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Abstract 

Probability density for the future price of an asset can be estimated from historical asset prices or 

exchange-traded derivatives. In this paper, prices of futures and options contracts that embed the 

forward-looking information are used to obtain the density forecast of the underlying asset under 

 - measure. Along with Probability Integral Transform (PIT), various statistical testes are 

conducted to determine whether the option-implied density forecast is unbiased under the real 

world measure,  . We have worked with the settlement prices of NYMEX traded futures and 

options contracts for WTI crude oil and Henry Hub natural gas during the post-financialization 

period of 2006 to 2013.  Statistical analysis of the PIT values indicate that the option-implied 

density forecast is unbiased under the real world measure,  . 
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1  Introduction 

Option prices are used to generate forecasts of underlying asset price often referred as risk 

neutral density (RND) forecast with the horizon equal to the time to expiration of the options. 

The density forecast is valuable for a variety of reasons in economics and finance. Central banks 

base their monetary policy decision on RND forecasts retrieved from the interest rate, and FX- 

options (Clews et al., 2000). In finance, RND plays a major role in risk management and 

regulatory reporting as it is used to calculate a variety of risk measures such as VaR, CVaR. 

Kostakis et al. (2011) used risk-adjusted implied RND for asset allocation. Options-implied RND 

reflects participants' expectations, and thus, is forward looking. Chiras and Manaster (1978) 

found that implied variance of future stock returns does better than the variance of historical 

stock price in forecasting the volatility of the future stock return. Since then several authors have 

studied the “forward-looking” aspects of options. A majority of them focused on the second 

moment of the option-implied distribution (see Poon and Granger (2003) for review). The 

predictive capability of FX option-implied correlation to forecast realized the correlation 

between two currency pairs had been studied by Campa and Chang (1998), and Castrén and 

Mazzotta (2005). Chang et al. (2012) studied implied beta and Kempf et al. (2015) used implied 

covariance estimates from option prices for portfolio optimization. All these studies suggest that 

use of option-implied measures can result in better forecasting performance than using historical 

data based measures. 

Despite the fact that option-implied measures are forward-looking, they are usually contaminated 

by the risk premium, which can lead to inaccurate forecasts. For real world applications like risk 

management, it is beneficial to approximate the risk adjusted forecast from the option-implied 

RND. The well-calibrated approximation
1
 of true density forecast is referred as real world 

density (RWD). Assuming market participants are rational, RWD forecast must coincide with 

their subjective density forecast (Bliss and Panigirtzoglou, 2004). 

 

 

 

1
Price evolution of a derivative can be described by a Partial Differential Equation (PDE) having risk-neutral drift. 

Theoretically, PDE's drift is composed of actual drift and a term which depends on the risk aversion of the 

representative agent. Cross-section of options prices are the solutions of this PDE and are silent on the 

decomposition. Getting accurate, true density from the option prices is impossible. 
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Unlike equity markets, there is a significant debate on the question of whether commodity 

futures price is a biased predictor of future expected price. The empirical work dates back to 

Houthakker (1957), as the author, suggests that small speculators have no price forecasting skill, 

perform quite well when they take a long side in futures. In line with the theory of normal 

backwardation, they capture the risk premium offered by the commercial hedgers. On the other 

hand, for cotton and wheat Rockwell (1967) reports close to zero returns for the strategy of going 

long (short) in futures markets when hedgers are net short (long). However, these authors did not 

include statistical tests to back their claim. Using statistical framework, Chang (1985) re-

evaluates Rockwell’s strategy and found that positive returns earned by speculators were not 

significantly different from those earned by naïve speculators. In the works of Dusak (1973) and 

Carter et al. (1983), risk premium embeds in futures price is related to the systematic risk. On the 

theoretical side, Stoll (1979) and Hirshleifer (1988, 1989) allow both systematic risk and hedging 

pressure to affect the futures prices. For agricultural commodities, Carter et al. (1983) and 

Bessembinder (1992) gave empirical evidence that systematic risk and hedging pressure are the 

determinants of premium in futures. De Roon et al. (2000) posit that cross-commodity hedging 

pressure also affects the risk premium in the individual commodity futures prices.  

Several studies were done to find out the bias present in the crude oil futures price. Deaves and 

Krinsky (1992) found some evidence of positive risk premium in short-dated crude oil futures 

contracts during 1983 to 1990. In their study, Moosa and Al-Loughani (1994) concluded that 

price of NYMEX traded WTI crude oil futures are inefficient and biased forecasters of spot 

prices while Gulen (1998) found that short-dated WTI crude oil futures are an unbiased and 

efficient predictor of the spot price. Kolos and Ronn (2008) determined the sign and magnitude 

of the market price of risk and found crude oil and natural gas futures are biased downward. Bhar 

and Lee (2011) found time-varying risk premium in the crude oil market, which was influenced 

by the same risk factors that affect equity and bond markets. Hamilton and Wu (2014) reported 

significant variation in the risk premium due to the increased participation by long-only financial 

investors in crude oil futures markets in 2005. Authors claim compensation to speculators was 

positive on average before 2005, which is in line with the theory of normal backwardation. They 

posit that expected premium in having a long position in the futures market has gone down over 

time, even became significantly negative during contango. 
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For natural gas, the literature on risk premium in futures markets is quite thin. Buchanan et al. 

(2001) investigated the market-timing ability of large speculators for one-month forecast 

horizons. They reported the outperformance of large speculators relative to the large hedgers. 

However, after considering other traders' positions in a multivariate regression framework, 

authors found that the reason for this outperformance is the premium captured by the speculators 

instead of their services to the hedgers. Movassagh and Modjtahedi (2005) regress the spot prices 

against lagged futures prices after correcting for the correlation between the futures prices and 

error terms and found that US natural gas futures (with 3 to 12 months times-to-expiration) sell 

at a discount to the expected future spot price. On the contrary, Cartea and Williams (2008) and 

Haff et al. (2008) reported positive risk premiums in UK natural gas futures.   

A majority of studies show implied volatility overestimates the realized volatility in commodity 

markets. Simon (2002) simulated a trading strategy of selling corn option straddles when implied 

volatility is higher than the out-of-sample volatility forecasts. He could not find profitable 

trading rules and concluded that the options are not necessarily overpriced. Doran and Ronn 

(2008) collected the daily prices of NYMEX traded futures and options data for heating oil, 

natural gas, and crude oil contracts from 1995 to 2005, and found significantly negative volatility 

risk premium for all three commodities. Wang et al. (2011) reported negative and time-varying 

variance risk premiums for corn from 1987 to 2009. Trolle and Schwartz (2010) found 

significant negative variance risk premia for crude oil and natural gas. However, the annualized 

Sharpe ratios of the strategy of shorting the energy variance are not high as that of shorting S&P 

500 Index variance. Prokopczuk and Simen (2014), who studied 21 commodity markets from 

1989 to 2011, further corroborate the claim of negative variance risk premium.  

Evaluation of RND forecasts is primarily based on Probability Integral Transform (PIT) 

approach. Earlier PIT was used in the studies of Fackler and King (1990), Diebold (1998), 

Anagnou et al. (2002), Bliss and Panigirtzoglou (2004), Christoffersen and Mazzotta (2005), Liu 

et al. (2007), and Høg and Tsiaras (2011). In the context of commodities, an insufficient amount 

of work has been done. Fackler and King (1990) evaluated density forecasts for the corn, 

soybean, cattle, and hog markets during 1985-1988. They found density assessments for corn and 

live cattle futures are reliable while those for soybean and hog futures overstate volatility and 

understate location respectively. For the period 1994-2006, Høg and Tsiaras (2011) modeled the 
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crude oil RNDs as GB2 distribution and found biasedness
2 

in the density forecasts. They used 

parametric and nonparametric statistical calibration to obtain improved forecasts.  

Commodity markets have undergone a profound transformation during the first decade of the 

21
st
 century. The risk premia in commodity derivative markets have been affected due to the 

three major developments. First, the unprecedented pouring of institutional money into the 

commodity futures often referred to as financialization of commodities. Historically negative 

correlation between the commodity futures returns, and stocks and bond returns (see Erb and 

Harvey, 2006; Gorton and Rouwenhorst, 2006) encouraged financial investors to lessen their 

portfolio risk by taking a long position in commodity futures. This has changed
3
 the composition 

of participants over time (see Rouwenhorst and Tang, 2012; Cheng and Xiong, 2014) as the 

participation of financial investors has increased significantly over time. Several studies suggest 

that this has caused an increase in correlation between commodities and financial markets (see 

Daskalaki and Skiadopoulos, 2011; Silvennoinen and Thorp, 2013). Commodities such as crude 

oil bear high systematic risk and are now integrated with the global financial system (Ji and Fan, 

2016). The effect of financialization on the risk premium is not straightforward
4
. As increased 

integration of commodity markets will result in more risk premium due to systematic risk while 

the greater participation of financial investors will weaken the Keynesian-Hicks hypothesis of 

normal backwardation and thus reduce the risk premium, or even push it to the other direction 

(see Bouchouev, 2012).  

Second, commodity options markets, in particular, energy complex have witnessed a dramatic 

rise in the open interest and liquidity. A commercial entity may trade both the futures and 

options to hedge its exposure to stochastic spot price and volatility. As options are written on  

 

2
Null hypothesis for a joint test of normality and independence is rejected at 10% level of significance. 

3
Earlier commodity producers dominate the futures market. Financial investors filled the gap between producer and 

consumer hedging in lieu of a risk premium, i.e., positive expected return from holding a future contract until 

maturity (Keynes, 1923; Hicks 1939).  

4
As initiating a position in futures contract requires no investment; ideally, its expected return must be zero. If 

expected return differs significantly from zero, then it is due to the non-diversifiable risks of the underlying. In the 

context of commodities, two sources of risk premium are systematic risk and hedging pressure (see Hirshleifer 

(1989), de Roon et. al. (2000)). 
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the only one burdened by the hedging pressure, option market comes for its rescue
5
. Third, as a 

direct response to the subprime crisis in 2010, Dodd-Frank Wall Street Reform and Consumer 

futures, both the markets move in sync. Unlike futures, options have a visible premium that is 

paid by the buyer to the seller as the price for buying insurance. Thus, the futures market is not 

Protection Act was signed into law which places stricter capital and margin rules on dealers. 

Also, regulatory reporting requirement has been increased significantly. Several big banks like 

JP Morgan Chase and Barclays exited from the physical commodity trading businesses. The 

increase in the open interest of exchange-traded futures and options suggest that commercial 

hedging is moving to the public trading venues amid a decline in OTC activity (see Table1). The 

diminishing risk-bearing capacity of OTC dealers has significant implications for the risk premia 

in commodity derivatives markets (Etula, 2013). 

Table 1: Declining OTC activity for commodity derivatives (Source: Bank for International Settlements) 

It will be interesting to evaluate the forecasting ability of option-implied RNDs in the post-

financialization era. To our knowledge, there has been no post-financialization study for the 

empirical performance of the option-implied density forecasts for commodity futures. In this 

study, we use PIT approach for density forecast evaluation. We consider NYMEX traded WTI 

crude oil (CL) and Henry Hub Natural Gas (NG) contracts
6
 and the options written on them 

during 2006-2013. Most of the commodity indices give maximum weight to the energy 

commodities, making them more prone to the effects of financialization. 

 

 

5
According to a Bloomberg report, Mexico hedged its $9.5 billion of revenue from oil exports by buying put options 

that give it the right to sell oil for $38 a barrel for 2017 (Martin, 2016).  

  
6
CL and NG are the ticker symbols for the WTI crude oil and Henry Hub natural gas futures whereas LO and ON 

are the symbols for the options written on CL and NG contracts respectively. In this study, crude oil and natural gas 

options are referred as CL and NG options respectively.  

Notional 

Amount 

(in billions 

of USD) 

 

2011 

 

2012 

 

2013 

 

2014 

 

2015 

 

2016 

H1 3197 2993 2458 2206 1671 1392 

H2 3091 2587 2204 1869 1320 - 
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2  Option Implied Risk Neutral Density 

2.1 Non-parametric RND 

With a complete set of options, one can recover the underlying asset's entire RND (Breeden and 

Litzenberger, 1978). The RND is then,  (  )        

   |
    

  where    is the price of the 

underlying asset at future date  ,   is the non-stochastic interest rate,   is the implied risk neutral 

probability density and   denotes the price of the European style call option with strike price  . 

It is well known that,  ( )      ∫ (   ) ( )  
 

   
   In practice, options with continuum of 

strikes do not exist. For example, CL options are listed at $0.50 per barrel strike increment. RND 

extraction, thus, is possible only over a range of traded strikes. The obtained option prices must 

be smoothed in order to have a well-behaved RND. One can use spline interpolation of implied 

volatilities in either strike-space (see Figlewski, 2008) or delta-space (see Malz, 1997). Tails of 

RND can be extended by using a well-known density function. For example, Shimko (1993) 

used lognormal distribution, and Figlewski (2008) appended tails from a Generalized Extreme 

Value (GEV) distribution.      

2.2  Parametric RND  

Estimating parameters when a well-known density function is used for modeling implied RND is 

much easier than obtaining the nonparametric density. The parametric approach usually takes up 

to six variables while non-parametric approach requires fitting of RND either pointwise or 

constructing it from linear or nonlinear segments. The number of parameters has no theoretical 

upper bound and can grow with the number of strikes available for RND estimation under non-

parametric approach. By minimizing a loss function, which depends on the difference between 

market option price and model price, one can obtain parametric RND. We use GB2 and 2-MLN 

distributions for modeling the option-implied RNDs for crude oil and natural gas.   
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2.2.1  The GB2 Distribution  

Bookstaber and McDonald (1987) proposed GB2 distribution for describing asset returns. GB2 

distribution nests many popular distributions, like exponential, lognormal, log-logistic, t 

distribution. Four parameters describe GB2 density function,   (       ), as 

    (   )  
 

    (   )

     

[  (
 

 
)
 
]
                          (1) 

where  (   )  
 ( ) ( )

 (   )
 is the well known Beta function,  ( ) is the gamma function,   is the 

scale parameter, and      and   are the shape parameters. When    follows the GB2( ) 

distribution, the n
th

 moment of    is given by,  [  
   ]  

   (  
 

 
   

 

 
)

 (   )
       Under 

  measure, current futures price is the expected futures price at the expiration date of options, 

 . Hence, 

    [    ]  
  (  

 

 
      

 

 
)

 (   )
             (2)  

McDonald and Bookstaber (1991) obtained an analytic expression for call option when    

follows the GB2( ) distribution. The GB2 call option price (with strike price   ) at time t is, 

        
  (   ) (      (         

 

 
   

 

 
))     

  (   )(      (          ))  

                      (3) 

where      is the CDF of the GB2 distribution. Using Eq. (2) and (3) one can find expression 

for the call option price in terms of the beta distribution CDF (  ) given as, 

         (   ) (    (  
    

 

 
   

 

 
))     

  (   ) (    (  
     ))                       (4)  

Where   
  

(
  
 

)
 

  (
  
 

)
  . Now one can obtain the values of the three parameters that provide the 

“best fit” to the observed option prices. The process of obtaining the parameter values is 

discussed in section 2.2.3.    
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2.2.2  The 2-MLN Distribution 

Ritchey (1990) introduced the idea of using a mixture of lognormal (MLN) distributions in 

finance while obtaining the expression for call options. Guo (1998) has re-derived the Ritchey 

(1990)'s model under the assumption of the heterogeneous expectations of the investors about the 

lognormal process of the underlying asset price and proved that such a model would not admit 

any arbitrage. Melick and Thomas (1997) obtained the option-implied RND to infer the market's 

assessment of possible disruption in crude oil markets during the Gulf war. The 2-MLN density 

is the convex combination of the constituent lognormal densities, and can be described by five 

parameters,   (             ) as, 

    (   )       (       )  (   )   (       )                                       (5) 

where        
  

 

 
            When    follows the 2-MLN(       √       √ ) distribution,  

the n
th

 moment of    is given by, 

  [  
   ]      

    (
 

 
(    )  

  )  (   )  
    (

 

 
(    )  

  )   

Under   measure, futures price has zero drift and its expected price at the options expiration 

date ( ) is, 

    [    ]       (   )                         (6) 

Under 2-MLN, an option price is the convex combination of two Black (1976) option prices, 

            (            )  (   )    (            )                       (7) 

where     (         )     (   ) (  (
  (

 

 
) 

  

 
(   )

 √   
)    (

  (
 

 
) 

  

 
(   )

 √   
))  

Noting that        for        and using Eq. (6) one can rewrite Eq. (7) as, 

           (            )  (   )    (
       

   
          )                      (8) 
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Now the values of the four parameters that provide the “best fit” to the observed option prices 

can be obtained following the method discussed in section 2.2.3 below.  

2.2.3  Estimation of Parameters   

The parameters for the parametric (GB2 and 2-MLN) RNDs are estimated by minimizing the 

root mean square error (RMSE) over   liquid strike prices defined i.e.   

 ̂         (√∑ (       )
  

   

 
) ,   

where    is the observed price of the European call option with strike price   , and      is the 

fitted value when the parametric RND with parameter   is used. Differential evolution (DE) 

approach is used to perform the above minimization. The DE method uses an iterative approach 

to perform the minimization. Unlike classic optimization methods, DE does not require 

differentiable loss function (in our case RMSEs) and therefore can also be used when the loss 

function is not smooth or even discontinuous. However, it does not guarantee that the global 

optimal solution will be obtained in a finite number of iterations. More details regarding this 

method can be found in Storn and Price (1997). DEoptim package
7
 in R is used to find the best 

parameters for GB2 and 2-MLN RNDs.  

2.2.4 Berkowitz test 

Our analysis is focused on evaluating the closeness of the option-implied density forecasts,   , of 

underlying futures, and the unknown data generating process   . This can be evaluated by using 

PIT of the ex-post futures price    at the date of expiration of the option taken with respect to 

the density forecast   . Mathematically, the PIT value is defined as, 

   ∫   ( )
  

   
     (  )                           (9) 

If an RND forecast coincides with RWD then,    will be independent Uniform(0,1) distributed 

random variates. Since most goodness-of-fit tests such as Anderson-Darling, Kolmogorov- 

 

7
Details about DEoptim package is documented in Mullen et al. (2011). 
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Smirnov, and chi-squared tests assume that the observations are independent, one needs to 

establish the independence of {  } before proceeding with these tests. Hence, for correct 

inference joint test for uniformity and independence is required. In this direction, Berkowitz 

(2001) suggested a joint parametric test to evaluate density forecasts. First, the PIT values 

undergo an inverse normal transformation given as,       (  ) where   is the CDF of  

Normal(0,1) distribution. Second, the hypothesis of independence, zero mean, and unit variance 

of transformed PIT values is jointly tested under the model, 

      (      )                              (10) 

where   is the innovation term with  (  )   . The log-likelihood function for this model is well 

known and is given in Hamilton (1994) as, 

 

 (    
   )   

 

 
     

 

 
  (

  
 

    
)  

(    (   )⁄ ) 

   
 (    )⁄

 
   

 
     

   

 
    

 

 ∑(
(          )

 

   
 

)  

 

   

 

The null hypothesis of Berkowitz test is                (  )   . This hypothesis can be 

tested by using the likelihood ratio test statistic,       ( (     )   ( ̂  ̂ 
   ̂)). Under the 

null hypothesis, LR3 is distributed as   ( ). Eq. (10) is an AR (1) model which captures only a 

specific kind of serial dependence in the PIT values. It is possible to expand the model to AR (p) 

in a straight forward way but that increases the number of model parameters and leads to a 

decrease in the power (Bliss and Panigirtzoglou, 2004).    

  

3 Data and RND Estimation  

The forecasting capability of option-implied RNDs for one, two, and three months of horizon is  
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investigated. Non-overlapping data
8
 for CL and NG futures and options contracts traded on 

NYMEX is collected from April 2006 to December 2013 and January 2006 to December 2013 

respectively. The settlement
9
 prices on the option expiration days are retrieved from Bloomberg. 

Like Anagnou et al. (2002), only out-of-the-money (OTM) options are considered to obtain the 

RND. The deep OTM options that are out-of-sync with the options at neighboring strikes 

indicate the presence of arbitrage opportunities and hence, are ignored for this study. For CL and 

NG options, strikes are separated by 0.5 and 0.05 points respectively. 

Futures are the underlying for the commodity options, and these contracts have different 

expiration dates. CL futures contracts expire on the third trading day prior to the 25
th

 of the 

month preceding the delivery month whereas CL options contracts expire three trading days 

before the expiration of the underlying CL futures contract. Similarly, NG futures contracts will 

expire three trading days prior to the first day of the delivery month whereas NG options 

contracts expire one trading day before the expiration of the underlying NG futures contract. Due 

to this, one cannot take the observed price of an underlying futures contract as the expected price 

at the expiration of options under   measure. Thus, one needs to calculate synthetic futures 

price (  ) which has same expiry date as of options contracts. It can be seen from the derivation 

in Appendix A that    is given as, 

     (
   

  
)

   

    
                 (11) 

where    is the unobservable spot price which can be approximated by the price of nearby 

futures contract, and    is the date on which underlying futures contract will expire. A synthetic 

futures contract is a hypothetical (non-traded) security whose price represents the mean of the 

option-implied RND. Constant cost of carry up to the expiration date of options, which includes 

net convenience yield and financial cost is considered.  

 

8
Though ensuring that the date at which derivative prices are recorded is never before the previous options 

expiration date reduces the sample size; it makes autocorrelation negligible among the PIT values. For 1-month 

horizon, data for all months are considered. For 2-month horizon, data for only even months is considered. For 3-

month horizon, data for January, April, July, and October is recorded. 

 
9
As intra-day call and put prices may not be synchronous across exercise prices, only settlement prices are reliable 

for empirical studies (Bahra, 1997). 
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Estimation of option-implied RND requires prices of European options. As CL and NG options 

are of American style, it is necessary to “de-Americanize”
10

 them by approximating the residual 

value after excluding the early exercise premium. Like Trolle and Schwartz (2009) and Høg and 

Tsiaras (2011), we obtain lognormal implied volatilities by inverting the Barone-Adesi and 

Whaley (1987) formula. Afterward, the Black-76 formula is used to get European call prices 

from the implied volatilities. These equivalent call options are used to optimize the parameters 

for the RND forecast. As GB2 and 2-MLN RND functions must extrapolate the tails due to the 

unavailability of traded strikes, their tail shapes may differ. Figure 1 shows typical shapes of 

GB2 and 2-MLN option-implied RNDs. However, if there are a reasonably good number of 

liquid options across a wide range of strikes, the choice of a particular method does not matter 

much (Jackwerth, 2004).  

Tables 2 and 3 provide the information about the median and interquartile range (IQR) of the 

number of strikes for CL and NG options considered with time to expiration of one, two, and 

three months respectively for several (Black-76 call) delta intervals. Tails are sufficiently well 

covered. Tables 4 and 5 summarize the RMSE (in $) for call options obtained under GB2 and 2-

MLN parametrization of CL and NG option-implied RNDs respectively. For crude oil, median 

RMSE is up to three times the tick size ($0.01) for CL contract while for natural gas it is up to 

twice the tick size ($0.001) for NG contract. The magnitude of error is well below the typical 

bid-ask spread in the respective futures markets. 2-MLN distribution takes one parameter more 

than GB2 distribution and hence possibly yields lower pricing errors. The small pricing errors 

indicate both the parametric assumptions are well suited for modeling the crude oil and natural 

gas RNDs. 

 

 

 

 

 

 

10
Due to low interest rates (from Jan 2010 onwards), the market traded OTM American options are used as an 

approximation for European options and by using Black-76 model, implied volatility is retrieved. 
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Figure 1: One-month option-implied RND forecasts for crude oil on October 17, 2013. 

 

 

Delta Range 1-month 2-month 3-month 

NOBS 93 47 31 

(0.95,1) 14 (6) 14 (9.5) 13 (9) 

(0.80, 0.95] 14 (5) 19 (7.5) 21 (8.5) 

(0.60, 0.80] 9 (3) 13 (5) 15 (5) 

(0.40, 0.60] 8 (2) 11 (4.5) 13 (4) 

(0.20, 0.40] 9 (3) 13 (4.5) 14 (6.5) 

(0.05, 0.20] 16 (8) 21 (10) 18 (14.5) 

(0,0.05] 13 (5) 14 (7) 11 (11.5) 

       Total Strikes                         84 (31)                           107 (39.5)                       108 (42) 

Table 2: Summary statistics for the dataset of CL option prices (April 2006- December 2013).  

*(IQR in parenthesis) 

NOBS = number of observations. 
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Delta Range 1-month 2-month 3-month 

NOBS 96 48 32 

(0.95,1) 5 (4) 6 (3.25) 6 (4) 

(0.80, 0.95] 7 (5.25) 8 (5) 10 (4.5) 

(0.60, 0.80] 7 (7) 8 (6.5) 10 (6.75) 

(0.40, 0.60] 6 (6.25) 8 (8.25) 10 (7.75) 

(0.20, 0.40] 8.5 (8.25) 10.5 (10) 11 (7) 

(0.05, 0.20] 11 (10) 13 (10) 15.5 (16.5) 

(0,0.05] 7 (5) 9 (11.5) 10.5 (14.25) 

        Total Strikes                       56 (48.5)                        69  (41.5)                           74 (30) 

Table 3: Summary statistics for the dataset of NG option prices (January 2006- December 2013).  

*(IQR in parenthesis) 

NOBS = number of observations. 

 

 

RMSE ($) 1-month 2-month 3-month 

GB2 2-MLN GB2 2-MLN GB2 2-MLN 

Minimum 0.009 0.004 0.009 0.009 0.008 0.007 

Q1 0.016 0.014 0.020 0.019 0.024 0.024 

Q2 (Median) 0.023 0.020 0.025 0.023 0.032 0.030 

Q3 0.034 0.030 0.032 0.029 0.044 0.039 

Maximum 0.138 0.113 0.122 0.066 0.108 0.105 

Table 4: Summary statistics for the root mean square pricing error for crude oil call options with time to expiration 

of one, two, and three months. Tick size for CL contracts is $0.01. 

 

RMSE ($) 1-month 2-month 3-month 

GB2 2-MLN GB2 2-MLN GB2 2-MLN 

Minimum 0.0003 0.0002 0.0002 0.0003 0.0004 0.0004 

Q1 0.0006 0.0006 0.0008 0.0008 0.0009 0.0007 

Q2(Median) 0.0011 0.0012 0.0016 0.0015 0.0019 0.0016 

Q3 0.0026 0.0024 0.0031 0.0027 0.0031 0.0027 

Maximum 0.0125 0.0089 0.0193 0.0106 0.0123 0.0117 

Table 5: Summary statistics for the root mean square pricing error for natural gas call options with time to expiration 

of one, two, and three months. Tick size for NG contracts is $0.001. 
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4  Empirical Results  

4.1  Graphical Analysis 

Non-overlapping option-implied RND forecasts for both the commodities are generated on the 

option expiration dates for the horizon of one, two, and three months. With these, three time 

series (per commodity) of PIT values, {  }, are obtained. For each time series, the period 

between the dates of RND construction and option expiration do not overlap. As a result, PIT 

values can be viewed as random variates with no dependency with each other. This is evident in 

the middle panels ((b) and (e)) of Figures 2 to 7 as autocorrelations are not significantly different 

from zero for all the time-lags. In addition to this, correlograms of {  
 } {  

 }, and {  
 } (not 

shown in this paper) are evaluated, and no significant autocorrelation is found. This indicates that 

parametrized option-implied RND forecasts capture the volatility and skewness dynamics 

operative in the underlying CL and NG futures processes.    

A PIT histogram is a useful tool in detecting biases. For example, a U-shaped histogram suggests 

underestimation of variance or kurtosis whereas a J-shaped histogram signals underestimation in 

the mean of true density forecast (Høg and Tsiaras, 2011). Another graphical tool that helps in 

detecting bias is the empirical CDF of PIT values. If PIT values are uniformly distributed 

between 0 and 1, then its CDF will coincide with the CDF of uniform distribution (represented 

by a straight line in panels (c) and (f) of Figures 2-7). As illustrated by Fackler and King (1990), 

a J-shaped pattern below the red line suggests underestimation of the mean, as most of the PIT 

value fall above 0.5. This usually happens during the normal backwardation when speculators 

capture the risk premium by going long in futures market against the commercial hedgers. An S-

shaped (flat-steep-flat) CDF suggests that PIT values tend to fall in the center which results 

steepening of CDF in the center which indicates an overestimation of variability. This happens 

when option writers seek premium in excess of expected future volatility. 
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Figure 2: Histogram, correlogram, and CDF plots for PIT values obtained from the WTI crude oil option-implied 

RNDs of the one-month forecast horizon. Panel (a), (b), and (c) are obtained under the GB2 assumption while panel 

(d), (e), and (f) are obtained under 2-MLN parameterization of RNDs. It seems there is no major location and 

dispersion bias. (NOBS= 93) 

 

 

Figure 3: Histogram, correlogram, and CDF plots for PIT values obtained from the WTI crude oil option-implied 

RNDs of the two-month forecast horizon. Panel (a), (b), and (c) are obtained under the GB2 assumption while panel 

(d), (e), and (f) are obtained under 2-MLN parameterization of RNDs. It seems there is no major location bias, but 

one cannot rule out underestimation of dispersion. (NOBS=47) 
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Figure 4: Histogram, correlogram, and CDF plots for PIT values obtained from the WTI crude oil option-implied 

RNDs of the three-month forecast horizon. Panel (a), (b), and (c) are obtained under the GB2 assumption while 

panel (d), (e), and (f) are obtained under 2-MLN parameterization of RNDs. It seems there is no major location bias 

but underestimation of dispersion is possible. (NOBS=31) 

 

 

If option-implied RNDs are close to the RWDs, then the PIT histogram is of rectangular shape 

(see dashed lines in the panels (a) and (d) of Figures 2-7). For crude oil, PIT histograms for 

different horizons under GB2 and 2-MLN parametrization do not show any bias in location (see 

panels (a) and (d) in Figures 3-4). Also, there seems no dispersion bias in the density forecast of 

CL futures with one-month horizon. In Figures 3 and 4, PIT histograms for two and three-month 

horizons are relatively less populated in the middle due to which their empirical CDFs are flat in 

the center (panels (c) and (f)). This hints minor underestimation of dispersion. 
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Figure 5: Histogram, correlogram, and CDF plots for PIT values obtained from the Henry Hub natural gas option-

implied RNDs of the one-month forecast horizon. Panel (a), (b), and (c) are obtained under the GB2 assumption 

while panel (d), (e), and (f) are obtained under 2-MLN parameterization of RNDs. It seems there is a minor 

overestimation bias in location but no dispersion bias. 

 

 

Figure 6: Histogram, correlogram, and CDF plots for PIT values obtained from the Henry Hub natural gas option-

implied RNDs of the two-month forecast horizon. Panel (a), (b), and (c) are obtained under the GB2 assumption 

while panel (d), (e), and (f) are obtained under 2-MLN parameterization of RNDs. It seems location is overestimated 

with no major dispersion bias. 
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Figure 7: Histogram, correlogram, and CDF plots for PIT values obtained from the Henry Hub natural gas option-

implied RNDs of the three-month forecast horizon. Panel (a), (b), and (c) are obtained under the GB2 assumption 

while panel (d), (e), and (f) are obtained under 2-MLN parameterization of RNDs. It seems location is overestimated 

with no major dispersion bias. 

 

For natural gas, empirical CDFs are above the straight line which indicates the possibility 

overestimation in the mean of true distribution (see panels (d) and (f) in Figures 5-7). For the 

RNDs with the forecast horizon of two and three months, inverse J-shape is more evident than 

that of 1-month RND forecast. PIT histograms of two and three months are more concentrated 

towards the left (in Figures 6 and 7). However, there are no signs of bias in variability for all the 

three horizons for natural gas RNDs.    

4.2   Statistical Tests 

While graphical analysis focuses on the qualitative aspects and helps in understanding the data, 

formal tests are required to verify the suitability of a model. As noted earlier, if RND forecasts 

are unbiased then PIT values must be independent and distributed as Uniform(0, 1). Diebold et 

al. (1998) suggest that testing these assumptions separately may uncover potential weaknesses of 

the assumed model. 
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Kolmogorov–Smirnov (K–S) test is conducted to test whether the PIT values follow 

Uniform(0,1) distribution under the assumption of no serial correlation. The test statistic in the 

K-S test is the maximum distance vertical between the reference CDF and the empirical CDF. As 

a result, K-S test is more sensitive to discrepancies in the central region of the CDF. For crude oil 

and natural gas, p-values for GB2 and 2-MLN parametrizations for all the three horizons are 

reported in Tables 6(a) and 6(b) respectively. Results suggest that for crude oil, one cannot reject 

the hypothesis of uniform distribution of PIT values for all the forecast horizons at 5% level of 

significance. The same applies to the natural gas PIT values for one-month forecast horizon.  

  p-value 1-month 2-month 3-month 

GB2 0.6346 0.7705 0.3528 

 2-MLN 0.5412 0.4199 0.6762 

NOBS            93             47            31 

 

Table 6(a): Berkowitz test on transformed crude oil                         Table 6(b): Berkowitz test on transformed PIT 

values.                                                                                                   natural gas PIT values.  

 

Berkowitz test on the time series of transformed PIT values. The null hypothesis is       

         (  )    for an AR (1) process described in Eq. (10). The test statistic, LR3, has chi-

squared distribution with three degrees of freedom as the mean ( ), variance (  
 ), and 

autoregressive coefficient ( ) are not restricted under the alternative. The obtained p-values are 

given in Tables 7(a) and 7(b).  

 

  p-value 1-month 2-month 3-month 

GB2 0.4645 0.9710 0.8106 

 2-MLN 0.4895 0.8403 0.9566 

NOBS            93             47            31 

Table 7(a): Berkowitz test on transformed crude oil                   Table 7(b): Berkowitz test on transformed PIT 

values.                                                                                                   natural gas PIT values.  

 (NOBS=number of observations)        

 

 

p-value 1-month 2-month 3-month 

GB2 0.3860 0.0941 0.1076 

2-MLN 0.5405 0.0958 0.1136 

 NOBS         96              48           32 

p-value 1-month 2-month 3-month 

GB2 0.2788 0.3739 0.6043 

2-MLN 0.2892 0.3946 0.6297 

 NOBS         96              48           32 
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Based on the p-values mentioned above, the null hypothesis that the time series of Berkowitz-

transformed PIT values are independent with mean zero and have standard deviation one for all 

the cases cannot be rejected.  Since Berkowitz test alone is not enough to address the normality 

of transformed PIT values (  ) or innovations (  ), it must be complemented by Jarque-Bera (J-

B) test (Dowd, 2004).  The null hypothesis of J-B test is of zero skewness and, excess kurtosis. 

The J-B test statistic is asymptotically chi-squared with two degrees of freedom. The innovations 

are subjected to the J-B test (Dowd, 2004) to determine whether our RND parametrization has 

correctly accounted for the excess kurtosis. For crude oil and natural gas, results of J-B tests are 

summarized in Tables 8(a) and 8(b) respectively. This determines whether our RND 

parametrization has correctly accounted for the excess kurtosis. 

  p-value 1-month 2-month 3-month 

GB2 0.2466 0.4582 0.5655 

 2-MLN 0.2437 0.5093 0.6373 

NOBS            93             47            31 

Table 8(a): J-B test on crude     

oil innovations                                                                       Table 8(b): J-B test on natural gas innovations       

(NOBS=number of observations)      

Above results suggest that for both the commodities, the hypothesis of zero skewness and excess 

kurtosis of the distribution of innovations cannot be rejected at 5% significance level for all the 

three horizons. When combined with the results of Berkowitz test, we conclude that the time 

series of transformed PIT values are iid  (   ). Hence, option-implied RND forecasts for crude 

oil and natural gas futures are unbiasedand not significantly different from the true density 

forecasts or RWDs.  

5  Summary and Conclusion 

Option prices are a rich source of information about the distribution of the underlying asset price 

at a future time instant. Typically, futures and options prices include risk premia which may 

cause bias in this forward-looking information. Under   measure, risk premia exists due to the 

factors, such as systematic risk and hedging pressure, whose effect cannot be hedged. Risk 

premia affects the cost of hedging, and knowledge of expected premia will help a firm in taking 

p-value 1-month 2-month 3-month 

GB2 0.4761 0.7874 0.7874 

2-MLN 0.4463 0.6907 0.8244 

 NOBS         96              48           32 
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informed decision about its hedging program. Three phenomena that have affected the risk 

bearing ability of the traders in recent times are the financialization of commodity futures 

markets that started in the early 2000s, emergence of the options markets (both public and 

private) as the new venue for hedging, and the decline in activity of OTC commodity linked 

products (mainly swaps) due to the Dodd-Frank Wall Street Reform and Consumer Protection 

Act (which was signed into law in 2010). These changes motivate us to evaluate the quality of 

density forecasts implied from the commodity futures and options prices. 

In this paper, post-financialization data from 2006 to 2013 is used to identify whether the option-

implied RNDs of crude oil and natural gas are contaminated by risk premia or in other words, 

whether the RND forecasts for these energy commodities are specified correctly over the entire 

support region. The non-overlapping option-implied RNDs are modeled as GB2 and 2-MLN 

density functions. Several statistical tests have failed to reject the hypothesis that the RND 

forecasts for these commodities are unbiased which indicates that there are no statistically 

significant risk premia in the derivative prices of these energy commodities. Our result is at 

variance with the finding of Høg and Tsiaras (2011) as these authors found biasedness in the 

RND density forecasts for the crude oil for the pre-financialization period of 1994-2006. This 

indicates that the risk capital deployed in energy markets is no longer skewed. We feel the three 

changes mentioned in the above paragraph have affected the risk premia in energy markets. 

However, to pinpoint actual reasons and their significance requires further investigation, which is 

beyond the scope of the current work. 
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Appendix A: Synthetic Futures Prices 

While working on the non-overlapping data, settlement prices of options contracts with times to 

expiration of one, two, and three months are recorded at the expiry date ( ) of nearby option 

contracts. The underlying for expiring nearby options is the nearby futures contract, which will 

expire after three business days in case of WTI crude oil, and after one business day in case of 

Henry Hub Natural Gas. The price of nearby futures contract is used as a proxy for the 

unobservable spot price,   . The relation between the price of futures contract and underlying 

commodity spot price is given as, 

   
    

 (    )                                                                                                                      (A1) 

where   is the annual cost of carry, i.e., the net of convenience benefits, financial cost, and 

storage cost incurred to buy and store a unit of physical commodity for one year.     is the 

expiration date of futures contract which is the underlying of options getting expired at date  . 

Rearranging the terms in Eq. (A1) will yield, 

  
 

    
  

   

  
                                                                                                                         (A2) 

Due to the specification of contracts,     , one need to find the fair price of synthetic futures 

which is a hypothetical contract, expiring with the options, i.e., on date    . The no-arbitrage 

price of synthetic futures is, 

By using Eq. (A2) in Eq. (A3) will yield, 
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