
  
Abstract 

 
Finding frequent patterns from databases has been the most time consuming process in data mining tasks, 

like association rule mining. Frequent pattern mining in real-time is of increasing thrust in many business 

applications such as e-commerce, recommender systems, and supply-chain management and group 

decision support systems, to name a few. A plethora of efficient algorithms have been proposed till date, 

among which, vertical mining algorithms have been found to be very effective, usually outperforming the 

horizontal ones. However, with dense datasets, the performances of these algorithms significantly degrade. 

Moreover, these algorithms are not suited to respond to the real-time need. In this paper, we describe 

BDFS(b)-diff-sets, an algorithm to perform real-time frequent pattern mining using diff-sets and limited 

computing resources. Empirical evaluations show that our algorithm can make a fair estimation of the 

probable frequent patterns and reaches some of the longest frequent patterns much faster than the existing 

algorithms. 
 
 
1.   Introduction 
 
In recent years, business intelligence systems are playing pivotal roles in fine-tuning business 

goals such as improving customer retention, market penetration, profitability and efficiency. In 

most cases, these insights are driven by analyses of historic data. Now the issue is, if the historic 

data can help us make better decisions, how real-time data can improve the decision making 

process [1].  

 

Frequent pattern mining for large databases of business data, such as transaction records, is of 

great interest in data mining and knowledge discovery [2], since its inception in 1993, by Agrawal 

et al. In this paper, we assume that the reader knows the basic assumptions and terminologies of 

mining all frequent patterns. 

 

Researchers have generally focused on the frequent pattern mining, as it is complex and the search 

space needed for finding all frequent itemsets is huge [2]. A number of efficient algorithms have 

been proposed in the last few years to make this search fast and accurate[3]. Among these, a 
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number of effective vertical mining algorithms have been recently proposed, that usually 

outperforms horizontal approaches [4]. Despite many advantages of the vertical format, the 

methods tend to suffer, when the tid-list cardinality gets very large as in the case of dense datasets 

[4]. Again, these algorithms have limited themselves to either breadth first or depth first search 

techniques. Hence, most of the algorithms stop only after finding the exhaustive (optimal) set of 

frequent itemsets and do not promise to run under user defined real-time constraints and produce 

some satisficing (interesting sub-optimal) solutions due to their limiting characteristics[5, 6].  

 

In this paper, we describe BDFS(b)-diff-sets (adopted from[5, 6]), a real-time frequent pattern 

mining algorithm which runs under  limited execution time and has the capability of running 

under limited memory as well. BDFS(b)-diff-sets does not limit itself to either of breadth-first or a 

depth-first search, but uses a search technique, which is a good mix of the staged search and 

depth-first search (discussed later in section 4.1), adopted from [7]. We have adopted the diff-sets 

concept as introduced by [4] as it has been found to be very effective in cases of dense datasets. 

In this paper,  we also show the edge of BDFS(b)-diff-sets over existing efficient association 

mining algorithms such as Apriori [8], FP-Growth [9], Eclat [10] and dEclat [4], when it runs to 

completion and outputs exhaustive set of frequent patterns.  

 

The rest of the paper is organized as follows. In the next section we present business issues of 

real-time frequent pattern mining in brief. In Section 3, we discuss a review of the previous work 

in association rule mining.  In Section 4, we introduce algorithm BDFS(b)-diff-sets implemented 

using diff-sets[4]. Section 5 contains the empirical evaluation of our algorithm. Finally, we 

conclude the paper in Section 6. 
 
 
2. Business Issues of Real-Time Frequent Pattern Mining 
 
An offline analytic approach to data mining reflects sound practice because the data have to be 

cleaned, checked for accuracy, etc. However, in a scenario of cutthroat competition, the 

organizations cannot afford to show the attitude of not keeping abreast with the latest changing 

demands and trends of their customers and get satisfied with periodical data. They have to act on 

the latest data that is available to them to react not only to the fierce global competition, but also 

market products keeping in mind of the latest customer wishes. In such a scenario, the concept of 

a real-time enterprise has creped into the corporate boardrooms of a number of organizations. 
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Using up-to-date information, getting rid of delays, and using speed for competitive advantage is 

what the real-time enterprise is about [11].  

 

Frequent pattern mining has been extensively used for market basket analysis of data, to find out 

the hidden patterns that lie in the transactional database. To promote a particular product, if a 

retailer decides to go for dynamic pricing or for dynamic discount, she must do it before the 

customer actually moves out of the store. Hence, the retailer cannot afford to make run on the 

huge dataset again and again to depict the correct association rule for a particular customer before 

she moves out of the store. Again, the strategy of making the association mining an offline task 

and refer to the patterns for a particular time period may also prove to be ineffective because the 

customer preference may considerably change over time. Hence, dynamic pricing or offering 

dynamic discounts will not be able to fetch the necessary returns from the customer(s), if the 

whole exercise is based on patterns that were obtained previously. With competition growing at a 

break-neck speed, organizations have started appreciating the real-time analysis and real-time 

decision making for the particular concerned customer [12]. The importances for real-time 

solutions have been felt more lately due to the introduction and development of online businesses 

(although for offline businesses as well, the thrust remains the same). Researchers [13] believe 

that real-time personalization technology will proactively offer a particular customer products and 

services that will fit into their need exactly. A real-time analytical engine will work in real-time, 

analyzing web clicks or sales rep interactions and matching them with the past purchasing history 

to make the offerings.   

 

In cases of event based information management systems, as the example in the previous 

paragraph, current approaches of business intelligence systems using various data mining 

techniques make organizations face some serious latency problems, which they must overcome. 

These are: data latency, analysis latency and decision latency. The following exhibit will make 

the point clearer.  
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Business Event 

Action Taken 

data latency 
Data Stored in Database or Data warehouse 

Information Delivered 

action time or action distance 

analysis latency 
decision latency 

Value 

Time 

Exhibit 1. Framework for real-time business intelligence. Organizations must manage three distinct 
processes that create latency in an analytic environment to support real-time decision making. Source[14] 

 
Once a business event happens, users face data latency, meaning the time taken for various pre-

processing steps for storing this data into the corresponding database or data warehouse. On this 

data, various analytic processes have to run for discovering the relevant information and 

delivering it to the right user for the purpose of decision making. This phase, referred to as 

analytic latency in Exhibit 1, refers to the time taken by various algorithms to run on the 

corresponding database or data warehouse. Once the information is delivered, the user may take 

some time before she can take any action on this delivered information. This is referred to as 

decision latency, in Exhibit 1. As pertinent from the above figure, the majority of the action time 

is caused due to the analytic latency only. Hence the major challenge to bye-pass these latencies 

and delivering right information to the right user within right time is the analytic latency. This 

means that the existing technologies hinder in responding to the real-time need of the business 

user due to their in-built limitations as they do not have the capability to respond to the real-time 

need. This real-time time bound, as described by various authors as right time, will vary from 

user-to-user and from industry to industry. In an research carried by TDWI (The Data 

Warehousing Institute), based on the responses of 383 respondents world wide, who have 

deployed various data mining related systems in organizations, it has been found that the major 

factors that create the bottle-neck of reducing the analytic latency and real-time business 

intelligence are lack of tools for doing real-time processing, immature technology and 

performance issues in Exhibit 2. 
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Lack of tools for doing real-time 
processing 35% 

Immature technology 28% 

Performance and scalability 24% 
 

Exhibit 2. Obstacles to real-time business intelligence 
Source[15] 

 

There are numerous areas where real-time decision making plays a crucial role. These include 

areas like real-time customer relationship management [16-18], real-time supply chain 

management systems [19] real-time enterprise risk and vulnerability management [20], real-time 

stock management and vendor inventory [21], real-time recommender systems[22], real-time 

operational management with special applications in mission critical real-time information as is 

used in the airlines industry, real-time intrusion and real-time fraud detection [23], real-time 

negotiations and other areas like real-time dynamic pricing and discount offering to customers in 

real-time. More than that, real-time data mining will have tremendous importance in areas where a 

real-time decision can make the difference between life and death – mining patterns in medical 

systems. 
 
3. Previous Work Done 
 
A detailed discussion about the various algorithms of frequent pattern mining and their 

performance can be found in the literature surveys of frequent pattern mining [3, 24, 25]. Majority 

of the algorithms in this area have been classified according to their strategy to traverse the search 

space and by their strategy to determine the support values of the itemsets [24]. However, Su & 

Lin [26] have concluded that the most salient features of these algorithms are their counting 

strategy, search direction and search strategy (Table 1). Recently, a number of vertical mining 

algorithms have been proposed[4, 10, 27]. In a vertical database, each item is associated with its 

corresponding set of transactions where the particular item appears [4], called tid-list. However, in 

dense datasets, the method suffers since the intersection time becomes very high. Furthermore, the 

scalability of these algorithms gets affected, when the vertical tid-lists become too large for 

memory. Zaki [4] has introduced the concept of diff-sets, that only keeps track of the  differences 

in the tids of a candidate pattern from its generating frequent patterns. This diff-set 

implementation drastically cut down the size of the memory and tid-list intersections are done 

significantly faster (as diff-sets are a small fraction of the size of tid-lists). 
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Search Direction 
Bottom-up Top-Down 
Search Strategy Search Strategy 

Counting 
Strategy 

Depth-
first 

Breadth-
first 

Depth-
first 

Breadth-
first 

Counting FP-
Growth Apriori  Top-

Down 
Intersection 
of tid-lists Eclat Partition   

Intersection 
of Diff-Sets dEclat    

 
Table 1. Classification of prevaililng algorithms 

 
 
4. BDFS(b)-diff-sets: An Efficient Technique of Frequent Pattern Mining In 

Real-Time Using Diff-Sets 
 
4.1 Algorithm Basics 
 
In this study, we propose a brute force algorithm BDFS(b)-diff-sets, which is a variant of the 

Block Depth First Search [7] and inducted into the domain of frequent pattern mining [5, 6]. 

Block Depth First Search is a search algorithm, based on a novel combination of the staged search 

and the depth first search [28]. As a result, it has the merits of both best-first search and the depth-

first-branch-and-bound (DFBB) search [29], ,and at the same time, avoids bad features of both. 

BDFS(b)-diff-sets explores the given search space in stages. The search is conducted in a depth 

first manner, which ensures that patterns of greater length will be preferred over those of 

comparatively shorter lengths. We assume that a lower triangular frequency matrix M for a given 

database is created in a support-independent pre-processing step and kept in the hard-disk, which 

stores the support independent frequencies of all 1-length and 2-length patterns. Once the user 

specifies a desired support value, all frequent patterns of length 1 and 2 (meaning F(1) and F(2), 

where F(n) means frequent pattern of length-n) are obtained from M. Then BDFS(b)-diff-sets 

starts its search for frequent patterns of higher lengths from this point forward by intersecting the 

diff-set tid-lists of corresponding items.  The most salient features of BDFS(b)-diff-sets are:(a) It 

conducts search in stages and uses back-tracking strategy to run to completion and ensure optimal 

solution. (b) It takes a block of candidate patterns b from a global pool, conducts the search by 

checking the frequency of these patterns in the database. It generates the possible candidate 

patterns (explained later with an example) of the next higher length from the currently known 

frequent patterns. These candidate patterns are continued to be explored in a systematic manner 

until all frequent patterns are generated. In this paper, we keep the block b variable and the value 

to be defined by the user using her knowledge and experience depending on the available 
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computer memory (later in the paper, we have shown how the performance of BDFS(b)-diff-sets 

is affected with changing block size b) for purposes of academic curiosity to find how it affects 

the performance of the algorithm. A possible state space diagram of BDFS(b)-diff-sets is shown 

in. Fig. 1 
 

 
 

Fig. 1.  State space representation of BDFS(b)-diff-sets 
 
The initial state (or the root node) in the state-space is denoted by S0, which contains the complete 

set of 2-length frequent patterns F(2). In S0,, the set of all candidate patterns of length 3 or more 

are set to φ. In general, by the expansion of a node (which is a block of candidate patterns in this 

case) we mean: 

i. Counting the support frequency of all candidate patterns in the state from the database by 

intersecting the diff-sets of the corresponding items.  

ii. Generating the candidate patterns or patterns of border set of next higher level (explained later 

in the algorithm and its working through example). 

iii. Arranging the candidate patterns according to their merits (explained later) and group them 

into blocks containing b-patterns each. If the block has empty space, it gets candidate patterns 

from the previous level. This can be handled using a global pool of candidate patterns that has 

been sorted in descending order of length. We resolve ties arbitrarily. 

We have implemented this algorithm with diff-sets as proposed by [4] and have used the prefix 

based tree, called trie, data structure for implementing BDFS(b)-diff-sets. 
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4.2 Algorithm Details 
 

Algorithm BDFS(b)-diff-sets: 
 
 Initialize the allowable execution time τ. 
Let the initial search frontier contain all 3-length candidate patterns. Let this search frontier be stored as 
a global pool of candidate patterns. Initialize a set called Border Set to null. 
Order the candidate patterns of the global pool according to their decreasing length (resolve ties 
arbitrarily). Take a group of most promising candidate patterns and put them in a block b of predefined 
size. 
 Expand (b) 

Expand (b: block of candidate patterns) 
If not last_level 
            then 
begin 
                     Expand1(b) 
                  end. 
Expand1(b): 
1. Count support for each candidate pattern in the block b by intersecting the diff-set list of the items in 

the database. 
2. When a pattern becomes frequent, remove it from the block b and put it in the list of frequent patterns 

along with its support value. If the pattern is present in the Border Set increase its subitemset counter. 
If the subitemset counter of the pattern in Border Set is equal to its length move it to the global pool of 
candidate patterns.    

3. Prune all patterns whose support values < given minimum support. Remove all supersets of these 
patterns from Border Set.  

4. Generate all patterns of next higher length from the newly obtained frequent patterns at step 3. If all 
immediate subsets of the newly generated pattern are frequent then put the pattern in the global pool 
of candidate patterns else put it in the Border Set if the pattern length is > 3.  

5. Take a block of most promising b candidate patterns from the global pool. 
6. If block b is empty and no more candidate patterns left, output frequent patterns and exit. 
7. Call Expand (b) if enough time is left in τ to expand a new block of patterns, else output frequent 

patterns and exit. 
 

Fig. 2. Algorithm BDFS(b)-diff-sets 
 

5 Empirical Evaluation 
 
Legend: T= Average size of transaction; I= Average size of the maximal potentially large itemset; D= No. 

of transactions in the database; N= Number of items.  

To evaluate the performance of BDFS(b)-diffsets with on dense datasets, we have tested it on various 

dense datasets. This includes real-life dense datasets like CHESS, Connect-4, PUMSB and PUMSB*1and 

synthetic datasets like: T10I8D100K, T10I8D10K, T10I8D1K (N=1K). These datasets were generated 

using the IBM synthetic data generator2 [2]. The experiments were performed on a Red-Hat Linux 

machine with 1GB RAM and 20 GB HD with Pentium IV 2.24Ghz processor. 
 
 
 

                                                 
1 These datasets are publicly available at http://fimi.cs.helsinki.fi/data/
2 The data generator is available from http://www.almaden.ibm.com/cs/quest//syndata.html#assocSynData
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5.1 Comparison of BDFS(b)-diff-sets with existing algorithms 
 
In order to show how BDFS(b)-diff-sets performs on dense datasets, when it is run to generate all 

frequent patterns, we have chosen to compare it with dEclat3, Eclat4, FP-growth5 and Apriori6. 

Since FP-growth is known to be an order faster and scales better than Apriori[9], we have 

compared Apriori and BDFS(b)-diff-sets but for their number of patterns checked. In figures 3, 4, 

5 and 6, we have compared the run-time of FP-Growth, dEclat and Eclat with BDFS(b)-diff-sets 

for Pumsb, T10I8D100K and Pumsb* respectively and found that BDFS(b)-diff-sets significantly 

out-performs all the three algorithms in these cases. In figure 7, we have tested the scalability of 

Eclat and dEclat and BDFS(b)-diff-sets. We have observed that all the algorithms are scalable 

with time and number of transactions in the database, but BDFS(b)-diff-sets takes strikingly much 

less time than dEclat, and Eclat over the same databases. Comparing the number of patterns being 

checked by Apriori and BDFS(b)-diff-sets, as shown in figure 8, it is found that BDFS(b)-diff-sets 

checks much lesser number of patterns than Apriori. The performance imperatives come from the 

efficient search strategy of the block depth first search that BDFS(b)-diff-sets utilizes and 

combines the power of the diff-sets approach. It is worth mentioning at this point that the codes 

we have obtained from the public domains are highly optimized in resprct to implementation. 
 
5.2 Real-Time Performance of BDFS(b)-diff-sets 
 
Figures 9, 10, 11 and 12 summarize the real-time behavior of BDFS(b)-diff-sets by depicting the 

percentage of frequent patterns generated with percentage execution time having F(1) & F(2) 

included and excluded in two respective curves. This we have done to show how the real-time 

performance is affected by the two-dimensional matrix M. It may be noted that the over all 

percentage of output is almost always ahead of percentage execution time. In figure 9, we find out 

that we have approximately 95% of the frequent patterns in 25% of completion time. We have 

also observed that our proposed algorithm perform quite well on real-life dense dataset connect-4. 

and highest length patterns can be obtained in lesser than 50% of total execution time.  

 

Although it can be argued that all the existing frequent pattern mining algorithms will give some 

output if the execution is stopped at a user-defined time, but we have found that their performance 

                                                 
3 The dEclat code used for comparison is publicly available at  
http://www.cs.helsinki.fi/u/goethals/software/index.html 
4 The Eclat code used for comparison is publicly available at 
 http://fuzzy.cs.uni-magdeburg.de/~borgelt/eclat.html
5 The FP-growth code used for comparison is publicly available at  
www.cse.cuhk.edu.hk/~kdd/program.html 
6 The Apriori code used for comparison is publicly available at  
http://www.cs.helsinki.fi/u/goethals/software/index.html 
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in the real-time output is not promising as they use either a breadth-first or a depth-first search 

only and do not try to promise real-time performance.  In figures 13, 14 and 15, we do a 

comparison of the real-time output of the existing algorithms. In all the cases, we find that 

BDFS(b)-diff-sets outperforms al existing techniques in providing real-time output. From figure 

15, we find that BDFS(b)-diff-sets can provide 70% of the frequent patterns in just 40% of 

execution time. Whereas depth-first search techniques like FP-Growth and dEclat provides much 

lesser patterns corresponding to the given time. Its worth mentioning at this point that BDFS(b)-

diff-sets takes much lesser time for complete execution as shown before. In this case, the 

percentage time taken for a particular algorithm is the slice of its own total execution time. Had 

the comparison been done in a scale of absolute time, the real-time performance edge pf BDFS(b)-

diff-sets would have been much more prominent. 

 

Figures 16-21 shows the performance of BDFS(b)-diff-sets when the block size is varied. We find 

that for smaller block size we get higher length patterns quickly. Figs 22 and 23 give a tabular 

representation of the actual output. From figure 22 we find that all F[15} patterns are found only 

in 34% of completion time. 
 
6 Conclusion 
 
In this paper, we have proposed an algorithm BDFS(b)-diff-sets, a brute force version of the Block 

Depth First Search(BDFS) [7] and implemented with diff-sets [4]. First we have compared the 

performance of BDFS(b)-diff-sets with dEclat, Eclat, FP-Growth and Apriori and shown that it 

compares well with others. Moreover, by adjusting its block size properly, BDFS(b)-diff-sets has 

the extra ability to run with limited available memory, which often becomes a point of concern in 

other algorithms. We have then shown that while running under real-time constraints it outputs 

large chunks of frequent patterns with fractional execution times.   

 

We have made detailed performance evaluation based on empirical analysis using commonly used 

synthetic and real-life dense datasets. Thus, we have demonstrated that real-time frequent pattern 

mining can be done successfully using BDFS(b)-diff-sets. We believe this study will encourage 

use of AI heuristic search techniques in real-time frequent pattern mining 
 
. 
 

 10 
 



0

1

2

3

4

5

6

90 93 96 99

%Support

Ti
m

e(
s)

FP_Growth BDFS(b)-diffsets
dEclat Eclat

 
Fig. 3.  Time comparison of FP-Growth, Eclat and dEclat 
with BDFS(b)-diffsets (b= 20880) on PUMSB, N=2113, 
T=74, D=49046 
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Fig. 4.  Time comparison of FP-Growth with BDFS(b)-
diffsets for T10I8D100K, b=100K. In most cases BDFS(b)-
diffsets took in milli seconds only. 
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Fig. 5.  Time comparison of Eclat and dEclat with BDFS(b)-
diffsets for T10I8D100K, b=100K 
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Fig. 6.  Time comparison of FP-Growth, Eclat and dEclat  
with BDFS(b)-diffsets (b=2088K) for PUMSB*, N=2088 T= 
50.5, D = 49046 
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Fig. 7.  Scalability evaluation of BDFS(b)-diffsets with Eclat 
and dEclat supp=0.5%, b = 100K for  T10I8D1K,10K and 
100K 
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Fig. 8.  Number of patterns checked by Apriori and 
BDFS(b)-diffsets (b=208800) for Pumsb,  N=2113,T=74, 
D=49046, with varying support 
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Fig. 9.  Time-Patterns % of BDFS(b) for b=75K and 65% 
supp for Chess (N=75, T=37, D=3196) 
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Fig. 10.  Time-Patterns % for b=75K and 65% supp for 
T10I8D100K 
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Fig. 11. Time-pattern% of BDFS(b), b=129, for 75% supp of 
Connect-4 
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Fig.12. Time-pattern% of BDFS(b), b=1K, for T25I20D100K 
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Fig. 13. Time-pattern% comparison of dEclat, Apriori, FP-
Growth with BDFS(b)-diff-sets, b=1K, for 0.15% supp of 
T10I8D100K 
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Fig.  14. Time-pattern% comparison of dEclat, Apriori, FP-
Growth with BDFS(b)-diff-sets, b=2113, for 75% supp of 
PUMSB 
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Fig.15. Time-pattern% comparison of dEclat, FP-Growth 
with BDFS(b)-diff-sets, b=380, for 75% supp of Connect-4 
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Fig. 16. Real-time output of frequent patterns by BDFS(b)-
diff-sets, b=76, for 50% support of CHESS 
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Fig. 17.  Real-time output of frequent patterns by BDFS(b)-
diff-sets, b=760, for 50% support of CHESS 
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Fig. 18. Real-time output of frequent patterns by BDFS(b)-
diff-sets, b=7600, for 50% support of CHESS 
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Fig. 19.  Real-time output of frequent patterns by BDFS(b)-
diff-sets, b=2113, for 75% support of PUMSB 
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Fig. 20. Real-time output of frequent patterns by BDFS(b)-
diff-sets, b=21130, for 75% support of PUMSB 
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Fig. 21. Real-time output of frequent patterns by BDFS(b)-
diff-sets, b=211300, for 75% support of PUMSB 
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%Time 100 91 85 74 62 51 45 34 28 22 16 10 4 
              

F[1] 27 27 27 27 27 27 27 27 27 27 27 27 27 
F[2] 312 312 312 312 312 312 312 312 312 312 312 312 312 
F[3] 2192 2192 2192 2068 2003 2003 2003 2003 2003 2003 2003 2003 2003 
F[4] 10210 10210 10210 8992 8875 8629 8629 7320 7224 6847 5875 5098 2999 
F[5] 32977 32370 30444 28262 27701 26009 25514 21224 20402 18717 15621 12238 5565 
F[6] 76345 72996 67866 63903 61003 55906 52542 44037 40963 35870 28835 20554 7906 
F[7] 128208 120747 111497 106074 95856 86421 79894 65110 58179 47548 37440 25085 7612 
F[8] 155445 144715 135617 127761 110673 95111 85711 67868 57777 45049 32520 18881 5669 
F[9] 135148 125864 121436 107890 89616 73018 63703 48178 37159 28139 19434 9716 2975 

F[10] 83291 78102 77396 61661 49369 36766 32538 22193 15192 11559 7072 3220 1079 
F[11] 35699 34219 34178 22678 17775 12344 11124 6297 3882 3018 1597 685 198 
F[12] 10347 10141 10141 5240 3838 2692 2495 1237 596 493 234 96 29 
F[13] 1951 1941 1941 718 511 367 348 179 55 48 24 7 2 
F[14] 225 225 225 52 40 29 28 19 2 2 1 0 0 
F[15] 13 13 13 1 1 1 1 1 0 0 0 0 0 

              
C[3] 0 0 0 147 226 226 226 226 226 226 226 226 226 
C[4] 0 0 0 285 118 366 366 1703 1800 2186 3202 4018 6233 
C[5] 0 622 2664 35 8 303 812 100 440 280 254 509 1050 
C[6] 0 0 599 661 929 99 1995 86 58 308 500 604 194 
C[7] 0 0 626 215 0 333 104 727 428 0 0 87 0 
C[8] 0 0 717 94 0 370 0 705 0 0 0 2275 0 
C[9] 0 0 16 0 0 75 0 322 0 0 0 153 0 
C[10] 0 0 0 0 0 1103 0 285 0 0 0 8 0 
C[11] 0 0 0 0 0 65 0 282 0 0 0 0 0 
C[12] 0 0 0 0 0 0 0 0 0 0 0 0 0 
C[13] 0 0 0 0 0 0 0 0 0 0 0 0 0 
C[14] 0 0 0 0 0 0 0 0 0 0 0 0 0 
C[15] 0 0 0 0 0 0 0 0 0 0 0 0 0 

Fig. 22.. Frequent output along with candidate sets of BDFS(b)-diff-sets for PUMSB data for 75% support and b=2113 
 
 
 
 



%Time 100 97 93 84 76 65 40 35 30 25 20 15 10 
              

F[1] 30 30 30 30 30 30 30 30 30 30 30 30 30 
F[2] 379 379 379 379 379 379 379 379 379 379 379 379 379 
F[3] 2757 2757 2686 2620 2598 2350 2350 2338 2301 2277 2073 2057 2036 
F[4] 13220 13220 12697 12505 12401 10940 10906 10678 10477 10206 9123 8941 8697 
F[5] 44734 44734 42863 42546 41767 36169 35915 34779 33787 32286 28707 27714 26392 
F[6] 111195 111195 106965 106545 103230 88182 86946 83355 79942 75037 66833 63225 58543 
F[7] 208182 208182 201756 200851 191694 162149 158082 149935 142010 131065 117571 108523 97045 
F[8] 297893 297893 291124 288803 271305 227448 218317 204930 191741 174739 158197 141463 121414 
F[9] 327845 327845 322868 318229 294473 244371 230101 213646 197589 178596 163222 140346 114785 

F[10] 277176 277176 274660 268443 245184 200375 184318 169273 155131 139641 128500 105160 81295 
F[11] 178425 178425 177597 171741 155304 123939 110874 100941 91801 82692 76212 58671 42283 
F[12] 85860 85860 85702 81837 73595 56704 48964 44364 40122 36354 33287 23666 15575 
F[13] 29910 29910 29897 28152 25330 18525 15276 13863 12488 11458 10329 6572 3833 
F[14] 7136 7136 7136 6627 6014 4070 3147 2892 2610 2439 2152 1150 559 
F[15] 1052 1052 1052 967 895 537 376 356 325 312 271 106 36 
F[16] 76 76 76 70 67 32 19 19 18 18 16 3 0 
F[17] 1 1 1 1 1 0 0 0 0 0 0 0 0 

              
C[3] 0 0 76 153 176 447 447 459 502 527 738 754 775 
C[4] 0 0 54 15 11 13 47 91 35 115 44 100 158 
C[5] 0 0 33 18 18 51 0 16 2 82 1 61 4 
C[6] 0 0 0 37 11 117 8 26 25 24 6 95 61 
C[7] 0 0 0 52 17 12 35 89 22 0 120 6 0 
C[8] 0 0 0 35 8 25 0 6 0 0 78 104 0 
C[9] 0 0 0 0 0 2 0 54 0 0 0 9 0 
C[10] 0 0 0 0 0 0 0 0 0 0 0 0 0 

Fig. 23. Frequent output along with candidate sets of BDFS(b)-diff-sets for Connect-4 data for 75% support and b=129 
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