
Fan Charts as Useful ‘Maps’ for an Inflation-Targeting Central Bank 
An Illustration of the Sveriges Riksbank’s Method for Presenting Density Forecasts of Inflation 

 
 
In this study I illustrate the usefulness of Fan Charts for a central bank and show how they can be used to 
present its viewpoint on likely paths of future inflation. Exploiting a bivariate unobserved components 
model, I use the methodology followed by Blix and Sellin (1998) to demonstrate how subjective judgements 
can be systematically incorporated into model-based forecasts and effectively presented in a graphic 
manner.  
 
 
I. Introduction 
 
Starting February 1996, the Bank of England (BoE) has been publishing the probability 
distribution of (constant interest rate) inflation forecasts in its Inflation Report in the form 
what has now come to be known as the Fan Chart. Sveriges Riksbank (BoS), following suit, 
started publishing similar density forecasts of inflation in its Inflation Report, starting 
December 19971.  
 
Since forecasts are inherently uncertain, the Fan Chart serves the two fold purpose of 
presenting the bank’s subjective view of future inflation, and, as Britton, Fisher and Whitley 
(1998) at the BoE put it, also allows it to convey that same information “without suggesting a 
degree of precision that would be spurious.2” 
 
Though the methodology of the BoE and the BoS is quite similar in the way they ‘construct’ 
the Fan Chart, while the BoE’s is more of a ‘top-down’ approach3, at the BoS, as Blix and 
Sellin (1998; hereafter referred to as the BoS method) share, “the initial assessments [of the 
inflation forecast distribution] and the aggregation is done at the Economics department, and 
then filtered upwards.4”  
 
To the extent there is subjectivity involved in judgement of skewness in the distribution of 
future inflation, the approach of the BoS appears more attractive. In this study I illustrate how 
the BoS explicitly incorporates subjective judgements into the model-based forecasts and 
arrives at its Fan Chart. As the Reserve Bank of India (RBI) increasingly moves towards an 
Inflation Targeting regime, understanding of the key issues related to presenting probability 
distribution of inflation forecasts would become indispensable.  
 
In Section II I briefly describe how the BoS goes about assessing uncertainty about future 
inflation. In Section III I outline an unobserved components model for generating inflation 
forecasts. In Section IV I demonstrate the ‘process’ of constructing a fan chart and present a 
few examples. Section V concludes with a recapitulation of importance of density forecasts 
in clearly bringing out the risks in the estimation of future macro variables.  
                                                 
1 Blix, M. and P. Sellin, “Inflation Forecasts with Uncertainty Intervals,” Sveriges Bank Quarterly Review, 2, 1999 
2 Britton, E., P. Fisher and J. Whitley, “The Inflation Report projections: Understanding the Fan Chart,” Bank of 
England Quarterly Bulletin, 1998 
3 ibid 
4 Blix, M. and P. Sellin, “A Bivariate Distribution for Inflation and Output Forecasts,” Sveriges Bank WP  09-09, 1998 



II. The Preliminaries 
 
The most crucial assumption in the study is that the central bank has structural or reduced 
form models for the macroeconomic aggregates that it believes affect inflation. The idea is to 
separate subjectivities from the scientific exercise, so that discussion regarding future 
developments in inflation can focus on assumptions underlying the models, the sources of 
uncertainty and their quantitative importance, rather than on ‘point’ forecasts and subjective 
judgments. 
 
It is also assumed that the central bank has fairly reliable model/s for forecast of inflation for 
various horizons. In the discussion that follows these are taken as given.  
 
The density forecasts presented both by the BoE and the BoS are ‘centered’ on the mode 
rather than the mean. The advantage of using mode rather than the mean is that while mean as 
a measure of central tendency is affected by extreme observations, mode by definition is the 
‘most likely’ value of the random variable5. On the downside, however, mode does not use all 
the information contained in the sample.  
 
 
Uncertainty Assessment  
 
This section is a summary of the description given in BoS as to how it assesses uncertainty in 
future inflation.  
 
Denoting by Xjs the macro variables (including inflation) that the central bank believes to 
affect the future level of inflation, both the BoE and the BoS assume all Xj to belong to a two-
piece normal (2PN) distribution given by: 
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The most attractive feature of this two-piece normal distribution is that with addition of just 
one parameter to the standard Gaussian distribution, both skewness and heteroskedasticity 
can be incorporated and wide varieties of shapes result. Also, if there is a reason to believe 
that the forecast distribution is multi-modal, 2PN can handle those special cases.  

                                                 
5 A special case is the Gaussian distribution mean, median and mode all coincide 



Borrowing from BoS, for the 2PN distribution under use, it can be shown that: 
 

 

 
 
After specifying the above distribution of the macro-variables affecting inflation, the BoS 
proceed by asking the following two questions: 
  
 

• What is the probability [ ]j j jP Pr X µ= ≤  
• Is there a reason for the uncertainty of the forecast in the variable Xj to be different 

from the historical; if yes, what is the factor hj by which to adjust the historical 
standard deviation of the variable Xj 

 
 
Though above are fairly subjective questions, a central bank, with its expertise and the wealth 
of data that it possesses can be expected to be in a position to be put concrete numbers to 
these judgements. For example, if there is oil crisis expected, than there would be a 
probability greater than 0.5 that oil prices would be up in the future and that with more 
uncertainty than historical, i.e. an h > 1. 
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Then given [ ]j j jP Pr X µ= ≤  and hj, we have6: 
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As can be expected, in the above equations, a high Pj and a high hj imply a high 1σ , i.e. a 
negatively skewed distribution.  
  
Note that though the above discussion refers to the macroeconomic aggregates including 
inflation, to generate the Fan Chart for inflation, BoS make an additional assumption that the 
skewness in inflation is linearly related to the macro variables affecting inflation, i.e.  
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The weights jβ in the above equation can be interpreted as the elasticity of the macroeconomic 
variable Xj w.r.t inflation and can be obtained from a suitable macroeconometric model, which 
the central bank is assumed to possess.  
 
Thus, having obtained the skewness in the distribution of inflation as above, as BoS show, it is 
rather straightforward to get the ‘left’ and ‘right’ variances. The two unknowns are 1σ  and 2σ , 
and the two equations: 
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6 Note that here hj and Pj both refer to forecast for a particular horizon; For brevity dependence on t has been 
suppressed 



III. A Bivariate Unobserved Components Model for Inflation and Output 
 
 

 Output: Following Watson (1986), output is separated into a trend and a cycle. The trend 
component is assumed to follow a random walk with drift and the cyclical component is 
assumed to follow an AR(2) process (much popular with the real business cyclical theorists; 
see Romer, 1996, Ch. 4). Thus, (natural logarithm of) output is specified as: 
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 Inflation: As found by Kuttner (1994) for the U.S., a parsimonious backward looking Phillips 
curve specification with MA(2) errors fits well for inflation in India too7: 
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where, following Domenech and Gomez (2003), core inflation ( *

tπ ) is modeled as a random walk 
without drift.  
 
Note how ‘restriction’ on the coefficient of core inflation as above allows for its interpretation as 
that level of inflation when the output gap, 1tz

−
 is zero. If in first equation in [6], 1tz

−
 is 0, with 

E( tν ) = 0, it follows that E( tπ ) = *

tπ . 

                                                 
7 Other specification for inflation were also checked; MA(2) was selected using the general to specific criterion 



Above equations can be conveniently cast as a State Space Model (SSM), facilitating estimation 
of the latent variables by Maximum Likelihood (ML) using Kalman Filter. Details can be found 
in Harvey (1993). For above specification, the SSM is: 
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Estimation and Results  
 
After running the Kalman Filter recursions as given in Harvey (1993), the state vector along with 
their associated Mean Squared Errors (MSEs) and the hyperparameters can be estimated using 
ML. The likelihood function is proportional to: 
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where θ  is the vector of the hyperparameters, and F is the MSE associated with error e.  
 
To estimate the vector of hyperparameters, we minimize the negative of the likelihood 
function L( )θ  using the Nelder-Mead simplex search method available in MATLAB8. Although 
Nelder-Mead is one of the slower search routines, it is more reliable provided the initial values 
are not too off-mark, which is not a concern for the problem at hand. 
                                                 
8 Using the function fminsearch available in the Optimization Toolbox of MATLAB 6.5  



Data 
 
For output, quarterly estimates of GDP at factor cost (1993-94 = 100) constructed by Virmani and 
Kapoor (2003) have been used after seasonally adjustment by the TRAMO/SEATS9 method10. 
Inflation is alternatively taken to be based on seasonally adjusted WPI-All Commodities (1993-94 
= 100) Index. 
 
 
Initialization of the Hyperparameters 
 
Running the Hodrick and Prescott (1980; hereafter HP) filter on the output and the inflation 
series, and estimating OLS gives initial estimates of the hyperparameters. Results are reported in 
Table 1 below: 
 
  

Table 1 
Initialization of the Hyperparameters 

Hyperparameter 
1ϕ  2ϕ  a  β  

1δ  2δ  2

εσ  
2

ησ  
2

ςσ  2

νσ  

Initial Value 0.54 0.18 -0.0094 -0.2 -0.7 -0.2 0.0000012 0.00011 0.0000018 0.002 

 
 
Initialization of the State Vector 
 
Since both potential output and core inflation have been modeled as nonstationary, unlike for a 
stationary state space model, initial conditions for the Kalman Filter are not well defined. 
However, since we have first estimates for potential output from running the HP filter, and that of 
output gap from the OLS estimates, we can treat the initial condition as ‘known’ for our purpose. 
Taking first three values from the HP filtered output series, cyclical output is initialized as the 
residual, *

t ty y− . For the MA terms corresponding to inflation their expectation (zero) is used to 
for initialization. MSE of the initial state vector (taken to be diagonal) are taken from OLS 
estimates from [1] and [2]. Since inflation and cyclical output have been modeled as MA(2) and 
AR(2) process respectively, essentially filtering starts from the fourth observation. Initial values 
are reported in Table 2 below: 
 
 

Table 2 
Initialization of the State Vector 

State Variable *

ty  tz  t -1z  t -2z  *

tπ  tν  t -1ν  t -2ν  

Initial State Value  ( 0α ) 11.67 0.0056 0.0032 0.0093 0.061 0 0 0 

Initial State MSE  ( 0P ) 0.096 0.0002 0.0002 0.0002 0.0003 0.0002 0.0002 0.0002 

 
 
                                                 
9 Time Series Regressions with ARIMA Noise/Signal Extraction in ARIMA Time Series 
10 Using the software DEMETRA made available by the European Statistical Institute (EUROSTAT) 



Maximum Likelihood Estimates of the hyperparameters are given in Table 3 below: 
 

Table 3 
Maximum Likelihood Estimates of the Hyperparameters 

Hyperparameter 
1ϕ  2ϕ  a  β  

1δ  2δ  2

εσ  
2

ησ  
2

ςσ  2

νσ  

Estimate 0.57 0.34 0.014 -0.39 0.19 -0.24 0.0000022 0.00013 0.000002 0.0022 

 
 
 
IV. Constructing Fan Charts: Step by Step 

 
In this section I exemplify step-by-step how fan charts are constructed. 
  

• Generate the skewness in forecasts of the macro-aggregates (using equations [1] and [2]) 
that are believed to affect inflation 

• From suitable macroeconometric models, get elasticities of inflation to the above macro-
aggregates 

• Use equation [3] to get implied skewness in the distribution of inflation for each horizon 
• With the mean and skewness, the ‘implied’ mode results from equations [4] 
• Generate the forecasts for inflation and output using suitable structural/reduced form 

econometric models 
• Use equations [4] to get 1σ  and 2σ   
• Plot the Fan Chart given µ , 1σ  and 2σ  

 
For the MSE of inflation forecasts for the next eight quarters results from the above SSM are 
used. Results are presented in Table 4 below 
 

Table 4 
Forecasts and the Associated MSEs 

Forecast 
Horizon/Prediction 

and the MSE 

Inflation 
Forecast and the 
Associated MSE 

t = 1 (Quarter) 0.0673 0.0023 

t = 2 0.0588 0.0024 

t = 3 0.0590 0.0025 

t = 4 0.0592 0.0025 

t = 5 0.0593 0.0025 

t = 6 0.0594 0.0025 

t = 7 0.0596 0.0025 

 t = 8 0.0597 0.0025 



Only a central bank can be expected to have detailed data and information to get the implied 
values of skewness in the distribution of inflation. In Figure 1 below I present examples of Fan 
Charts for inflation with γ  taking the values as given in Table 5 in various scenarios.  
 

Table 5 
Scenarios for the ‘Path followed by Skewness’ γ  

Scenario 1 0.07 0.06 - 0.10  - 0.02 0.03 - 0.14 0.11 0.02 

Scenario 2 - 0.07 0.09 0.03 - 0.06 -0.04 0.06 - 0.04 0.07 

Scenario 3 0.08 0.08 0.03 0.07 0.02 - 0.02 - 0.02 - 0.16 

Scenario 4 - 0.06 0.03 - 0.06 0.04 - 0.08 0.05 0.02 - 0.09 

 

 
 

Figure 1 
 
V. Conclusion  
 
Forecasts of macro-variables like inflation are inherently uncertain and even with the most 
sophisticated models all the risks can’t be quantitatively captured. The method used by the BoS is 
attractive because it allows subjectivities to be included in a systematic manner. The above 
analysis can be easily extended to present similar Fan Charts for future paths of output too. 
Furthering their study, Blix and Sellin (2000) present bivariate forecasts of inflation and output in 
the form of Contour Plots. Presenting information in the form of charts, after incorporating 
subjectivities into the historical standard deviation of macro-aggregates, would be useful in not 
only facilitating discussion at the central bank, but also informing the market participants and the 
general public about the paths of likely future of inflation and output.  
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