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Abstract

In this paper we address the problem of prediction with functional data.
We discuss several new methods for predicting the future values of a partially
observed curve when it can be assumed that the data is coming from an un-
derlying Gaussian Process. When the underlying process can be assumed to
be stationary with powered exponential covariance function we suggest two
new predictors and compare their performance. In some real life situations
the data may come from a mixture of two stationary Gaussian Processes. We
introduce three new methods of prediction in this case and compare their per-
formance. In case the data comes from a non-stationary process we propose
a modification of the powered exponential covariance function and study the
performance of the three predictors mentioned above using three real-life data
sets. The results indicate that the KM-Predictor in which the training data is
clustered using the K-Means algorithm before prediction can be used in several
real life situations.

Keywords: Gaussian process, Powered exponential covariance function, k-
Nearest Neighbours, k-Means clustering, Forecasting
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1 Introduction

One of the most widely used application of statistics is for prediction. Apart from the
natural human curiosity of knowing the future, prediction is of great value in many
scientific, medical and business situations. For example, in predicting the disease
course of HIV infected individual, CD4 cell counts and CD4 percentages are used
as important markers. It is therefore important for treating physicians to have pre-
dictions of the values of these markers in assessing the progress of such patients,Yao
et al. (2005). Erbas et al. (2012) uses functional time series analysis to model mortal-
ity due to Chronic Obstructive Pulmonary Disorder (COPD) as a function of age and
forecasts COPD mortality in Australia for a twenty year period. For banks having
extensive Automated Teller Machine (ATM) networks it is of interest to predict cash
requirements at the ATMs so that the machines could be optimally filled with cash
to prevent customer dissatisfaction as well as reduce the opportunity cost of keeping
cash idle. One such example in the context of Lithuanian cards payment market
is given in Laukaitis (2008). Predicting accurate traffic flow is of great importance
in efficient traffic management in highways. Chiou (2012) has proposed a dynami-
cal functional prediction method that can be applied to predict traffic flow patterns
during the day using the partially observed traffic flow trajectory upto a given time.
Antoniadis et al. (2016) uses a non-parametric function-valued forecast model for
short-term electricity demand forecasting. Hyndman and Ullah (2007) uses a func-
tional data approach to forecast age-specific mortality and age-specific fertility rates.

A random element Xt is a generalisation of the concept of a random variable. It
is a measurable map from a probability space (Ω, F, P) with values in a measur-
able space (E, ξ). In this paper we would assume that E is the space of all square
integrable real valued functions on a closed bounded interval. A stochastic process
indexed by a set T is a collection X = {Xt}t∈T . The set X(ω) = {Xt(ω) : t ∈ T} is
called a sample path of the process. In functional data analysis (FDA) the data is
represented in the form of curves unlike that in the conventional univariate or mul-
tivariate data where the observations are either scalars or vectors. There has been a
large number of applications of FDA over the past few years because of better data
gathering technologies such as sensors, and increase in processing power of comput-
ers. The book by Ramsay and Silverman (2002) gives some intersting case studies on
FDA while the books by Hsing and Eubank (2015), Horváth and Kokoszka (2012),
Zhang (2013) and Ramsay and Silverman (2005) discusses theory and methods of
FDA and gives interesting insights.
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We consider functional observations Xi(t), t ∈ T, i = 1 · · · , n defined over [a, b].
It is assumed that Xi are independent and identically distributed as X, drawn from
L2([a, b]). Suppose that the mean function be µ = E(X) ∈ L2([a, b]). Further,
assume that the covariance function K is a continuous function on [a, b]×[a, b]. Then,
there exists a sequence of continuous eigenfunctions φn and a decreasing sequence of
corresponding non-negative eigenvalues λn such that∫ b

a

K(s, t)φn(s)ds = λnφn(t),

∫ b

a

φn(s)φm(s)ds = δnm

Also, each functional observation can be decomposed as Xt =
∑∞

n=0 ηnφn(t) where
(ηn) is a sequence of real valued random variables with zero mean such thatE(ηnηm) =
λnδnm. Moreover, K(s, t) =

∑∞
n=0 λnφn(s)φn(t); s, t ∈ [a, b]; where the series con-

verges uniformly and absolutely on (a, b) [Bosq (2000),(p.25)].

In this paper we assume that the functional observations are realization of a
sample path of the underlying Gaussian process. A Gaussian process {Xt, t ∈ T},
indexed by a set T (in this paper we take T to be the set of non-negative real
numbers), is a stochastic process, in which any finite linear combination of random
variables Xt, (all defined on the same probability space), have a joint multivariate
normal distribution. Equivalently, {Xt, t ∈ T} is a Gaussian process, if for any choice
of distinct values t1, · · · , tk ∈ T , the random vector X = (Xt1 , · · · , Xtk)

T has a mul-
tivariate normal distribution with mean vector µ = E(X) = (E(Xt1), · · · , E(Xtk))

T

and covariance matrix Σ = (Cov(Xti , Xtj))i,j=1,··· ,k = (σij)i,j=1,··· ,k. The mean and
covariance functions of a Gaussian process are given by

µ(t) = E(Xt) and Σ(s, t) = Cov(Xs, Xt) = E(Xs − E(Xs))(Xt − E(Xt))

respectively. A Gaussian process is completely specified by its mean function and
covariance function. It is said to be stationary if and only if it’s mean function is
a constant and Σ(s, t) depends only on s − t. The class of Gaussian processes is
one of the most widely used families of stochastic processes for modeling dependent
data observed over time (see for e.g. Müller and Yang (2010), Shi and Choi (2011)).
Among the many desirable properties associated with the Gaussian process is the
Karhunen-Loeve (KL) expansion. The KL-expansion of a centered Gaussian process
{Xt, t ∈ T} can be represented as [Wahba (1990)(p.5)]

Xt =
∞∑
k=1

ξkφk(t)

W.P. No. 2017-08-02 Page No. 4



where ξ1, ξ2 · · · are independent, Gaussian random variables with

Eξk = 0, Eξ2k = λk

and

ξk =

∫
T

Xsφk(s)ds, Σ(s, t) =
∞∑
k=1

λkφk(s)φk(t) and

∫
T

∫
T

Σ2(s, t) ds dt <∞

In this paper we propose prediction methods for the data coming from an under-
lying Gaussian Process. We propose two new predictors namely CE-Predictor and
k-NN Predictor for data coming from a stationary Gaussian Process with powered
exponential covariance function. Also, for mixture of two stationary Gaussian pro-
cesses, we additionally propose two new predictors: KM-Predictor and FC-Predictor.
At first, these methods cluster the training data into two classes, then the partially
observed curve is classified in one of the classes and subsequently a prediction is
made. When the underlying process appears to be non-stationary we modify the
powered exponential covariance function and apply our predicton methods to three
real life data-sets. It appears that the KM-Predictor performs quite well though not
always the best in a variety of situations.

The organization of the paper is as follows: In section 2, we briefly review the
prediction problem for functional data coming from an underlying stationary Gaus-
sian Process or a mixture of Gaussian Processes and outline the proposed methods
of prediction, in section 3, we discuss the parameter estimation techniques that are
necessary for implementing the proposed methods in practice, in section 4 we pro-
vide comparisons of the performance of the proposed methods using simulations, in
section 5 we discuss the prediction problem for non-stationary Gaussian processes
using three real-life data sets as examples, and finally in section 6 we make some
concluding remarks.

2 Prediction Problem for Gaussian Process

2.1 Stationary Gaussian Process

In this section, we discuss the prediction problem for GPs whose covariance functions
K(s,t) has the powered exponential form given by
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K(s, t) = v exp
(
−w|s− t|γ

)
, v, w > 0, 0 < γ < 2. (1)

We refer the Gaussian Process with above covariance function as GPS(µ, v,
w, γ). The GPS(µ, v, w, γ) has the following properties which are used later in the
paper:

P.1 V(Xs) = K(s, s) = v for all s > 0, where V(Xs) denotes the variance of Xs

P.2 Correlation of (Xs, Xs+1) = ρ(Xs, Xs+1) = exp(−w) for all s > 0

P.3 ρ(Xs, Xs+2) = exp(−w2γ) for all s > 0

Suppose X(1), · · · , X(m) is a random sample of size m from the Gaussian process
{Xt} with each X(i), 1 ≤ i ≤ m being observed at the time points {1, · · · , n} and let

X(i) = (X
(i)
1 , · · · , X(i)

n ). Note that (X
(i)
1 , · · · , X(i)

n ) jointly follows a Multivariate Nor-
mal Distribution (MND) with mean µn×1 and covariance matrix Σn×n = (σij)1≤i,j≤n
where σij = v exp(−w|i − j|γ). Now suppose Xnew is a new observation from the
above Gaussian process which has been observed only up to the point n∗ < n. We
want to predict the values of Xnew(j), n∗ + 1 ≤ j ≤ n based on the observed values
Xnew(j), 1 ≤ j ≤ n∗. Since the distribution of Xnew is MND, we know that the Xnew

2

given Xnew
1 is again MND with expectation µ2 + Σ21Σ

−1
11 (X1 − µ1) and covariance

Σ22 − Σ−121 Σ11Σ12, i.e.

Xnew =

[
Xnew

1(n∗×1)
Xnew

2((n−n∗)×1)

]
∼ MND

[ µ1(n∗×1)
µ2(n−n∗)×1

]
,

[
Σ11(n∗×n∗) Σ12(n∗×(n−n∗))

Σ21((n−n∗)×n∗) Σ22((n−n∗)×(n−n∗)

]
We define µ̂2 + Σ̂21Σ̂

−1
11 (X1 − µ̂1) as the CE-Predictor of X2 . The method used

for obtaining the estimates µ̂1, µ̂2, Σ̂21 and Σ̂11 are discussed later in this paper (see
Section 3.1).

An alternative to using the CE-Predictor is to first use the k-nearest neighbor
(k-NN) algorithm to select a subset S (Xnew) of k observations from the sample of
m observations whose values in the first n∗ components are closest to Xnew

1 using
some distance measure. In this paper we have used the Euclidean distance in Rn∗

as the distance measure. It is also possible to have other distances measures such
as Minkowski Lm distance metric, m ≥ 1 (Arya et al. (1998)). Let µ̃1, µ̃2, Σ̃11 and
Σ̃21 be the estimates of µ1, µ2,Σ11 and Σ21 based only on the elements of the subset
S(Xnew). Then we define k-NN predictor of Xnew

2 is µ̃2 + Σ̃21Σ̃
−1
11 (X1 − µ̃1). The

choice of k is important for practical applications as it determines the performance
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of the estimates µ̃1, µ̃2, Σ̃21 and Σ̃11. A very small value of k is likely to give poor
estimates while too large a value of k would make the estimates similar to µ̂1, µ̂2, Σ̂21

and Σ̂11, thus losing its adaptibility. In this paper we will vary k and study the
performance of prediction in section (4.1). In this context it may be noted that the
determination of the value of k in the k-NN algorithm has been studied in some detail
in the literature particularly in connection with the classification problems (see for
e.g. Ghosh (2006), Hall et al. (2008)).

2.2 Mixture of Stationary Gaussian Processes

In this section, we assume that the X(1), . . . , X(m) is a random sample of size m from
the mixture of Gaussian process {Xkt}, k = 1, 2, . . . , p with each X(i), 1 ≤ i ≤ m
being observed at the time points {1, . . . , n}. We assume that the covariance func-
tion for Gaussian processes {Xkt} are same and equal to K and they differ only in
their mean functions. We are aware that assumption of equal covariance may be
relaxed with additional computational complexities. Suppose as earlier we have a
new observation Xnew which has been observed only up to the point n∗ ≤ n. In
this paper, we restrict ourselves to two Gaussian processes {X1t} and {X2t} but it is
straight forward to extend it further. Let the mixture of the two Gaussian processes
be πX1t + (1 − π)X2t where 0 ≤ π ≤ 1. As mentioned earlier, we assume that the
covariance function for both {X1t} and {X2t} are same and equal to K and they
differ only in their mean functions i.e. X1t ∼ GP(µ1,K) and X2t ∼ GP(µ2,K).

We use the K-Means algorithm (Hartigan and Wong (1979)) to divide the data

{X(1)
1 , · · · , X(m)

1 } into two clusters where X
(i)
1 denotes the first n∗ components of X(i).

Then treating these two clusters as training samples coming from the two populations
we obtain the estimates µ̆1(1), µ̆2(1), µ̆1(2), µ̆2(2), Σ̆21 and Σ̆11, where µ1(i) represents first
n∗ components of mean of cluster i and µ2(i) represents n∗ + 1 to n components of
mean of cluster i. The details of the parameter estimation method used are given
in the section 3.3. A kernel based classification technique (Ferraty and Vieu (2006),

pp. 113-116) is then used with the data {X(1)
1 , · · · , X(m)

1 } to classify (Xnew
1 ) into

one of the two populations. Then (Xnew
2 ) is predicted as µ̆2(i) + Σ̆21Σ̆

−1
11

(
X1 − µ̆1(i)

)
,

depending on the cluster in which observation (Xnew
1 ) lies. We will refer to this as

the KM-predictor of (Xnew
2 ).

An alternative approach is to use the technique Funclust introduced in Jacques
and Preda (2013) which is a model based clustering technique with functional data.
Let the KL-expansion of the centered Gaussian process X1t − µ1 be X1t − µ1 =
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∑∞
k=1 ξ1kφk(t) and that X2t − µ2 =

∑∞
k=1 ξ2kφk(t) where {ξik}∞k=1, i = 1, 2 are inde-

pendent, Gaussian random variables with Eξik = 0, Eξ2ik = λik and

ξik =

∫
T

Xsφk(s)ds, Σi(s, t) =
∞∑
k=1

λikφk(s)φk(t)

and ∫
T

∫
T

Σ2
i (s, t) ds dt <∞, i = 1, 2.

We truncate the above KL-expansions of the processes X1t−µ1 and X2t−µ2 at q1 and

q2. The approximate density forXit−µi is then fXqi(x) =
∏qi

k=1

1√
2πλik

exp

(
−ξ

2
ik(x)

2λik

)
.

Thus, the approximate density of the mixture πX1t + (1− π)X2t is

fX(q1,q2)
(x) = π

q1∏
k=1

1√
2πλ1k

exp

(
−ξ

2
1k(x)

2λ1k

)
+ (1− π)

q2∏
k=1

1√
2πλ2k

exp

(
−ξ

2
2k(x)

2λ2k

)
.

where x is a random sample path of the centered Gaussian Process having the above
KL-expansion.

Jacques and Preda (2013) suggests maximizing the pseudo-likelihood defined by

l(q)(θ;X(1), · · · , X(m)) =
m∏
i=1

2∑
g=1

πg

qg∏
j=1

1√
2πλjg

exp

(
−1

2

ξ2i,j,g(X
(i))

λjg

)

with π1 = π, π2 = 1 − π1 , q = (q1, q2), θ = (π, λ11, · · · , λ1q1 , · · · , λ21, λ2q2) are

the parameters which needs to be estimated and ξi,j,g = ξj,g(X
i) represents the j

th

principal component score of the curve X(i) belonging to the group g, g = 1, 2.

The parameters are estimated by using EM like algorithm details of which can
be found in Jacques and Preda (2013). We classify an observation to be in group
1 if the posterior probability of the observation lying in group 1 is greater than 0.5
otherwise it is classified to be in group 2. Ties, if any, are broken randomly. Going
forward we treat these two groups as two clusters. Now treating observations in the
two clusters as training samples coming from the two populations we obtain the esti-
mates µ́1(1), µ́2(1), µ́1(2), µ́2(2), Σ́21 and Σ́11, where µ́1(i) represents first n∗ components
of mean of cluster i and µ́2(i) represents n∗ + 1 to n components of mean of cluster
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i. The details of the parameter estimation method used are given in the next section.

For the new observation Xnew which has been observed only up to point n∗, we
compute

P (C1|Xnew) =
f(Xnew; µ́1(1), Σ́11)P (Ĉ1)

f(Xnew; µ́1(1), Σ́11)P (Ĉ1) + f(Xnew; µ́1(2)), Σ́11)P (Ĉ2)

where f is the multivariate normal density, P (Ĉ1) and P (Ĉ2) is calculated as the
proportion of the number of elements in cluster 1 and 2 respectively.

Similarly we calculate P (C2|Xnew). We classify Xnew into that cluster for which
P (Ci|Xnew), i = 1, 2 is larger. In case of ties, we allocate the observation to one of
the two clusters randomly. Suppose that the observation is classified in group i then
the Xnew

2 is predicted as µ́2 + Σ́21Σ́
−1
11 (X1 − µ́1). We will refer to this method as the

FC-predictor of (Xnew
2 ).

3 Parameter Estimation

3.1 CE-Predictor

Let the training functional observations be X(i) = (X
(i)
1 , · · · , X(i)

n ), i = 1, · · · ,m.
The estimate of µ is the mean of the training data set which is denoted as µ̂ =

[µ̄1, · · · , µ̄n]T where µ̄j =
1

m

∑m
i=1X

(i)
j . Let the covariance function estimated using

training data be Σ = [σij]n×n where σij = Cov(Xi, Xj). Since by P.1, v = K(s, s)
for all s > 0 we propose to estimate v as

v̂ =
1

n

n∑
i=1

σii (2)

Again since by P.2, w = − ln ρ(Xs, Xs+1) we propose to estimate w as

ŵ = − ln

 1

n− 1

n−1∑
i=1

σ̂i,i+1√
σ̂i,iσ̂i+1,i+1

 = − ln

 1

n− 1

n−1∑
i=1

ri,i+1

 (3)
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where ri,i+1 =
σ̂i,i+1√

σ̂i,iσ̂i+1,i+1
is the estimated correlation between Xi and Xi+1. Simi-

larly, by using P.3 the parameter γ can be estimated as

γ̂ =
1

ln 2
ln

(
−

ln 1
n−2

∑n−2
i=1 ri,i+2

ŵ

)
(4)

where ri,i+2 is the estimated correlation between Xi and Xi+2.
To evaluate the efficiency of these estimates, we have carried out an experiment in
which a sample of 200 curves are of the type

Xt = 4t+
1

100
f(t) + ε(t),

where t ∈ {1, 2, · · · , 10} , ε is a Gaussian processes with zero mean and covariance

function σ(s, t) = vexp

(
−w

∣∣∣∣s4 − t

4

∣∣∣∣γ
)

, and f(t) is the probability density function

of a normal random variable with mean zero and standard deviation 0.001 were
generated. We have taken various combinations of v, w and γ in the above model
and then estimated v, w and γ using the method discussed in section 3.1. The mean
square error (MSE) of the estimates based on 1000 simulations for each combination
is reported in table 1.

v w γ MSE(v̂) MSE(ŵ) MSE(γ̂)
2 0.5 1 0.02143 0.0027 0.0018
2 1 2 0.0166 0.0072 0.0004
1 1 0.5 0.0026 0.0124 0.0041
1.5 2 2 0.0070 0.0309 0.0007
2 1 1 0.0135 0.0103 0.0025
0.5 1 2 0.0009 0.0070 0.0004

Table 1: Mean Square Error of v̂, ŵ and γ̂ for different values of v, w and γ as
obtained in section 3.1

Now using (v̂, ŵ, γ̂) we get Σ̂ = σ̂st = v̂ exp
(
−ŵ|s− t|γ

)
. Writing µ̂1 = [µ̄1, · · · , µ̄n*]

T

and µ̂2 = [µ̄n*+1, · · · , µ̄n ]T and decomposing

Σ̂ =

[
Σ̂11(n∗×n∗) Σ̂12(n∗×(n−n∗))

Σ̂21((n−n∗)×n∗) Σ̂22((n−n∗)×(n−n∗)

]
, we use these estimates for computing the

CE Predictor.
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3.2 k-NN Predictor

Let the set S as defined in section 2.1 be
{

(Y
(1)
1 , · · · , Y (1)

n )T , · · · , (Y (k)
1 , · · · , Y (k)

n )T
}

.

We calculate the mean of set S which we denote as µ̃ = [µ̄1, · · · , µ̄n]. We estimate
v, w and γ using the observations from set S as discussed in section 3.1 and form
the estimated covariance function Σ̃n×n. We decompose the same as earlier to get
Σ̃11 and Σ̃21. The other parameters required for predicting k-NN Predictor are µ̃1 =
[µ̄1, · · · , µ̄n*]

T and µ̃2 = [µ̄n* +1, · · · , µ̄n ]T .

3.3 KM-Predictor

Suppose the two clusters obtained by using the K-Means algorithm as discussed in the
section 2.2 be {Y (1), · · · , Y (k)} and {Z(1), · · · , Z(l)} , k+ l = m. Let µ̆1(1) be mean of

([Y
(1)
1 , · · · , Y (1)

n∗ ]T , · · · , [Y (k)
1 , · · · , Y (k)

n∗ ]T ),and µ̆2(1) be mean of ([Y
(1)
n∗+1, · · · , Y

(1)
n ]T , · · · ,

[Y
(k)
n∗+1, · · · , Y

(k)
n ]T ). Similarly we obtain the estimates of mean of second cluster µ̆1(2)

and µ̆2(2) based on {Z(1), · · · , Z(l)}.
These two clusters of observations are subsequently treated as training samples

from two populations. We assume that the two populations have the same covariance
function and they differ only in their mean function. Therefore we base our estimates
of v, w and γ on the information from both the populations.

The pooled estimated of v is

v̆ =
1

2n

 n∑
i=1

σii(1) +
n∑
j=1

σjj(2)

 (5)

where Σ(1) = [σij(1)]n×n and σij(1) = Cov(Yi, Yj) and Σ(2) = [σij(2)]n×n where σij(2) =
Cov(Zi, Zj).

The pooled estimated of w is

w̆ =
− ln

(
1

n−1
∑n−1

i=1 ri,i+1(1)

)
− ln

(
1

n−1
∑n−1

i=1 ri,i+1(2)

)
2

(6)

where ri,i+1(1) =
σ̂i,i+1(1)√

σ̂i,i(1)σ̂i+1,i+1(1)

is the estimated correlation between Yi and Yi+1 and

ri,i+1(2) =
σ̂i,i+1(2)√

σ̂i,i(2)σ̂i+1,i+1(2)

is the estimated correlation between Zi and Zi+1.

Also, pooled γ can be estimated using the formula

γ̆ =

1

ln 2
ln

(
− ln 1

n−2

∑n−2
i=1 ri,i+2(1)

ŵ

)
+

1

ln 2
ln

(
− ln 1

n−2

∑n−2
i=1 ri,i+2(2)

ŵ

)
2

(7)
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where ri,i+2(1) is the estimated correlation between Yi and Yi+2, ri,i+2(2) is the esti-
mated correlation between Zi and Zi+2,

Using the estimates v̆, w̆ and γ̆ we find covariance function Σ̆n×n and decompose
it as described in (section 3.1) earlier to get Σ̆11 and Σ̆21. Then these are used in
obtaining KM-Predictor.

3.4 FC-Predictor

Let the two clusters obtained by using the Funclust be {Y (1), · · · , Y (k)} and {Z(1), · · · ,
Z(l)}, k+l = m. Let the mean of ([Y

(1)
1 , · · · , Y (1)

n∗ ]T · · · , [Y (k)
1 , · · · , Y (k)

n∗ ]T ) and ([Y
(1)
n∗+1,

· · · , Y (1)
n ]T , · · · , [Y (k)

n∗+1, · · · , Y
(k)
n ]T ) be µ́1(1) and µ́2(1) respectively. Similarly we ob-

tain the estimates of mean of second cluster µ́1(2) and µ́2(2) based on {Z(1), · · · , Z(l)}.
The covariance function Σ́n×n is estimated by using v̆,w̆ and γ̆ which are evaluated by
using equation 5,6 and 7 respectively. Σ́n×n is decomposed as described in (section
3.1)to get Σ́11 and Σ́21 which are used in obtaining FC-Predictor.

4 Simulations

This section is devoted to compare the different methods suggested in section 2. For
the situation where underlying data comes from a stationary Gaussian process, we
compare the CE-Predictor and k-NN Predictor along with the prediction obtained
from the best ARIMA model using the auto.arima() command in the forecast pack-
age of R. In the mixture of two populations case we compare the k-NN Predictor,
KM-Predictor, FC-Predictor with the prediction obtained from the best ARIMA
model. We measure the predictive performance of a method using the Mean Square
Prediction Error (MSPE) criterion. MSPE is the average square difference between
the actual and predicted values at the time points n∗ > n, where prediction is evalu-
ated. It measures how close the forecasts are in comparison to the actual values. It
is defined as

MSPE(t) =
1

q

q∑
i=1

[
X i(t)− X̂ i(t)

]2
where q represents the number of prediction instances, X i(t) represents the actual

value at time t in the ith instance and X̂ i(t) represents the point forecast for the
same. A method which gives lower MSPE on a test data set is considered to be
better than another one which has higher MSPE.
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4.1 Comparison of Methods for a Stationary Gaussian Pro-
cess

A sample of 200 curves was used as a training set for development of the CE-Predictor
and k-NN Predictor. Each of these curves are observed at 10 equidistant points
t = 1, 2, · · · , 10. In experiment 1, each of these curves are of the type

Xt = 4t+
1

100
f(t) + ε(t)

where t ∈ {1, 2, · · · , 10} , ε is a Gaussian processes with zero mean and covariance

function σ(s, t) = 2 ∗ exp

(
−0.5

∣∣∣∣s4 − t

4

∣∣∣∣2
)

, and f(t) is the probability density func-

tion of a normal random variable with mean zero and standard deviation 0.001. We
take n∗ = 7 and predict (Xnew(8), Xnew(9), Xnew(10))′. The testing is done with
a fresh set of 100 curves drawn from the same population. Since k-NN Predictor
depends on the choice of k we compare the performance of this predictor by varying
k = 10, 15, 20 and 25. The MSPE is calculated for all the methods with q = 100
for each of the forecast periods separately. The whole process is then repeated 1000
times and MSPE for each of the forecast periods separately is reported in table 2
below.

Method Xnew(8) Xnew(9) Xnew(10)
CE-Predictor 0.00012 0.00306 0.02462
10-NN Predictor 0.005 0.0833 0.37583
15-NN Predictor 0.00321 0.06101 0.30984
20-NN Predictor 0.00233 0.04824 0.2651
25-NN Predictor 0.00178 0.03939 0.23012
Best ARIMA 0.047015 0.30618 0.98532

Table 2: Comparison of MSPE of different methods for three periods as discussed in
experiment 1

We observe from table 2 that the CE-Predictor performs best across the three
periods. We also note that the accuracy of the k-NN Predictor increases with in-
crease in k across all the three time periods. In practical situations, using a trial data
one may experiment with multiple values of k and form a plot of MSPE for different
values of k and choose the one after which reduction i MSPE is not significant. In
this case, all predictors perform better than the Best ARIMA method. This is to

W.P. No. 2017-08-02 Page No. 13



be expected since the Best ARIMA method does not benefit from the information
contained in the training data set.

4.2 Comparison of Methods for a Mixture of two Gaussian
Processes

4.2.1 Comparison of k-NN Predictor, KM-Predictor and Best ARIMA

In experiment 2, motivated by Alonso et al. (2012), a sample of 400 curves are used
as a training set, with mixing proportions π1 = π2 = 0.5 for development of the
k-NN predictor, KM-Predictor and FC-Predictor. Each of these curves are observed
at 10 equidistant points t = 1, 2, · · · , 10. We consider the following two functional
data generating models or each of these curves are of the type

X1t = t+ ε(1)(t), or X2t = t+ 10 + ε(2)(t) (8)

where t ∈ {1, 2, · · · , 10} , ε(k), k = 1, 2 are Gaussian processes with zero mean and

covariance function σ(s, t) = 2 ∗ exp

(
−0.5

∣∣∣∣s4 − t

4

∣∣∣∣2
)

. We take n∗ = 7 and predict

(Xnew(8), Xnew(9), Xnew(10))′. The testing is done with a fresh set of 200 curves, 100
curves each from both population. The figure 1 plots some simulated curves from
both population.

Since k-NN Predictor depends on the choice of k we compare the performance
of this predictor by varying k = 10, 15, 20 and 25. The MSPE is calculated for all
the methods with q = 200 for each of the forecast periods separately. The whole
process is then repeated 1000 times and the average value of the MSPE for each of
the forecast periods separately is reported in table 3 below.

In experiment 3, a sample of 400 curves were used as a training set, the mixing
proportions πi’s are chosen to be equal to 0.5. Each of these curves are observed at
10 equidistant points t = 1, 2, · · · , 10. We consider the following two functional data
generating models for each of these curves

X1t = 4t+ ε(1)(t), and X2t = 4|t− 5|+ ε(2)(t) (9)

where t ∈ {1, 2, · · · , 10} , ε(k), k = 1, 2 are Gaussian processes with zero mean and

covariance function σ(s, t) = 2 ∗ exp

(
−0.5

∣∣∣∣s4 − t

4

∣∣∣∣2
)

. The figure 2 shows some
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Figure 1: Plots of sample curves for X1t (smooth line) and X2t (dashed line) from
experiment 2, equation 8 for t ∈ {1, · · · , 10}

Method Xnew(8) Xnew(9) Xnew(10)
5-NN Predictor 0.01218 0.1452 0.51399
10-NN Predictor 0.0005 0.08331 0.37741
15-NN Predictor 0.00322 0.06137 0.31168
20-NN Predictor 0.00232 0.04819 0.2652
25-NN Predictor 0.00178 0.03944 0.2305
KM-Predictor 0.00013 0.003 0.026
Best ARIMA 0.052 0.321 1.016

Table 3: Comparison of MSPE of different methods for three periods as discussed in
experiment 2

simulated curves from both populations. We take n∗ = 7 and predict Xnew =
(Xnew(8), Xnew(9), Xnew(10))′. The testing is done with a fresh set of 200 curves,
100 curves each from both population. The MSPE is calculated for all the methods
with q = 200 for each of the forecast periods separately. The whole process is then
repeated 1000 times and the average value of the MSPE for each of the forecast
periods separately is reported in table 4 below.

From both experiment 2 and 3 we observe that the KM-Predictor performs the
best across the three periods. All the predictors perform better than the Best ARIMA
method, which may be expected since Best ARIMA method does not benefit from
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Figure 2: Plots of sample curves for X1t (dashed line) and X2t (smooth line) from
experiment 3, equation 9

.

Method Xnew(8) Xnew(9) Xnew(10)
10-NN Predictor .00496 0.08260675 0.3746607
25-NN Predictor 0.001770926 0.03914277 0.2292558
KM-Predictor 0.0001299241 0.0032155687 0.02557286
Best ARIMA 9.975927 31.92362 66.47435

Table 4: Comparison of MSPE of different methods for three periods as discussed in
experiment 3

the information contained in the training data set.

4.2.2 Comparison of k-NN Predictor, KM Predictor, FC Predictor and
Best ARIMA

In this section, we report the results of a small simulation experiment comparing the
FC-predictor with k-NN predictor, KM-predictor and the Best ARIMA predictor
using the same set of curves as in section 4.2.1. Functional data generating models
as in experiment 2 is considered with a sample of 50 curves as a training set with
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mixing proportion π1 = π2 = 0.5. It is tested on a fresh set of 50 curves, 25 curves
each from both population. The whole process is then repeated 50 times and the
average value of the MSPE for each of the forecast periods separately is reported in
table 5 below. We refer to this as experiment 4.

The reason for doing a much smaller simulation experiment compared to that
reported in the earlier section is mainly computational. We encountered several com-
putational issues namely the likelihood becoming extremely small hitting machine
0, the Funclust algorithm failing to converge possibly due to large size of training
sample or due to slow convergence of the EM-like algorithm. This indicates that
lot of improvement in computational efficacy is required for Funclust algorithm on
which the FC-Predictor is based to be useful in practice.

Method Xnew(8) Xnew(9) Xnew(10)
25-NN Predictor 0.0001534 0.00361192 0.0293429
KM-Predictor 0.00010548 0.00276592 0.02320982
FC-Predictor 0.0002 0.0055 0.0425
Best ARIMA 0.04772418 0.2985654 0.95431502

Table 5: Comparison of MSPE of different methods for three periods as discussed in
experiment 4

We observe from above experiment that KM-Predictor performs best across four
methods. For comparison we perform one more experiment with the functional data
generating model as in experiment 3. This simulation is done under same conditions
as in experiment 4. Table 6 shows the MSPE for 1 period forecast, 2 period forecast,
3 period forecast for 50 iterations by all four methods. We refer to this experiment
as experiment 5.

Method Xnew(8) Xnew(9) Xnew(10)
25-NN Predictor 0.00013426 0.00356004 0.03005374
KM-Predictor 0.00010888 0.00282346 0.02350198
FC-Predictor 0.00010888 0.00282346 0.02350198
Best ARIMA 9.57670348 30.93669896 64.77716212

Table 6: Comparison of MSPE of different methods for three periods as discussed in
experiment 5
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The performance in terms of MSPE is equally good for KM-Predictor and FC-
Predictor.

5 Prediction of Non-Stationary Gaussian Processes

With real life data it is often seen that the assumption of stationarity fails to hold.
The variances and covariances are seen to vary over time. Other non-stationary be-
haviors that are often seen are trends, cycles or some combinations of these. The
difficulty of modeling and forecasting non-stationary Gaussian processes (GPNS) are
well known. In this section, we illustrate the performance of our prediction methods
in the case of non-stationary Gaussian Process with three real life data-sets, namely
booking curves, growth data and temperature data.

5.1 Real data examples

In the first example, we analyze a booking position data of air conditioned 3-tier
coaches (AC III) of Gujarat Mail (train no 12902) of Indian Railways which runs
from the city of Ahmedabad (capital of the state Gujarat in Western India) to the
city of Mumbai (capital of the state of Maharashtra and located on the western
coast of India). The data is collected manually starting from 27 November 2014
till 28 February 2015 from the Indian Railways (www.irctc.co.in). During this time,
the reservations opened 60 days before the journey date. The total number of seats
available for booking under normal conditions is 325 in the AC III category for this
train. Booking positions were noted at 9 p.m. on each day for train number 12902
departing from Ahmedabad for 34 consecutive days starting from 26 January, 2015
till 28 February, 2015. This led to 34 functional observations fi, i = 1, · · · , 34 with f1
being the observation for 26 January 2015, f2 being the observation for 27 January
2015 etc. Each observation fi is of the type id1,id2, · · · ,id60 where idj is the booking
position of the train on the j-th day (with day 1 being the day when the booking
opens). While recording the data the following convention was used when the status
is shown as RAC and Waitlist:

idj =


x if x number of seats is Available

- x if status is RAC with number x

-47-x if status is Waitlist with number x

(The number 47 was arrived at by observing that the highest RAC number shown
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during the 34 day data collection period was 47). The figure 3 shows some of these
booking curves.

0 10 20 30 40 50 60

−
30

0
−

20
0

−
10

0
0

10
0

20
0

30
0

Days

B
oo

ki
ng

 s
ta

tu
s

Figure 3: Daily booking position of Gujarat Mail from day of start of booking till
departure. Each curve represents a different departure date

In the second example, we consider growth data for females (Tuddenham and
Snyder (1954)). The growth dataset comes from Berkeley growth study and is avail-
able in the fda package of R. In this dataset, the heights of 54 girls are measured at
31 ages, and these range from 1 to 18 years, unequally spaced. Measurements were
taken every three months until two years of age, every year until eight years of age,
and then every six months from eight to eighteen years of age. Figure (4) shows
growth curves for 24 girls.

In the last example, we consider temperature data of a city located in western
India, Ahmedabad. The maximum and minimum temperature of Ahmedabad for
the period 1961 to 2012 was provided by the Indian Meteorological department,
Ministry of Earth Sciences, Government of India. The average temperature of a
month was computed by averaging the maximum and minimum temperature for a
month, (World Meteorological Organisation (2012)). The observation of each year is
taken as a functional observation. The figure (5) illustrates temperature curves for
all 52 years.

W.P. No. 2017-08-02 Page No. 19



70

90

110

130

150

170

1 4 7 10 13 16 18
Age (years)

H
e

ig
h

t 
(c

m
)

Figure 4: Height of girls in the Berkeley growth study represented as smooth curve.
Each curve represents a different girl.
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Figure 5: Average monthly temperature curves of the Ahmedabad city represented
as smooth curve. Each curve represents a different year

5.2 Modeling of non-stationary Gaussian Process

In both examples 1 and 2, we observed that the variance is not constant over time.
Thus we need a method to incorporate this information in our covariance function
specification. We suggest the following covariance function which can accommodate

W.P. No. 2017-08-02 Page No. 20



time varying variance:

K(s, t) =

√
d

(
s

c

)α−1(
1 +

s

c

)−α−β√
d

(
t

c

)α−1(
1 +

t

c

)−α−β
exp

(
−w|s− t|γ

)
(10)

It may be noted that in this specification the variance is modeled using a mod-
ification of the unnormalized density function of a beta distribution of the second
kind (Johnson and Samuel (1995), p. 325) which can take a wide variety of shapes
for various choices of α, β, c and d. Figure ?? shows some of these shapes.

We denote a Gaussian process with the above covariance function K(s, t) as
GPNS(d, c, α, β, w, γ). The parameters (d, c, α, β, w, γ) needs to be estimated in prac-
tical applications. As before, we assume that each observation is a random sample
path from GPNS(d, c, α, β, w, γ) which has been observed at a few discrete points and
all the observations are mutually independent.

Let X(i) = (X(i)(t1), X
(i)(t2), · · · , X(i)(tn)) denote the ith functional observation

observed at time points t1, t2, · · · , tn; i = 1, · · · ,m. We estimate w and γ using
equation 3 and equation 4. Let V = (V (t1), V (t2), . . . , V (tn)) denote the estimated
variances of the GPNS process at time points (t1, t2, . . . , tn). The d, c, α, β are esti-
mated by minimizing√√√√ n∑

1=1

(
d

(
ts
c

)α−1(
1 +

ts
c

)−α−β
− V (ts)

)2

for the parameters d, c, α and β. Among the several modern numerical approaches
to global optimization of functions the Differential Evolution (DE), Storn and Price
(1997) approach is one of the most promising. In the R software, the package DEop-
tim provides the functionality of optimizing a given function using the DE algorithm.
We use the DEoptim function in R for obtaining the estimates of d, c, α and β. Mullen
(2014) reports that the performance of the DEoptim algorithm is good across a va-
riety of benchmark problems.

An alternative approach is to obtain the maximum likelihood estimate (MLE) of
the parameters. While we have discussed this briefly below we have not used the
same because of the computational difficulties associated with it.
As earlier, assume that the curvesX1, · · · , Xm is a random sample from GPNS(d, c, α, β, w, γ)
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Figure 6: Shapes of beta function by varying parameters α, β, c and d as discussed
in section
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and each of these curves are observed at same time points t1, · · · , tn. The log likeli-
hood of the data is given by:

l0 = l(µ, d, c, α, β, w, γ) =
m∑
i=1

(
−n
2
ln2π − 1

2
ln|Σ| − 1

2
(Xi − µ)′Σ−1(Xi − µ)

)
(11)

where µ = (µt1 , · · · , µtn), Σ is the n× n matrix whose (g, h)th element is√
d

(
tg
c

)α−1(
1 +

tg
c

)−α−β√
d

(
th
c

)α−1(
1 +

th
c

)−α−β
exp

(
−w
∣∣tg − th∣∣γ)

Differentiating equation (11) with respect to µ and equating to zero yields µ̂(tl) =∑m
i=1Xi(tl)

m
, 1 ≤ l ≤ n.

Writing Σ =
[
σij
]
m×m and l0 = l0(µ, σ11, σ12, · · · , σ1m, σ22, σ23, · · · , σ2m, · · · ,

σmm) and σij = σij(d, c, α, β, w, γ)

∂l0
∂w

=
n∑

i,j=1

∂l0
∂σij

∂σij
∂w

(12)

∂σij
∂w

= −σij|ti − tj|γ (13)

and by using Smith (1978),

∂l0
∂σij

=
1

2
tr


−mΣ−1 + Σ−1

 m∑
k=1

(Xk − µ) (Xk − µ)′

Σ−1

[ ∂Σ

∂σij

] (14)

The values from equation (13) and equation (14) are substituted in equation (12)
and the resulting expression is equated to zero. Similarly ∂l0

∂α
, ∂l0
∂β

, ∂l0
∂γ

, ∂l0
∂c

, and ∂l0
∂d

are calculated and are all equated to 0. These six equations can then be solved
simultaneously to obtain the MLE of these six parameters. As can be seen from
7, the analytical solutions of these equations are not tractable. While numerical
techniques can be used to obtain the solutions of these equations, these too are
not straightforward. Alternatively, one may attempt to maximize the log-likelihood
function directly using a global optimization algorithm which in many cases can be
computationally very expensive.
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5.3 Results

While dealing with real life datasets it is essential to check for presence of outliers.
The outlier in functional setting is described as follows: A curve is an outlier if it
has been generated by a stochastic process with a different distribution than the
rest of the curves (Febrero et al. (2007)). In general, outliers in a functional dataset
can arise due to measurement, recording and typing errors which can be corrected
whenever possible to detect or they may be data curves that come from a distribution
other than rest of the curves. The concept of functional depth has been developed
to measure the centrality of a given curve. Functional depth has been defined by
various authors, out of which we use the sample Fraiman and Muniz depth (FMD),
Fraiman and Muniz (2001). This is defined as

SFMDn(X(i)) =
n∑
j=2

4j

1−

∣∣∣∣∣∣12 − 1

n

m∑
k=1

I(X(k)(tj) ≤ X(i)(tj))

∣∣∣∣∣∣


where I(.) is the indicator function, X(i), i = 1, · · · ,m are the sample curves (as-
sumed to belong to C[a, b], the space of continuous functions defined on the interval
[a, b] ⊂ R), t1, . . . , tn are the points at which X(i), i = 1, · · · ,m are observed and
∆j = tj − tj−1.

If an outlier is present in the data set, then it would have much lower value of
FMD compared to the other observations. This fact is used for detection of out-
liers. In R software, outliers.depth.trim function in fda.usc package performs outlier
detection using FMD. This function is used by us to detect presence of outliers in
all the three datasets. In the railway booking position data discussed in the first
example this method identified two outliers which were removed before proceeding
with further analysis. In the second example where growth data of girls is studied
this method identified one outlier which was also removed before analyzing the data
further. In the temperature data of Ahmedabad discussed in the third example this
method did not indicate presence of any outlier.

Booking position data: For reasons discussed in remark, we do not work with
fi but with gi = (id5,i d10, · · · ,i d40). We treat each observation gi as a discretely
observed random sample path from GPNS(d, c, α, β, w, γ). In the railway booking
position dataset which had 32 observations after deletion of outliers, we use 28 of
them to train the model and use the remaining four observations to test the prediction
accuracy of the methods. For each of the four observations we predict the booking
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positions on 35th and 40th day since beginning of booking, using the knowledge of the
booking positions on 5th, 10th, . . . , 30th days. We compare the predictions obtained
using the 10-NN, KM and FC predictors with the Best ARIMA forecasts obtained
using the auto.arima function in the forecast package of R software. The results are
given in table 7. Also, the predictions are plotted in figure 7 where different types of
line show prediction using different methods. For comparing the prediction accuracy
of the methods in quantitative terms we use the MSPE which is computed using all
the eight points for which predictions were obtained. The results are shown in the
column with heading Booking Position in table 10. We find the 10-NN Predictor
performs best in terms of having minimum MSPE among the four methods under
consideration.

Method 29d35 29d40 30d35 30d40 31d35 31d40 32d35 32d40
Actual value 160 139 -161 -162 -95 -103 66 19
10-NN Predictor 170 134 -166 -171 -98 -105 64 31
KM Predictor 176 138 -159 -160 -96 -104 75 43
FC Predictor 173 144 -170 -175 -103 -111 74 52
Best ARIMA 193 180 -177 -191 -101 -111 80 61

Table 7: Comparison of predictions obtained using different methods for the booking
position data, section 5.3

Remark: In the training samples of full booking curves, the number of samples
(n = 28) is much smaller than the number of parameters (p = 60) to be estimated. It
is known that when n < p the covariance matrix is not positive definite and hence it
cannot be inverted to compute the inverse of the covariance matrix, which is required
in many applications like in estimating the maximum likelihood estimator. Hence,
we reduce the number of parameters to eight i.e. we take the observation on every
fifth day till 40 days. However, it is also known that when n > p, the eigenstruc-
ture tends to be systematically distorted, resulting in ill-conditioned estimators for
covariance except when p

n
is extremely small(Won et al. (2009)).

Growth data: In the growth data for girls dataset we had 53 observations after
deletion of the outlier. We used 49 of them to train the model and used the remaining
four observations to test the prediction accuracy. For each of the four observations
we predicted the height at age 17.5 and 18 years given that we know her height at 29
time points till 17 years of age. We compare the predictions obtained using 10-NN,
KM and FC predictors. The Best ARIMA method is not suitable for use here as the
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Figure 7: Prediction of Booking position for four days on 35th and 40th day. Each
plot represents prediction of a day using all four methods. The smooth line shows
the actual values till 30th day and then different lines show prediction using different
methods.
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29 time points where the height of a girl are measured are not equally spaced. The
results are given in table 8. Also, the predictions are plotted in figure 8. The MSPE
of the three methods are shown in the column with heading Growth in table 10. We
find that KM-Predictor performs best in terms of having minimum MSPE among
three methods under consideration.

Method 50d17.5 50d18 51d17.5 51d18 52d17.5 52d18 53d17.5 53d18
Actual value 173.1 173.5 166.3 166.8 168.4 168.6 168.9 169.2
10-NN Pre-
dictor

172.80 172.97 166.09 166.15 168.47 168.73 168.74 168.98

KM Predictor 173.15 173.28 166.10 166.23 168.73 168.85 168.97 169.05
FC Predictor 172.59 172.48 166.15 166.29 168.20 168.12 168.42 168.28

Table 8: Comparison of predictions obtained using different methods for the growth
data, section 5.3

Temperature data: The temperature data of Ahmedabad city had 52 observa-
tions, out of which 48 observations were used to train the model and the remaining
four observations were used to test the prediction accuracy. In this case, we treat the
12 monthly average temperature readings for a given year as observations from a ran-
dom sample path of GPS(µ, v, w, γ) observed at time points t = 1, · · · , 12. Further,
we assume that the 52 random sample paths corresponding to the years 1961-2012
are mutually independent.

The equation (1) could not be used directly for this data because of the nature of
the monthly temperature data. It is natural to expect that the monthly temperatures
of the months of January and December in a year would be correlated because both
these months fall in the winter season in India. However this would not be correctly
captured by the covariance function K(s, t) = v exp(−w|s − t|γ) since the month
of January with s = 1 would appear to be distant from December with t = 12 and
therefore the model would expect the temperatures of these months to have low cor-
relation. To overcome the problem we use the following modified covariance function

K(s, t) = v exp

−w(2

∣∣∣∣sin(s− t)
2

∣∣∣∣
)γ
 ,which is discussed in a different context

in Solin and Särkkä (2014). The motivation behind this formulation is that, if the
twelve months in a year are viewed as 12 equispaced points on the unit circle with
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coordinates

(
cos

πi

6
, sin

πi

6

)
, i = 1, · · · , 12 then the points representing January and

December are adjacent to one another. The Euclidean distance between two points(
cos

πs

6
, sin

πs

6

)
and

(
cos

πt

6
, sin

πt

6

)
is 2

∣∣∣∣sin s− t2

∣∣∣∣ which is used to replace |s− t|

in the original definition of the covariance function, equation (1).

In this case, we estimate v using equation (2). γ is estimated as

γ̂ =
ln
(

ln ρ̂A
ln ρ̂B

)
ln|z2 − z1| − ln|z3 − z1|

=
ln
(

ln ρ̂A
ln ρ̂B

)
ln
(√

2−
√

3
)

where ρ̂A =
ρ̂1,2 + · · · ρ̂k−1,k

k − 1
and ρ̂B =

ρ̂1,3 + · · · ρ̂k−2,k
k − 2

and

zi =

(
cos

(
πi

6

)
, sin

(
πi

6

))
.

w is estimated as

ŵ =
− ln ρ̂A

|z2 − z1|γ̂
=

− ln ρ̂A

ln
(√

2−
√

3
)γ̂

For each of the four observations we predicted the average temperatures for the
months of November and December using our knowledge of the average temperatures
for the months of January till October. The predictions obtained using 10-NN,
KM, FC predictors and Best ARIMA were compared. The results are mentioned in
Table 9. The MSPE of the three methods are shown in the column with heading
Temperature in table (10). We find that KM-Predictor performs best in terms of
having minimum MSPE among the three methods under consideration.

6 Conclusion

This paper presents several new methods for prediction of data coming from an under-
lying Gaussian Process. For the stationary case the powered exponential covariance
function is considered whereas for the non-stationary case suitable modifications of
the same are used. When the data comes from an underlying stationary Gaussian
Process the CE-Predictor is seen to perform the best. In cases where it may be
suspected that the data comes from a mixture of stationary Gaussian processes then
the KM-Predictor is seen to perform better than the rest. Even in the non-stationary
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Figure 9: Prediction of temperature for November and December for 4 years. Each
plot represents a different year with all four methods. The smooth line shows the
actual values till October and then different lines show prediction using different
methods.
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Method 2009d11 2009d12 2010d11 2010d12 2011d11 2011d12 2012d11 2012d12
Actual value 25.5 22.70 25.70 20.55 26.60 22.25 23.50 22.20
10-NN Pre-
dictor

25.51 21.97 25.95 22.17 24.79 21.31 25.06 21.32

KM Predictor 25.75 22.28 25.93 22.45 25.00 21.47 24.82 21.25
FC Predictor 26.22 22.62 25.21 21.58 24.21 21.23 24.98 21.36
Best ARIMA 28.08 27.91 30.16 30.59 28.79 28.65 28.08 28.04

Table 9: Comparison of predictions obtained using different methods for the tem-
perature data, section 5.3.

Booking Posi-
tion

Height Temperature

10-NN Predictor 49 0.116 1.512
KM Predictor 115.5 0.076 1.378
FC Predictor 222.285 0.366 1.565
Best ARIMA 740.875 * 35.525

Table 10: Mean Square Prediction Error for Booking position, Growth and Temper-
ature data using different methods.

case the KM-Predictor performs quite well giving the best prediction in two of the
three real life data sets considered in this paper. In the remaining data set the k-NN
Predictor (with k = 10) performs the best with the KM-Predictor being the second
best. Based on this experience we think that the KM-Predictor can be profitably
used for predicting in several real life situations such as traffic volumes in telecom
networks, electricity demand at different times for a facility etc. In addition, when
working with real data one may adopt an ensemble forecasting approach with the
ensemble consisting of the KM-Predictor and k-NN Predictor.
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7 APPENDIX A

In this section, we provide the partial derivatives of lo which is required for finding MLEs
for parameters d,c,α, β. For estimation of d, we need ∂l0

∂d
which can be found as

∂l0
∂d

=
n∑

i,j=1

∂l0
∂σij

∂σij
∂d

(15)

∂σij
∂d

=


(
ti
c

)α−1 ( ti
c

+ 1
)−α−β√

d
(
tj
c

)α−1 (
tj
c

+ 1
)−α−β

2

√
d
(
ti
c

)α−1 ( ti
c

+ 1
)−α−β

+

(
tj
c

)α−1 (
tj
c

+ 1
)−α−β√

d
(
ti
c

)α−1 ( ti
c

+ 1
)−α−β

2

√
d
(
tj
c

)α−1 (
tj
c

+ 1
)−α−β

 exp
(
−w|ti − tj|γ

)
(16)

and by using Smith (1978),

∂l0
∂σij

=
1

2
tr


−mΣ−1 + Σ−1

 m∑
k=1

(Xk − µ) (Xk − µ)′

Σ−1

[ ∂Σ

∂σij

] (17)

The values from 17 and 16 are substituted in 15 to get ∂l0
∂d

Similarly,
∂l0
∂c

=
n∑

i,j=1

∂l0
∂σij

∂σij
∂c

(18)
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∂σij
∂c
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exp
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)
(19)

The value of ∂l0
∂c

is estimated using 17, 18 and 19.

Again,
∂l0
∂α

=
n∑

i,j=1

∂l0
∂σij

∂σij
∂α

(20)
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(21)
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∂l0
∂α

is estimated using 17, 20 and 21.

Similarly,
∂l0
∂β

=
n∑

i,j=1

∂l0
∂σij

∂σij
∂β

(22)

∂σij
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∂l0
∂β

is estimated by substituting 17 and 23 in eq.22.
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