary tree.

In this section, we give a procedure to learn the reference GT by pooling the examples of
all the classes. We note that comparison across classes would be facilitated by constructing
individual class descriptions relative to this reference GT. The reference GT is constructed for

attributes taking binary, real/integer and nominal values.

2.1 Generation Tree for Binary Valued Attributes

The concept of Generation Tree was first reported in [Doct 85]. However, the procedure used
to create the GT from examples in this proposal had certain flaws which was rectified in a mod-
ified proposal [Arun 90]. This later proposal took care of only binary valued attributes. The
procedure used in this proposal was later extended to non-binary valued attributes [Yeg 90].



In this section, this procedure which is used to learn the description of the reference class is
briefly described. The process of learning the elementary class description is described in the

next section.

2.1.1 Algorithm for Construction of GT

The GT is built using the criterion of maximal representation at each node.

1. Consider the given set of examples at the root node.

»
2. Select the most representative attribute for the examples at the current node. This is

done as follows:

(a) I both the binary values occur for the given attribute among the set of examples at
the current node, then find the cardinality of both the sets, where all the examples

“in the first set have one value (say 0) for this attribute and all the examples in the
other set have the complementary value for this attribute. Else, find the cardinality

of the given set.

(b) Find the maximum of the cardinality of the resulting sets (or set).

Repeat steps (a) and (b) for all the attributes and select that attribute as most repre-
sentative which has maximum cardinality as determined from step (b). In case of ties,

the criterion is: select that attribute which comes earliest in the attribute sequence.

3. For both the values, branch off from the current node. At the left child node, consider
all those examples having value 0 for further branching and at the right child consider

all those examples having value 1 for further branching.

4. Termination Condition : If all the attributes have been selected along all the paths of
the tree or if the frequency along all the leaves is less than called expansion threshold,
then stop. Else, go to step 2 and proceed in a depth first fashion.

Note In this context, the true description of the class is the binary stochastic description
based on the maximum representation criterion.

Example 1 Suppose we have the following set of examples with four attributes.
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Figure 1: GT for binary valued attributes

S = {(1011),(0110), (1011), (1110),(1011),
(0110),(1110), (1011),(1110), (1011)}

We show how the GT is built for this example set. We have,
{(lex = 1| = 8),(la1 = 0| = 2),(Jeaa =1| = 5),
(lez =0| = 5),(lag = 1| = 10),(|las =0 = 0),
(leg =1] = 5),(Jag =0 = 5)}
Here |.| stands for cardinality.

Therefore, at the root node we select a;. Then we select a; at the next node and proceeding
similarly, we get the GT described in Figure 1.

2.2 Real/Integer and Nominal Valued Attributes
2.2.1 Algorithm for Construction of GT for Real and Integer Valued Attributes

"The GT created is a binary tree. At each node, the attribute, value range and the joint
frequency of both the left and right child are stored.

The GT is built using the same criterion of maximal representation at each node as in the
binary valued attributes case.



1. Consider the given set of examples at the root node.

2. Sclect the most representative attribute among the examples at the current node. This

is done as follows:

(a) Start with the first attribute a;.

(b) For each value assumed by at least one example, find the number at the current

node. Order this (value, cardinality) in ascending sequence of the value.
(c) Start with thessecond value in the above list.

(d) Place the boundary at this chosen value and evaluate the centre of left and right

partitions.
(e) Find the distance between these partitions (called inter-partition distance).

(f) If the current boundary is at the last value, then go to step (g), else place the
partition boundary at the next value and go to step (d).

(g) Find the boundary for which the inter-partition distance is maximum.

(h) For the current attribute @, at node r, if the maximum inter-partition distance is
greater than a specified threshold (equal to axleast count, where a is specified and
least count is determined from the learning examples), two resultant sets may be
considered, viz., S}, and S2,. The first set is the one where each example has a
value for a, that is less than the boundary value. The other set is the one where
each example has a value which is greater than the boundary value. The lower
limit of the range of S7, is the least value of a, in S}, and the upper limit is one
least count less than the boundary value. The lower limit of the range of S2, is
the boundary value and the upper limit is the largest value of a, in S?,. Select the
larger of the two sets S}, and S?,. Otherwise, the given set is retained as a single
partition with the least value in the set being the lower limit and the highest value
being the upper limit.

Repeat steps (b) to (h) for all the attributes, a,, u = 2,..,n.

(a) Find the largest set as determined from step (h) considering only those sets different
from the ones produced along this path. The corresponding attribute is a,,. This is

6



the most represcntative attribute. In case of tie, choose the attribute which occurs

earlier in the input list of attributes.

3. Split the set as determined from step 2h. If it is split into two, then the first set comprises
all those examples which have a value less than the best partition’s boundary value a,,
and the second set comprises all those examples whose value for a,, is greater than or
equal to this value. If it is to be retained as a single set, then the range is the range of

values for all the examples at this node.

4. If there is no new (attribute,value range) that can be considered along all the paths of
the GT, or if the frequency at all the leaves are less than the expansion threshold, then

stop. Else, go to step 2 and proceed in a depth first manner.

Example 2 Suppose we are given a set of examples specified as tuples of three attributes a,,

a; and as. If all the attributes are of type integer, then let

S=4{1(1518),(1 6 23),(1 7 24),(1 8 25),(1 6 26),
(17 27),(1 11 24),(1 8 23),(2 12 16),(2 12 17)}

and a = 5.
At the root node the first attribute assumes two values, viz., 1 and 2. Placing the partition
at the second value we have, |
inter-partition distance = (centre2 - centrel) = (2-1) = 1.
Since this is less than (axleast count), the given set is not partitioned. The other two
attributes partition the set. Therefore, a, is selected at the root. At the next node, the
cardinality of the best partition for both a, and a; are the same. Using the rule for ties, we

select a;. The GT obtained by this procedure is as shown in Figure 2.

2.2.2 Algorithm for Construction of GT for Nominal Valued Attributes

The GT created is a binary tree. At each node we store one value for the left child and one or
more values for the right child (if it exists), and also the attribute, and frequency of the left
and right child. |

The GT is built using the same maximum representation learning criterion. Let the exam-
ples be given as (attribute, value) pairs where the j** value of the i** attribute is denoted by

i;.



Figure 2: GT for integer valued attributes

1. Let the given set of examples represent the root.

2. Select the most representative attribute among the examples at the current node as

follows:

(a) For each attribute a;, find a value v;, among the examples which has the maximum
cardinality.

(b) Select attribute a, which has the maximum cardinality among all the attributes as
determined in step (2). In case of a tie, choose the attribute which comes earlier in

the attribute List.

3. Split the set of examples at this node into two sets. The first set has all the examples
which have value v,, for a,, and the other set has all the examples with any value other

than v,, among the examples.

4. If there is no new (attribute, value range) pair that can be considered along all the paths
of the GT, or if the frequency at all the leaves are less than the expansion threshold,

then stop. Else, go to step 2 and proceed in a depth first manner.

Example 8 Suppose we have the following set S of examples specified by three nominal
attributes a,, a; and a3 whose ranges are {A,B,C,D}, {X,Y,Z} and {I,J,K,L}, respectively:



Figure 3: GT for nominal valued attributes

S={ (AXID,AXN,(AYK),(AYK),AIK),
(AxLv),(B2Z L),(B Z2J),(BZ1I1),(CXxI)}

At the root node we select attribute a,, since the cardinality of a;=A is the highest among
the three atiributes. We branch off at the root node into two children : the examples at the
left child having value A for @; and examples at right child having any other value (B or C)
for a,. Proceeding similarly, we generate the GT shown in Figure 3.

3 Learning Elementary Class Description

The description of an elementary class (a class for which examples are given) is learnt from
its examples and the reference cl@s description. This description represented as a binary tree
has the same attribute sequence as the reference tree. The value ranges and the frequencies

are determined from the statistics of its examples.



3.1 Algorithm for Constructing GT of Elementary Class

1. Set the pointer to the root of the reference tree. The GT of current class C, has a

corresponding node with the same attribute at its root.
2. Consider all the examples of C, at this node.

3. Label the current node of the tree corresponding to the class C; with attribute a, (note

the initialisation corresponding to root in step 1).

4. If the attribute o, at the current node of the reference tree is of binary type, then find
the frequency of those examples in C, at the current node having attribute value 1 and
those having value 0. These frequencies are stored along the corresponding arcs to the
child nodes.

If the attribute a, at current node of the reference tree is of nominal type, then do the
following : find the frequenc;y" of examples having the same value as the value in the left
arc of the reference tree for a,. Label the left arc at the current node with this value.
All other values of a, which occur in the example set at the current node are the values
of the right arc.

If the attribute is of real/integer type, then do the following : if the attribute value of

an example falls under the range of the left arc of the reference tree, it adds to the left

arc frequency; else it adds to the frequency of the right arc at the current node.

The attribute labels at the child nodes correspond to the label of the corresponding child

nodes of the reference tree.

Note The ranges on the left and right arcs of the current node are subsets of the ranges

of the left and right arcs corresponding to the reference tree.

5. Repeat steps 3 and 4 corresponding to the examples of C; which satisfy the attribute
restrictions obtained in the path traversal, until the GT is fully constructed in consonance

with the reference tree.

Example 4 Consider the following example for two classes with three attributes, the first
binary, the second nominal and the third real. Suppose the expansion threshold is 0.3.
S ={(1 a 0.5),(1 a 0.6),(1 a 0.7),(1 5 0.9),(1 b 1.0),(1 b 1.5),(2 b 1.7),(0 a 2.0),

10



{to-s,v3) 025}
(0,01}

{tos,09),

- 0-3}

{(o:s,1:3),0-05}

Figure 4: The Reference GT

(0a22),(0b25)}
S, = {(1 6 0.5),(1 a 0.6),(1 & 0.7),(1 @ 0.8),(0 a 0.8),(0 & 1.0),(0 a 1.6),(0 a 2.1),
(0 a 2.2),(0 b 2.4)}

The reference tree generated using the maximum representation learning criterion is shown
in Figure 4.

The GTs corresponding to the two classes are built using the attribute sequence in this
reference tree as explained below : at the root node the attribute a, is selected and the
frequency of examples assuming value ‘a’ and value ‘b’ is determined. In the set S;, there are
five examples assuming value ‘a’ and five examples assuming value ‘b’ for a;. At the left child
of the root, the attribute in the reference tree is a;. All those examples at this node in class
1 whose value for a3 falls within the range (0.5,1.3) represent its left child. Those examples
whose value falls within the range (1.4,2.2) represent the right child of the current node.
Proceeding thus, we have the GT for class 1 illustrated in Figure 5 and the GT corresponding

to class 2 in Figure 6.

11



{to-5,07), 03}

Figure 5: GT for class 1

Figure 6: GT for class 2
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4 A Distance Measure for Generation Trees

The evaluation of the distance between two class descriptions is required to find the degree of
closeness of the classes. The distance for GTs is evaluated based on the values/value-ranges
of the corresponding arcs and the frequencies. In this section, a distance measure for GTs is

defined and shown to be a metric.

4.1 Preliminaries

Definition 1 The level. of a node in a GT is equal to the difference of the length of the path
(in terms of the number of hops) of t:hc longest path from root to leaf of the GT (which is the
depth of the GT) and the length of the path from the root up to the node under consideration.
Example 5 The level of each node of the GT whose depth is 3 is as indicated in Figure 7.

level = 3
level =2
level =1

Figure 7: The levels of the nodes of a GT

Definition 2 The root node is numbered 1. The left child of a node r;umbered p is numbered
2p and the right child is numbered 2p-+1.

Example 6 In Figure 8, all the nodes are numbered as per definition 2.

Definition 3 Two nodes are said to be corresponding if their node numbers are equivalent.

Definition 4 Two arcs are said to be corresponding if the nodes they connect are correspond-

ing.

13



Figure 8: Node numbers of a GT

Definition 5 The source node of an arc is that node (of the two nodes which the arc connects)
which has a lower node numbering. The other node is the sink node of the arc.

The process of distance evaluation of any two GTs of two classes involves a depth first
tree traversal of the two GTs, comparison of the corresponding arcs and calculation of the

contribution due to left and right arcs.

4.2 Distance Measure for Binary Attributes

Distance Contribution

The distance contribution of corresponding arcs q (whose source node numbered p is at
level 1) of two GTs T; and T; denoted by C},’,q is proportional to the frequency difference at
~ the arcs and the level 1. Since only binary trees are involved, q takes a value of either 0 or 1.
The distance between two GTs T; and 7 is defined as follows:
Ties Tt ' Lozt Cig

(m+(m+1))

D(T,T;) = (1)

where
D(T;,T;) is the distance between GTs T; and Tj, the outer summation is over all the levels, the

second summation is over all source nodes p at level 1, the innermost summation is over all the

14



Figure 9: GTs for distance calculation

arcs q at node p and n is equal to max(depth(T;),depth(T};)) (which is the number of attributes
if there are no irrelevant nodes at least along one path) and the distance contribution C,‘;’,'q for
the different cases is as given below in eqns. (2) and (3).
If the corresponding arcs exist in both the GTs T; and Tj, then eqn. (2) is applicable, else
eqn. (3) is applicable.
Cira =| fipg = fipg | ¥ 1 (2)
Cil, = fig*1 (3)
where
f,‘,,q is the frequency at arc q with source node p at level 1 for GT T;, f,’,',q is the frequency at
arc q with source node p at level 1 for GT T; and 1 is the level.
Note Since the distance is evaluated between two GTs 7, and T; built with respect to the
same reference tree, the attributes at the corresponding nodes, if present in both GTs T; and
T; will be the same.
Example 7 The GTs for class T; and T; are as shown in Figure 9.
Here n=3.
D(T;,T;) = (Cs}; + Csia + Cgl‘ + Cih + Cih + Cihp + Cin +

15



Cila + Cm + Gy}, + Cm + Cm" + Cm ;’n)/(" *(n+1))
Ciy =] 0.7— 0.3 (3 =12
312-—]03 07"3—-12

Cyy = 0; Cya = 042 = 0.8; Cyy =0
Cy,=04x%2=0.8; Ci, =03-0.2]+1=0.1
Ci,=01%1=0.1; B =01%x1=0.1

Ci, =03%1=10.3; Cii =|0.1-0.3]%1 =02
Cm=02*1—_-0.2- Ci=01%1=0.1

Cln—OS*l_Oa

54
3x4

D(T,,T;) = =0.45

4.3 Metric Properties

D(T;,T;) satisfies the following metric properties [Boor 73] :
8)0 < D(T,,T) < 1
b) D(T;,T;) = 0,iff T; = T;.
) D(T;,T;) = D(T},T:)

d) D(T;,T;) + D(T;,Ti) > D(T;,T)
Property 1
a)0 < D(T,T;) L1
Proof Since the distance measure D(7},T;) is the sum of non-negative terms only, D(T;,T;)
> 0. Since the maximum contribution at level 1 of the GTs T; and T; from all the arcs with
source node at that level is at most 21, D(7;,T}) is at most equal to 2* (1 +2+43 + ....... +n)
which is equal to n * (n + 1). Therefore D(T;,T;) < 1. O
Note D(T;,T;) = 1 iff there are no corresponding arcs in the two GTs T; and T; and each
path in both the GTs is of length equal to n.
Property 2
b) D(T;,T;) = 0iff T; = T;.
Proof The proof for the if part is straightforward; we prove that,

D(T;,T)) =0 =T, =T,

16



Since each of the terms of D(7;,T;) is non-negative, it must be equal to 0. The terms can

be that of one of the two cases described in Section 4.2. If it is of the case (i) type, then
| firg~ Sy 1 #1=0

== fl‘.pq = fI’pq
If the term is of the case (ii) type, then
fz;q *1=0

The first type says that the two frequencies are equal. The second type says that the
frequency at the node of GT T; is 0, which means it does not exist in GT T; also. O
Property 3 It follows from the structure, and the assignment, of the values of the GTs.
Property 4
d) D(T;, T;) + D(T;,Ti) > D(T;, Ti)

Proof Let N C,"gq be the normalised distance contribution at source node p, level 1 and arc q
between GTs T; and T3, i.e.,
i (C)
7 (nx(n+1))
We demonstrate that at each arc the sum of the corresponding normalised contribution of

distance between GTs T; and 7}, and T; and 7T, is greater than the normalised contribution

of the distance between T; and T,. We prove for each case.

1. The corresponding arc is present in the three GTs T;, T; and Ti. Then,
i _ (| fhg = fipa | #1)

NG = T e(n+ 1)) )
jk_(lfl:;)q—fl:’ql*l)

N = et + 1) ®
o _ (1 fin = oD

N0 = et 1) ©

It follows from eqns. (4), (5) and (6) that
NCji + NCix > NC

17



2. A particular arc q exists only in two of the three GTs. The worst case, i.e.,, when

NC,'L 4 NC,’; is the least and NC,";L is the greatest, is when the arc q exists for T; and

T, but not for T;. (or when the arc q exists for T; and Tj, but not for 7}.)

T
Nc‘m“(m(r‘;ﬂ)) (™
s (i = fie )
NCin = T m 1) ®
Nep = Imt Q

(n*(n+1))
It follows from eqns (7), (8) and (9) that,

NC}i + NCix > NC%.
Similarly, the above can be proved for the remaining two cases.

3. A particular arc q exists only in one of the three GTs. The worst case is when the arc

q exists in T;, but not in T; and T;.

NG} = NC and NCi; =0
Therefore,
NCji + NCii > NC¥

Similarly, the above can be proved for the remaining two cases also.
- Hence,
D(T‘,I})“}-D(TJ,T)‘) _>_ D(szTk) o
4.4 The Distance Measure for Non-Binary Attributes

The distance D(T;, T;) between two GTs T; and Tj is defined by eqn. (1), where the contribu-
tion is the same as the binary valued case if one of the corresponding arcs are missing, and is

as defined below if the corresponding arcs are present.

18



iy

“J = (I flm fl-’m l +2» (] - %&E) * (nunkffw’f'm))) (10)

g

where
m},’i2 is the difference of the lower and upper bounds of the matching values of the arc q between
GTs T; and T; with source node p at level I (for nominal valued attributes, it is equal to the
cardinality of the intersection of values) and u}fv is the range of the corresponding sets with
source node p at level | and arc g (for nominal valued attributes, it is equal to the cardinality
of the union of the values).
Remark 1 If the (att;ibute, value-range) pairs are equal at all arcs in both GTs T; and Tj,
then the second term in eqn. (10) vanishes and the distance evaluation is similar to the binary
valued case.
Remark 2 The distance measure defined above for the non-binary valued attributes satisfies
all the metric properties (Properties 1,2,3 and 4 listed in Section 4.3).

The proofs for properties 1, 2, and 3 are extensions of the binary valued case, and only the
proof of the triangle inequality is given below:

Proof of triangle inequality
. ) . m -
C¥=(F-F[+2» (1 - ‘u_,) * (min(f*, 7)) *

C* = (i - f’°l+2*(1-——) (min(f7, f*))

sk

C* = (| £ - f*|+2*(1—2—) + (min(f, 15)) »1

When the corresponding arc is absent in any of the GTs, the proof is straightforward. When

the corresponding arcs are present in all the GTs, we have,

Ci 4 O* > (f‘+f" 2*f’*(1ni+ﬁ—i)) (11)

uik
and assuming f* < f¥,
o= froze (T2 (12)

The proof is required only for positive values of 'L‘—'} '“" — 1. If this is negative, then the
RHS of eqn. (11) is greater than that of eqn. (12) for a.ll cases. When f* > f7, we have to
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Suppose the matches are as described in the Figure 10, where v,w, z,y, z are all greater

prove that :

or

than or equal to 0. Then,

mY (w4 z)
ui (v+w+z+y)
m* (z+v)

W (wtzty+2)
m' z
W (ptwtzty+z)
Substituting in LHS of eqn. (13), we have,

(w+2) (z+y) :
v+w+z+y) (wtz+y+z) (v+w+zt+y+2)

This expression reduces to

(r+w+z+y+2)(vw+vz+yz)+vz2)
(v+w+z+y+2)vtw+z+y)(w+z+y+2))

Since v,w,z,y and z are all non-negative and none of the terms in the denominator is equal
to zero (because the case being considered is when the attribute is present in all the trees),

this expression is < 1. Similarly, for any other combination of match for the three trees, the

triangle inequality can be proved.

20



S e y

P -

i
t
s
A
1
'

1

L

Figure 11: Attribute value overlap for GTs T, T; and Tk

{105,073,
{to-s.0-73,0-3} 03}

Figure 12: GTs T; and T; involving non-binary attributes

When f* < f7, we have to check if (%} * fI 4+ "‘-‘J’,"- * fF_ fj) is less than ('3—-,—' * f"). The
- maximum value of the former is i » (f* — f7) which is less than or equal to 0 and the

minimum value of the latter is 0. Here x and y are as described in Figure 11. O

Example 8 Consider the two GTs T; and T; in Figure 12 corresponding to classes C; and Cj,

respectively, where attribute a, is of binary type, a; of nominal type and a; of integer type.

The distance between GTs T; and Tj is evaluated as follows:

D(T,T;) = ((/0.5—-0.9|+]0.5—0.1])«4+((]0.3—0.6]+2*(1—0.3/0.6)0.3) +

(10.2-0.3]+2%(1~0.3/0.7)%0.2) + 0.4) *3+ (] 0.4 — 0.3 | +0.2) %2 +
(0.1))/(4 = (4 + 1)) = 0.396
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Note The evaluation of the distance between GTs 7; and T; is bounded by (N; 4+ N;), where
N; and N; are the number of examples in classes 7, and T; respectively.
In the following scction, this distance metric is used to find a relationship among the ele-

mentary classes.

5 Learning Relationships Among Classes

Description of individual classes in terms of GT representation was dealt in Section 3. In
many applications we art interested in learning about higher level concepts that link specific
classes. When such a concept is represented as a tree, we refer to it as a Concept Tree (CT).
In this tree, a class is related to a set of classes. This set of related classes are combined to

form a general class. All relationships in a CT are belongs-to relations.

5.1 Concept Tree

A node in a CT corresponds to a class and a node higher up corresponds to a class which
is more general than all the classes corresponding to nodes below it. A class is more general
than another class if after some generalisation (i.e., dropping of conditions from some sub-
descriptions), the two classes are identical (or nearly so - i.e., based on the distance between
the corresponding GTs) with respect to the sub-descriptions and their frequencies. The first
class is referred to as general and the second as specific in this division into two classes. Any
arc in the CT therefore signifies a belongs-to relation. The leaf nodes in this tree stands for
the most specific classes. The CT is built in a bottom-up manner starting from the most
specific classes and proceeding up to the most general class.

Each node of the CT has a corresponding class description representable as a GT. The CT
is learnt from the GT of the specific classes. The training examples are given only for the
most specific classes which correspond to the leaves of the CT. The inherent hierarchy is learnt
progressively. This is particularly suited for diagnostic systems where the expert diagnoses
from general to specific. Also, in such a setup, examples for learning are given only for the
specific classes. The intermediate nodes in the CT are learnt using the GTs of two or more
classes and the distance metric. The hierarchy not only aids in sequential diagnosis, but also

in improving explanations.
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5.2 Explanation of the Method to Build CTs

The CT is built as a gradual hierarchy. Two or more classes similar in many respects and
dissimilar in a few respects, are combined to form a general class, so that the hierarchy is
gradual. This implies that classes which are close are combined first and then the resultant
general class is combined with other general classes. If the distance threshold is high, then it
15 likely that we may be combining two dissimilar or more distant classes right at the start.
The aim is to combine similar or closer classes first and then relate these to dissimilar classes
at higher levels of the CT. These concepts are operationalised by using two thresholds which
are explained below.

The distance between two GTs being considered for combination should be less than a
specified threshold ‘t’. This threshold (whose value lies between 0 and 1), to be specified by
the user, is based on the number of attributes used to discriminate a set of related classes. If ‘m’
attributes are used for discrimination of two specific classes whose GTs are of depth ‘n’, then
the threshold ‘t’ could be fixed equal to or marginally greater than (m*(m+1))/(n*(n+1)).
The number of attributes used for discrimination is higher for more specific classes than for
less specific classes, since the depth is higher for more specific classes and ‘t’ is a constant.
This enables more classes to be combined into one at lower levels of the CT than at higher
levels and therefore, the number of levels in the CT does not become unduly large.

The distance contribution for the top (n-r:) levels should be less than a threshold ‘41’ which
is approximately equal to zero. This is because we want the two classes to be ideally identical
at the top (n-m) levels. This threshold ‘t1’ is a fraction of the earlier threshold depending on
what distance can be tolerated at the top levels. So, ‘t1' is equal to a * ¢ (where 0 < a < 1).

The first threshold called discriminating threshold ensures that the classes are not farther
than the case where the lowest ‘m’ levels of the GTs are completely discriminating. The second
threshold called identical threshold ensures that the two classes are almost identical at the top
(n-m) levels. The two thresholds together make sure that the lowest ‘m’ levels of the GTs are
almost completely discriminating and the top (n-m) levels of the GTs are almost identical. If
these two constraints are satisfied, the two classes can be combined. The resultant GT for the
general class is a weighted average of the top (n-m) levels of the GTs of classes C; and C;.
Ideally, the top (n-m) levels of the GTs of the general class and classes C; and C; should be

identical. The lower ‘m’ levels are dropped using the principle of redundancy of an attribute
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Figure 13: GTs corresponding to example sets S; and S;

at a node, which states that if an attribute at the lowest node of the path assumes both the
values (since the GT is a binary tree) with equal frequency at a node, then it is redundant
at that node. Since these thresholds can only be used as guidelines, the user should test the
system for various values of these thresholds.

In the following example, we illustrate that combining two GTs after dropping of a level
is equivalent to constructing the GT of the general class from union of examples of specific
classes and dropping redundant nodes.

Example 9 Consider the two classes C; and C; for which the following two sets of examples

are given.
S: = {(10),(10),(20),(10),(10), (10), (10), (10}, (01), (01)}

8; = {(11),(11),(11), (11),(11), (11), (11),(11), (00), (00)}

The GTs of C; and C; are as shown in Figure 13.

If t=0.35 and t1=0.00, then T; and T; can be combined and the GT of the resultant class
Ci; is as described in Figure 14.

If we build the GT of class C;; using the union of example sets S; and S;, we get the GT
in Figure 15. This reduces to the GT in Figure 14 due to the redundancy definition which
states that an attribute is redundant at a node if both its descendants are leaf nodes and if
the frequency of its left and right arcs are equal. In Figure 15, the attribute a, is redundant
at both the nodes at level 1 since at both these nodes the frequencies of the left and right
arcs are equal. Hence, the GT in Figure 15 reduces to that shown in Figure 14. The two

procedures are hence equivalent.
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Figure 14: GT corresponding to resultant class C;;

Figure 15: GT corresponding to union of example sets S; and S;

5.3 Combination of Classes

Preliminary Definitions

Definition 6 A class C; is said to be more general than a class C;, if after GT corresponding
to C; is reduced in depth to that of C;, the two classes are identical or the distance between
the GTs is within the identical threshold. Here, C; is said to be the specific class and C; the
general class.

Definition 7 A class C; is called maximally general class, if there is no other class C; which
is more general than ‘C’.-.

Definition 8 A class C; is called maximally specific class, if there is no other class €; which
is more specific than C;.

Definition 9 Two classes C; and C; are said to be equally specific, if after the discriminating
levels are dropped from the two GTs, the two classes are identical or the distance between the
GTs is within the identical threshold.

Two classes are combined at a time. The constraints for combination are checked only for
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two classes at a time and classes are combined two at a time. So, if k classes arc to be combined

8t one level, then they are combined in at most k-1 steps. The logic is that if these k classes

can be combined, then at each step a specific class should be able to combine with a general

class generated in the previous step. Hence, in this case we could either be combining two

equally specific classes, or a specific class and a general class. So, the nodes of the given set

of specific classes will progressively get connected to the node of the general class in the CT.

We show in Corollary 1 that if a set of classes satisfy the constraints for combination for all

sequences, then the GT of the resultant general class is invariant of the order of combination.

Algorithm for Combination of Classes

1. Form a list L of the maximally general classes, which at the start is the set of all the

specific classes for which examples are given. Let the last element of this list be LAST.

2. We consider the combination of equally specific class first. Combine two GTs T; and T

if they are of equal depth and the following two conditions are satisfied.

(a)

(b)

(c)

(d)

D(T;,T;) < t, where D(T;,T;) is the distance between GTs T; and Tj, and ‘t’ is the
specified discriminating threshold.

Dop-m(T;, T;) < t1, where D, (T;,T;) is the distance between GTs T; and T; after
deleting ‘m’ bottom levels along all the paths. The integer ‘m’ is the largest positive
satisfying (m * (m +1))/(n *(n + 1)) < ¢. ‘t1’ is the identical threshold.

We next consider equally specific combination for GTs of unequal depths.

Two classes (whose GTs are of unequal depths) are equally specific and qualify for
combination, if after the GT of larger depth is truncated to that of the other GT,
the distance between the two GTs is greater than the identical threshold, but lower
than the discriminating threshold. Notationally, t1 < D(T;,T;) < i, where Ty is
the GT built from GT T; by truncating each path at the depth of the shorter GT
T;. Repeat step (b) with T; = T;.

Note Two GTs T; and T; can be of unequal depths only if they have at least one
non-binary attribute, or if all the attributes are binary, then there should be at
least one redundant node along all the paths for one of the GT.

Delete T; and T; from L and add T;; (GT corresponding to combined class Cj;) as
(LAST+1)th element. Change LAST to LAST+1.
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3. Next, we consider combination of a general and a specific class.

(8) A class the depth of whose GT is lower than that of another is a general class of
the other, if after the lower discriminatory levels are dropped in the GT of the
second class, the distance is within the identical threshold. In notational form, we
have D(T;,,T;) < 11, where T} is the GT built from GT T; by truncating each path
beyond the depth of the shorter GT Tj.

Note The logic used here is that the lowest levels would have been used to discrim-
inate the spedific classes, and since after deletion of the lower levels the distance is
less than ‘t1’, it is a general-specific combination. If the distance is greater than
‘t1’, then either it is a2 equally specific combination or unrelated at the current

generalisation level.

(b) Delete T; from list L (by convention). Note that the weights in GT T; are updated

as explained in Section 5.4.

(c) Repeat steps 2 - 3 using the new list L (which is the list of the current maximally

general classes), till no more combination is possible.

Note The maximum number of distance evaluation in this algorithm is equal to (n-1) + (n-2)
+ o + 1 which is of order O(n?).

Example 10 This example illustrates equally specific combination when the GTs are of equal
depth. The GTs are given in Figure 16. Assume t=0.35 and t1=0.05.

1.6
D(T:,Ty) = 3135 = 027

Here m is equal to 1, since the largest value of m satisfying (m *(m + 1))/(n*(n +1)) <t
“is 1.
D(2y)(T;, T5) =0 < 1

Therefore these two GTs T; and T; can be combined. The GT of the resultant general class
is given in Figure 17.
Example 11 Combination of equally specific classes when the depths are unequal. Suppose
t=0.35 and 11=0.05. Suppose the GTs corresponding to the two classes are as in Figure 18.

Set the height of the two GTs equal. So, we build a new GT T;: of height 2 as explained
in the above algorithm. Then we evaluate D(T;,,T;). This is equal to 0.27, which is less than

27



(V,0:5%)

(1,0:5%5)

{1,0:55)

(v,0-0%)

(0,0-05)

(1,0-05) (0.0:35)

(7))

Figure 16: GTs of equal depth
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Figure 17: GT of resultant general class C;
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Figure 18: GTs of unequal depth
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Figure 19: GT of resultant general class C;;
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Figure 20: GTs of unequal depth

the threshold ‘t’, but greater than ‘t1’. The GT of the resultant class is as given in Figure 19.

Example 12 This example highlights combination of a specific and a general class. Suppose
t=0.35 and t1=0.05. Suppose the GTs corresponding to the two classes are as shown in Figure
20.

So, we construct a GT of depth 1 corresponding to T; called T; as explained in the above
‘algorithm. The distance D(T;, T ) is equal to zero. Since this is less than ‘t1’, the two classes

can be combined. The GT of the resultant class is as shown in Figure 21.

5.4 Learning of Resultant Class Description

The resultant class description is learnt from the class descriptions of the constituent classes

(represented as GTs).
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Figure 21: GT of resultant general class C;;

1. Start with the root nodes of GTs T} and T

2. Check if the cor;65ponding arcs exist in both the GTs T, and T;. If it does, then
generate an arc in the new GT with the same attribute name as that of T and T
at its source node and weighted frequency of the corresponding arc of T;. and T;.. For
example, if the frequency of the arc in GT T is f; and in GT Tj it is f;, then the
weighted frequency is (fi * s; + f; * 8;)/(8: + 8;) where s; and s; are the sample size of

classes C; and C; respectively.

3. If an arc with source node labeled a, exists in one GT (say T;) and does not exist in
the other, then generate a corresponding arc with source node labeled a, in the new GT

with the weighted frequency of the arc i.e. Ti‘?,' * f;.

4. Proceed in a depth first manner till all the arcs of GTs T and T are traversed.

Note For non-binary valued attributes, the same algorithm can be used for construction of
GT of the general class, except that in step 2 the value range of the arcs in the new GT is the
union of the range of the corresponding arcs of T; and 7Tj.

Example 13 Consider the two GTs in Figure 22 for combination. Assuming the sample sizes
of both the classes C; and C; are equal, the GT corresponding to class C;; constructed using
the above algorithm is as depicted in Figure 23.

Theorem 1 The GT corresponding to the general class built using the algorithm above
converges in the limit to the true description, for each ‘¢’ and ‘t1’.

Proof Since the attribute at corresponding nodes of all the constituent classes are the same,
it remains the same for the general class. The arc frequency is the weighted frequency of the
corresponding arc of the constituent classes. The arc range in case of non-binary attributes is

the union of the ranges of the constituent classes.
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Figure 23: The resultant GT
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Using Glivenko Cantelli theorem [DeGr 87 it can be proved that the reference tree and the
GTs of the constituent classes converge. This theorem states that: | F.(z) - F(z) |-— 0,
with probability 1 uniformly in x, where F,, is the empirical distribution and F is the true
distribution. This implies that for a given ¢ > 0,3n(¢) such that |F,(z) = F(z)| < ¢, with
probability 1, Vn > n(¢). Assuming that the joint distribution of (attribute, value) tuple is
such that there are no ties in the selection of attributes at the nodes of the GT when the
joint distribution is known, we can choose ¢ such that, for all n > n(e), chosen suitably, the
best attribute is chosen and the corresponding partition remains the same. This ensures that
the tree structure stabllises Vn > n(e). Since the attribute, frequency and ranges of all the
constituent classes has converged, this will be true for the general class as well. O
Lemma 1 If the corresponding arcs with source node labeled a, of two GTs T; and T; exist,
then taking the union of the range of corresponding arcs and evaluating the weighted frequency,
is equivalent to finding the range and evaluating the frequency for the corresponding arc with
source node labeled a,, for the GT with the examples of the union of the two classes at that
node.

Proof The attribute selected at the source node in both the cases is the same, since both
the algorithms use the reference tree to select the attribute at a node. The frequency of the
examples at this node that falls within the range of the arc under consideration of the reference
tree is equal to (s; * f; + 8; * f;)/(s; + 8;). The set of examples at this node is the same as
the union of examples at the corresponding node of GTs T; and T;. Hence, the range and
frequency of the corresponding arc in the new GT is the same in both the algorithms. Thus,
the arc generated in the new GT by both the methods are equivalent. O

Theorem 2 Building the GT of a general class using algorithm in Section 5.4 is equivalent
to building the GT of this general class with examples of the constituent classes.

Proof There are two different cases to be considered for each node. It is to be noted that for
all the casés the attributes at the corresponding source nodes are the same, since both the

GTs T; and T; are constructed from the same reference tree.

1. The first case, is when the corresponding arcs exist in both the GTs. In this case, by
Lemma 1 finding the range and evaluating frequency from the arcs of the two GTs and
generating the arc from examples at that node for the new GT are equivalent and, hence

the two methods are equivalent.
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2. If the node exists in one of the GTs (say T;) but not in the other, then the weighted
average of the frequency of all the arcs below it is taken. This is equivalent to subtrec
building at that node with examples of that class only. Hence, the two algorithms are

equivalent. O

This completes the proof for two classes. Extending the arguments, this can be proved for
n classes.

From Theorem 2 we get,
Corollary 1 Given that a set of ciasses satisfy the constraints for combination for all se-
quences, the GT of the resultant general class would be the same irrespective of the order of
combination.
Theorem 8 The hierarchy learnt converges in the limit.
Proof The proof follows from theorem 2 and the algorithm to build the hierarchy. O

In this section, learning of single and multiple relationships among elementary and general
classes leading to tree structures, using the proposed distance metric was explained. The

hierarchy learnt was proved to converge in the limit.

6 Practical Applications of KAHLE

Two applications were taken to demonstrate learning of a hierarchical relationship among the
specified classes. In both these applications KAHLE was able to learn meaningful hierarchies.
The results of these experiments are described below.

The inputs to KAHLE are the learning examples, expansion threshold, sample size of each
class, attribute names, distance threshold (corresponding to the discriminating threshold and

the identical threshold explained in section 5) and the test examples.

6.1 Classification of cars based on risk factor

This application concerns classifying cars into different categories based on its risk factor.
Every car is assigned a risk factor, an integral value varying from -3 to +3. The value -3
indicz;tes that the car is very safe and +3 indicates that the car is very unsafe. There was no
car with value -3. So, there were six classes involved. The number -2 was represented as 1,

-1 as 2 and 8o on. Each example was represented by 25 attributes. The system was first run
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Figure 25: Hierarchy when distance threshold = 0.30

with distance threshold = 0.45 and expansion threshold = 0.10. The hierarchy learnt is as
shown in Figure 24.

The program was next run with distance threshold = 0.30 and expansion threshold =
0.10. The hierarchy learnt in this case is as shown in Figure 25. The program when run
with distance threshold = 0.35 and the same expansion threshold resulted in the hierarchy
described in Figure 26.

It is clear from these experiments that all the hierarchies learnt are meaningful. It is never
the case that distant classes (with respect to risk factor) are combined at the lowest levels of

the Concept Tree.

6.2 Classification of thyroid diseases

Here the aim is learning of hierarchical disease structure for thyroid diseases. There are six dis-

eases involved - three hypothyroid diseases and three hyperthyroid diseases. The hypothyroid
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Figure 26: Hierarchy when distance threshold = 0.35
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Figure 27: Hierarchy when distance threshold = 0.125

diseases are : primary hypothyroid (class 1), compensated hypothyroid (class 2) and secondary
hypothyroid (class 3). The hyperthyroid diseases are : hyperthyroid (class 4), T3toxic (class
5) and goitre (class 6). The first experiment was performed with distance threshold = 0.125
and expansion threshold = 0.05. The hierarchy obtained is as described in Figure 27.

In the next run since secondary hypothyroid had only one example it was dropped. A new
class called negative (a class having none of the diseases - class 7) was added to this list.
The program was run with distance threshold = 0.10 and expansion threshold = 0.05. The
hierarchy obtained for these thresholds is as described in Figure 28.

The two hierarchies are meaningful since intuitively distant classes are not combined at the
bottom level of the Concept Tree.

In this section, the results of KAHLE applied to two problems commonly used in machine

learning literature was described. The guideline for specifying distance threshold is based on
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the number of discriminating attributes. The car classification and thyroid diseases experi-
ments were run with different distance thresholds and in all cases the hierarchy learnt was
meaningful, though different. These results hence, demonstrate the applicability of KAHLE

to practical problems in learning general classes from specific classes.

7 Conclusion

In this paper, learning of a hierarchical relationship among a set of classes specified by examples
has been described. The hierarchy learnt is shown to converge in the limit. The description of
a general class is learnt from the description of the constituent specific classes. The resultant
description has been shown to be equivalent to the description which would result from learning
using the examples of all constituent classes. The results of the two applications demonstrate
that the distance measure defined on Generation Trees helps learn meaningful hierarchies.
One of the major problems with the proposed learning system is that only one distance
measure has been proposed for learning relationships among classes. Alternative distance
~ measures and characterisation of the distance thresholds in learning relationships needs to be
explored. The proposed system is non-incremental right now. A procedure to incrementally

integrate new examples into the existing description is another interesting research problem.
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