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Abstract 

Forward curve movements, particularly of industrial and energy commodities, suggests that 

futures price do not move in tandem with the spot price, and not all futures contracts move in 

the same direction. We incorporate these subtleties into our model with parsimony. This 

article offers a new approach to value commodity derivatives by using string shock. We use it 

to perturb the term structure of future convenience yield as if every futures contract has its 

source of risk. The no-arbitrage condition on the drift of future convenience yield and closed-

form formula for the European call option written on a futures contract is derived. Our model 

has separate volatility and correlation functions that ensure easier parameterization and 

calibration to market data. We compare absolute and relative option pricing errors of our 

model with the two factor Schwartz (1997) model for 440 trading days. It is found that the 

new string shock based model has better performance than the Schwarz’s model regarding 

having lesser pricing errors.  
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1. Introduction 

Santa-Clara and Sornette (SS) (2001) used string shocks for modeling the term structure of 

forward interest rate. Earlier implementation of a similar concept in the context of forward 

rate modeling can be found in Kennedy (1994, 1997), Goldstein (2000) and Kimmel (2004). 

Sornette (1998) takes the entire forward interest rate curve as a stochastic string and gives a 

general equation based on which interest rate derivatives can be priced and hedged. Longstaff 

et al. (2001) used the string-market model to study caps and swaptions, which combines the 

notion of string shock framework of SS (2001) and the market-model framework of 

Jamshidian (1997) and Brace et al. (1997). Han (2007) discusses a string-market model of 

interest rates incorporating both stochastic volatility and correlation. 

This article presents a new arbitrage-free model to value commodity contingent claims when 

the future convenience yield is a random field driven by a string shock. In continuous time 

setting, we visualize the entire term structure of continuously compounded instantaneous 

future net convenience yield (hereafter, future convenience yield) as a piece of string under 

the influence of an infinite number of shocks acting across its length such that entire term 

structure remains continuous. These shocks are correlated with one another and are of 

different intensity. Collectively these shocks are referred as a String Shock. To the best of our 

knowledge, this is the first attempt to use string shock to model the dynamics of future 

convenience yield. 

The seemingly less correlated movement between the short-dated and long-dated contracts is 

not uncommon and motivates us to use string shock which permits realistic correlation 

between futures contracts of different maturities. We decomposed the forward curve 

movement into level shock and higher order shocks. The former is due to the fluctuations in 

the spot price which forces forward curve to shift parallel while the latter is due to the 
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fluctuations in future convenience yields and distorts the shape of the forward curve. Another 

way to achieve realistic correlations and complex shapes of forward curve is to use a large 

number of state variables along with multidimensional Wiener process. Unfortunately, such a 

model lacks parsimony for which parameters are hard to estimate. A key feature of our 

approach from the practitioner’s perspective is the separation of volatility and correlation 

functions. This allows independent parametrization of these functions and thus, calibration of 

the model to the observed prices becomes easier and yields realistic parameter values. This 

feature is absent from the earlier term structure models of future convenience yield such as 

Miltersen and Schwarz (MS) (1998) where authors used a multidimensional Wiener process 

to model the dynamics of spot price, future convenience yield, and forward rate. In such a 

case, the possible correlation among these three processes can be achieved only by specifying 

volatility functions in terms of correlation.  

In commodities literature, term structure modeling has become more sophisticated during the 

last three decades. Spot price models like Gabillon (1991), Schwartz (1997), Cortazar and 

Schwartz (2003) to name a few, endogenously determine the futures price under partial 

equilibrium. The model determined futures prices are not in line with the observed forward 

curve. The whole process is contingent on the delicate task of estimating market price of state 

variable’s risk which is model dependent. Even increasing the number of state variables may 

not yield a desirable fit to the observed forward curve. It is not very clear whether the 

introduction of a third factor other than spot price and convenience yield improves the 

performance of model or merely causes over-parameterization (Paschke and Prokopczuk, 

2010). 

The difficulties associated with spot price models can be avoided by using forward curve 

models which take the given initial forward curve and models its evolution under equivalent 

martingale measure, such as Cortazar and Schwartz (1994), Clewlow and Strickland (1999a, 
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1999b), and Crosby (2008a). This approach is based on no-arbitrage principle and motivated 

by the work of Heath et al. (1992; hereafter HJM) in the context of forward rate modeling. 

There is no need to estimate market price of non-tradable state variable’s risk from the 

historical data as it is included in the observed futures prices. This kind of modeling is more 

amenable to derivative pricing. Various researchers identify a number of risk factors which 

dictate the majority of term structure movements. The suitable number of risk factors for a 

model depends on the commodity. For example, by applying Principal Component Analysis 

(PCA) to the historical futures price data, Cortazar and Schwartz (1994) found that only three 

factors are needed to explain 98% of daily return variance in copper futures while 

Koekebakkerand and Ollmar (2005) found more than ten factors are required to explain 95% 

of the movements in the term structure of electricity futures. The inclusion of more risk 

factors in a model increases its performance but also makes it more complex and non-

parsimonious. Hence a trade-off is required. Also, fitting the initial term structure restricts the 

forward curve from taking any shape in the future, which is not desirable. 

In the context of crude oil, by using Gibson and Schwartz (1990) model, Carmona and 

Ludkovski (2004) found sharp spikes in the time series plot of implied spot convenience yield 

obtained from futures contracts of different maturities. They also conclude that the implied 

spot convenience yields obtained by using 3-month and 12- month futures contracts are very 

different from each other. These authors suggested that each futures contract seems to have 

its source of risk and observed inconsistencies could be tackled by using the model based on 

the term structure of future convenience yield, pioneered by MS (1998). Their work is the 

hybrid of traditional spot price models and forward curve models as they specify the 

dynamics of spot price process and model a stochastic term structure of forward rates and 

convenience yields based on HJM framework. With no-arbitrage assumption, authors 

obtained the dynamics of forwards and futures prices and provide a general framework for 
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pricing options on them. MS (1998) introduced the notion of forward convenience yield and 

future convenience yield. The former is the forward value of the flow of benefits (per unit 

commodity per unit time) that accrues to the owner of the physical commodity at the contract 

maturity but not to the owner of the forward contract whereas the latter has no 

straightforward economic interpretation due to the continuous resettlement inflows and 

outflows of the futures contract. However, once interest rates are assumed to be deterministic, 

there remains no difference between the two, and the notion of the forward convenience yield 

applies to the future convenience yield (Miltersen, 2003). Björk and Landen (2002) extended 

the work of MS (1998) to the point process. The literature is sparse on the term structure 

modeling of convenience yield. Our model belongs to this category of models and is close in 

spirit to MS (1998). Like other forward curve models, our model does not require the 

estimation of the market price of any risk as it is embedded in observed derivative prices. 

Commodity spot prices seem to exhibit mean reversion (Bessembinder et al., 1995; Casassus 

and Collin-Dufresne, 2005). Under the risk-neutral probability measure, standard no-arbitrage 

argument determines the drift of spot price and futures convenience yield processes.  The 

drift of spot price process depends (negatively) on the level of spot convenience yield. If one 

makes sure that spot price and spot convenience yield are always positively correlated, then 

the spot price becomes a mean reverting process. For option pricing, seasonal effects can be 

captured by allowing the spot price and future convenience yield volatilities to be 

parametrized as sinusoidal functions. 

The paper is organized as follows. After the introduction, Section 2 reviews the string shock 

and its qualifying conditions given by SS (2001). We will also discuss a specific string shock, 

Ornstein-Uhlenbeck (O-U) Sheet, which we will use later in this paper. In Section 3 we 

present the model and derive the general no-arbitrage condition for future convenience yield 

dynamics driven by the string shock. In Section 4 we obtain a closed-form solution for a call 
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option on commodity futures. In Section 5, parametrization of volatility and correlation 

functions is discussed. In Section 6, we discuss the crude oil implied volatility data, and 

calibrate the proposed model and the benchmark two-factor model of Schwartz (1997) 

(hereafter referred as 2FS-97 model). In Section 7, we obtain in-sample, and out-of-sample 

mean absolute pricing errors and relative root mean square errors with respect to fair call 

prices (based on Bloomberg volatility surface) and conduct nonparametric hypothesis tests 

for the individual parts (short, middle, long segment) and the entire forward curve. Section 8 

concludes. Three appendices contain proofs. 

2. String Shock 

 

Sornette (1998) in the context of modeling forward interest rates proposed a stochastic string 

shock model where the forward rate curve is treated as a string where its length and 

transverse deformations are identified with the time-to-maturity x and the forward rate at a 

given time t. In this framework, the time increment of the forward rate curve is parameterized 

as    (   )   (   )    (   )   (   ) where  (   ) is a random field continuous in   

and  , and both  (   ) and  (   ) are a priori arbitrary functions of  (   ). Under the no-

arbitrage condition this leads to 

   (   )  (  (   )   (   ))    (   )   (   )  

where  (   )    (   )(∫  (   )  (     )
 

 
  ),   (   )   

  (   )

  
 and  

  (      )     [   (   )    (    )]  

 (t, x) is taken to be the solution of a second order SPDE given as:  

  (   )   (   )    (   )   (   )    (   )   (   )    (   )  (   )

   (   )  (   )    (   ) (   )   (   )  
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where   (   ) are functions,    and     are the first and second order partial derivatives of Z 

respectively and   is the random “source” term. In addition,  (t,x) must satisfy the following 

conditions in order to qualify as a string shock : (a)  (   ) is continuous in   at all times  , 

and in   for all  , (b) time increments in string shocks has zero expected drift i.e. E(dtZ(t,x)) = 

0 for all x, (c) variance of time increments in string shocks is equal to the time elapsed i.e. 

var(dtZ(t,x)) = dt for all x, and (d) correlation of increments  is not dependent on   i.e. 

corr(dtZ(t,x), dtZ(t,y)) is independent of  . The last three conditions ensure that string shocks 

are Markovian. Intuitively,   (   )  can be thought of as a two dimensional analogue of the 

standard Wiener process  ( ) the difference being that  (   ) depends both on   and   

while  ( ) depends only on t. SS (2001) mentioned several kinds of string shocks capable of 

producing varied correlation structures across the forward rate curve parsimoniously. One can 

choose a string shock based on the desired correlation structure and the complexity one can 

manage. In this paper, we work with O-U sheet which meets the above conditions and is thus 

suitable for modeling the dynamics of future convenience yield. 

O–U sheet (see Khoshnevisan, 2009, p. 9) is an extension of the O–U process (see Karlin and 

Taylor, 1981, p. 170). In our case, we consider   to be a two parameter O–U random field 

that is constructed from the two parameter Brownian sheet   as: 

 (   )       (      )  

In general, a   parameter Brownian sheet   with parameter vector   of n dimensions has 

the given covariance function, 

   [ (  )  (  )]  ∏    
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where    (         ). Hence,   is a Gaussian process which generalizes standard 

Brownian motion to a two parameter random field. SS (2001) provides the following 

alternative representation of the O-U sheet:  

 (   )      ∫ ∫  (   )
 

   

   

   

       

where   is the two dimensional white noise characterized by the covariance function, 

   [ (   )  (   )]   (   ) (   )  

where   is the Dirac Delta function. The correlation function of the string shock process   is 

given as, 

 (   )     [   (   )    (   )]     |   |  

It is important to note that correlation is a function of times of maturity only as   does not 

enter in it. Correlation is strong when times to maturity   and   are close to each other and 

decreases exponentially as the gap between them increases.  

3. The Model 

 

We made the following assumptions about the model: (l) Spot price, and future convenience 

yield follows diffusion process (2) Interest rates are non-random
1
 (3) Spot price volatility, 

and future convenience yield volatility is deterministic (4) Correlation between the 

innovations of spot price, and future convenience yield is deterministic (5) Markets are 

arbitrage-free, and (6) Markets are frictionless, complete, and continuous trading is possible  

 

1
For crude oil and copper, Schwartz (1997) found that parameters associated with spot price and spot 

convenience yield processes are robust to the specification of interest rate process. Miltersen (2003) states that 

the cost of complexity due to the use of stochastic interest rates in the model is much bigger than the gain 

associated with it. 
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with zero bid–ask spreads. We also assume a filtered probability space, (    {  }   ), 

where   is the risk neutral probability measure. We consider two progressively measurable 

stochastic processes- spot price, and future convenience yield.  The dynamics of the spot 

price  , under   is taken as: 

 ( )   ( )  ∫   ( ) ( )
 

   
   ∫   ( ) ( )

 

   
  ( ),    (1) 

moreover, the dynamics of continuously compounded future convenience yield,  , under   is: 

 (   )   (   )  ∫   (   )
 

   
   ∫   (   )  

 

   
 (   ).                       (2) 

 Let for each fixed x, Z (t,x) be denoted as   ( ). The cross variation between the stochastic 

processes W and   , 〈    〉, is assumed to satisfy:  

 〈    〉   (   )   where  (   )  [    ]            .          (3) 

Further, cross variation of the string shocks satisfy (condition (d) for qualified strings): 

 〈     〉   (   )   where  (   )  [    ]       .      (4) 

The diffusion terms,   ( ) and   (   ), are deterministic real functions and satisfy regularity 

conditions so that SDEs have a strong solution. Let  (   ) be the time   price of a risk-free 

zero coupon bond with face value of one and maturity date s which is also the maturity date 

of futures the contract. Mathematically,  (   )    ∫  ( )  
 
   , where   is non-stochastic 

short interest rate. The futures price is related to the futures convenience yield, and the price 

of the zero-coupon bond by the relation (MS, 1998): 

 (   )  
 ( )

 (   )
 

 ∫  (   )  
   
              (5) 

No-arbitrage conditions on the stated SDEs specifies the drift terms   ( ) and   (   ). The 

drift of spot price process under   is: 

  ( )   ( )   (   ),          (6) 
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where  (   ) is spot convenience yield. Eq. (6) indicates that mean reversion in spot price is 

induced by the spot convenience yield. The more positive the value of  (   ), faster the 

mean reversion is (Miltersen, 2003). Let us introduce a process   such that: 

 (   )   ∫  (   )  
   

   
.          (7) 

Process   can be represented by the SDE (see Appendix A for details).:  

 (   )   (   )  ∫ ( (     )  ∫   (   )
   

   

  )
 

   

   

 ∫ ∫   (   )       (   )
   

   

 

   
. 

                        (8) 

  is a continuous semimartingale (see Appendix B for proof).  

Define  (   )    (   ). Since   is a   -function, applying Ito’s lemma for continuous 

semimartingale (see Protter, 2004, p. 81) gives: 

 (   )   (   )  ∫  (   )
 

 
   (   )  

 

 
∫  (   ) 〈 〉 

 

 
 ,    (9) 

where 〈 〉  ∫   (   )
   

   
∫   (   ) (   )        

   

   
, is the quadratic variation of  . As 

Y is a semimartingale, it forms the largest class of stochastic processes with respect to which 

Ito integral can be defined. Writing Eq. (8) and Eq. (9) in differential form and a little algebra 

yields:  

   (   )

 (   )
 ( (     )  ∫   (   )

   

   

   
 

 
∫   (   )

   

   

∫   (   ) (   )     
   

   

)   

 ∫   (   )
   

   
      (   ). 

                      (10) 



         W. P. No. 2017-07-02                                   Page 12 

As  (   )  
 ( )

 (   )
 (   ), using Ito’s product rule and Theorem 29 (see Protter, 2004, p. 75) 

we get:  

   (   )

 (   )
 ( (     )  ∫   (   )

   

   
   

 

 
∫   (   )

   

   
∫   (   ) (   )  

   

   
    

               (   )   ( ) ∫   (   )  (   )  
   

   
)     ( )  ( )  

∫   (   )   
   

   
   (   ). 

           (11) 

As the futures price process   is a continuous local martingale with zero drift
2
 under  -

measure, we have:  

 (     )  ∫   (   )
   

   
   

 

 
∫   (   )

   

   
∫   (   ) (   )  

   

   
    

           (   )    ( ) ∫   (   ) (   )  
   

   
                   (12) 

Differentiating Eq. (12) with respect to       gives:  

  (   )  
  (   )

  
   (   ) (∫   (   ) (   )

 

   
      ( )  (   )).             (13) 

Eq. (13) gives the drift of the future convenience yield process under no-arbitrage condition. 

The dynamics of the futures convenience yield under no-arbitrage is given as: 

   (   )  

 [
  (   )

  
   (   ) (∫   (   ) (   )

 

   
      (   )  ( ))]       (   )   (   )      (14)  

Under  -measure, dynamics of futures price process reduces to: 

   (   )

 (   )
   ( )  ( )  ∫   (   )  

   

   
   (   )                 (15) 

2
Futures price process may have non-zero drift under real world probability measure,  , owing to the presence 

of risk premium. This has been confirmed by several authors- Fama and French (1987), Bessembinder (1992), 

Moosa and Al-Loughani (1994), Sadorsky (2002), Arouri et al. (2013), to name a few. 
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A key implication of Eq. (15) is that not all futures prices move in the same direction which 

is typical of energy commodities.  The movement in a forward curve over the time can be 

attributed to two uncertainties
3
- level shock and higher order shocks. The former is due to 

spot price fluctuation and is responsible for inducing a parallel shift while the latter causes 

higher order distortions like steeping or flattening of the slope, and variations in curvature. 

Higher order shocks are the aggregation of string shock modulated by the future convenience 

yield volatility function taking different values at different times to maturity  . As maturity 

date,  , increases, and if second term starts dominating the first term then one observes the 

disconnect between short term futures contracts (or commodity spot price) and long term 

futures contracts.  

The quadratic variation of futures price process is (see Appendix C for proof): 

〈 〉  ∫   ( )  (   ) 
 

   

    ∫   ( ) (   ) 
 

   

∫   (   ) (   )     
   

   

 ∫  (   ) ∫   (   )∫   (   ) (   )  
   

   

  
   

   

   
 

   

  

           (16) 

 

By using Ito’s lemma (see Protter, 2004, p. 81) on    (   ) we get: 

 (   )   (   )    [∫   ( )  ( )
 

   

 ∫ ∫   (   )   (   )   
   

   

 

   

 
 

 
∫ (  ( )  ∫   (   )

   

   

∫   (   ) (   )     
   

   

 

   

    ( )∫   (   ) (   )  
   

   

)  ]   

                      (17) 

 

 

3
Szymanowska et al. (2014) identify two risk premia responsible for expected futures returns under the real 

world probability measure, i.e., spot premium and term premia. Former is due to the spot price risk (or level 

shocks) while latter exists due to convenience yield risks (or higher order shocks).  
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4. Pricing European Future Options 

 

In this section, we develop a formula for European call option with exercise price  , expiry 

date   written on a commodity futures contract with expiry date   (   ) on date zero.  Let 

  be a stochastic process given as: 

   ∫   ( )  ( )
 

   
 ∫ ∫   (   )      (   ) 

   

   

 

   
               (18) 

Note that   is a martingale with     . Further, variance of    is: 

   

   [  
 ]  ∫ (  ( )     ( )∫   (   ) (   )

   

   

                                                    
 

   

 ∫   (   )
   

   

∫   (   )  (   )     
   

   

)                                              

                                                       (19) 

 

   
 is the  -day volatility of the instantaneous return on underlying futures contract. The 

above result is obtained after straight forward calculations using the facts that (a) if  ( ) is a 

continuous, square integrable martingale such that  ( )   , then,    〈 〉 is also a 

martingale and thus  [  ]   [〈 〉]  and (b) if  ( ) is another continuous, square 

integrable martingale such that  ( )   , then,    〈   〉 is also a martingale (see 

Grigoriu, 2002, p. 180). One can obtain call option price as: 

 (   )   (   )[ (   ) (  )    (  )]    

where    
  

 (   )

 
  

 

 
    

 

    

  and     
  

 (   )

 
  

 

 
    

 

    

                    (20) 

To see the result given in Eq. (20), we note that by using Eq. (18) one can write Eq. (17) 

concisely as: 

 (   )   (   )    (   
 

 
    

 )  ,                                           (21) 
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Using Eq. (21) in the expression,  (   )  [( (   )   )   (   )  ], where   (   )   is an 

indicator function that equals to 1 if condition given in subscript is true and zero otherwise, 

will yield, 

 (   )   (   ) (   ) [   {   
 

 
   

 }  
 (   )    {   

 
 
    

 }  
]

  (   )   [  
 (   )    {   

 
 
    

 }  
] 

           =   (   )    (   )  (say)     

Writing       
  , where     (   ), we get:  

  (   )   (   ) (   )  
 
 
    

 

 [     

  
  

 
 (   )

  
 
 
    

 

   

] 

               (   ) (   ) (
  

 (   )

 
  

 

 
    

 

   

)     

and 

  (   )   (   )  (
  

 (   )

 
  

 

 
    

 

   

)     

The value of  (   ) is thus obtained.  

5. Parametrization 

 

In this section, we will parameterize volatility and correlation functions. We observed that the 

term structure of implied volatility of WTI crude oil futures is backwarded during the 

observation period of Oct 30, 2014 to Jul 29, 2016. This implies future convenience yield for 

longer dated contract is less volatile than its shorter dated counterpart, assuming deterministic 

interest rates. This requirement is satisfied by using the time-homogeneous specification of 
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Miltersen (2003, p. 54-55) where spot price and future convenience yield volatilities are 

given as: 

  ( )   ̂   ( ), where    ( )           (    )               (22) 

  (   )   ̂   ( ) 
     , where    ( )           (    )                         (23) 

The sinusoidal functions    and    are used to model seasonality in the instantaneous 

volatility of spot price process and future convenience yield process respectively. Since no 

significant seasonal patterns
4 

are documented for crude oil, we assume   =     . The 

correlation among future convenience yields corresponding to different maturities depends on 

the type of string shock used for modeling. We will operationalize string shock model by 

using the O-U sheet as the noise source for future convenience yield process. Correlation 

function when O-U sheet act as a noise source over future convenience yields is given as, 

 (   )     |   | , where                                           (24) 

Under  -measure, the drift of spot price process is solely determined by standard no-

arbitrage argument. A possible way in which mean reversion can be induced in spot price 

process is through the positive correlation between spot price and spot convenience yield 

(Miltersen, 2003). The correlation function of time increments of spot price and future 

convenience yield processes can be parameterized as: 

 (   )   ̂    ,   where          ̂  (   )                 (25) 

Note that  (   ) is the correlation between spot price and spot convenience yield.  

 

4
Unlike agricultural and other energy commodities, crude oil show insignificant seasonality. Borovkova and 

Geman (2006) posit that seasonal premium in crude oil futures is negligible for all calendar months.  
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Parametrization in Eq. (25) takes care of less correlated movements in the long dated futures 

and the spot price. This parameterization is consistent with the framework of Routledge et. al. 

(2000) according to which correlation between the spot price and convenience yield falls to 

zero as the horizon lengthens. We take  (   )   ̂ as a constant for calibration purpose. Now 

Eq. (19) can be further solved for  -day volatility of the instantaneous return on futures 

contract, given as: 

   
 [( ̂ 

   ̂ 
 

    

 (     )
)    ̂  ̂  ̂ (

 

   
 

  (   )(   )    (   ) 

(   ) 
)

  ̂ 
 

      

 (     )
(
      

  
)   ̂ 

 
  (   ) 

     
(
 (   )   

   
)

  ̂ 
 
  (   ) 

     
(
 (   )   

   
)]

 
 ⁄

  

          (26) 

We will use Eq. (26) for calibration in the next section. 

6. Data and Calibration  

The contracts traded on NYMEX are one of the world's most liquid commodity futures 

options. As these options are of American style, one cannot use the market prices directly to 

calibrate the model
5
. Moreover, options at certain strikes and maturities are not liquid. To 

circumvent these difficulties we use implied volatility surface
6
 obtained from Bloomberg.  

This volatility surface has many desirable features such as it is smooth, close to the quoted 

market data, admits fast interpolation, and has low market microstructure noise. Along with  

 

5
Other possible way is to invert an analytic approximation of American option to recover implied volatility. For 

crude oil, Trolle and Schwartz (2009) used Barone-Adesi and Whaley (1987) approximation to recover 

lognormal implied volatility and then priced European option by using the Black (1976) formula. 

6
Bloomberg follows data-driven methodology based on smoothing splines for the construction of implied 

volatility surface. Options are de-Americanized to infer the correct implied volatility. Only information from 

liquid options is considered. For illiquid strikes and maturities, other sources of information are used, like 

settlement prices of the previous day. 
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the futures prices, data for implied volatility and strike price corresponding to 50 delta at the 

money (ATM) region for various liquid maturities was obtained from Oct 30, 2014 to Jul 29, 

2016 (440 trading days). By using Black-76 formula, we get the European call option prices. 

For future use, we refer to these prices as fair values. We calibrate string shock model and the 

2FS-97 on 10
th

, 20
th

, and 30
th

 of every month. In the case of a market holiday or when the 

month has less than 30 days, we calibrate using the data of the next trading day. Thus, for 

each month we have three non-overlapping windows of 10-11 calendar days. In this study, 

we have 63 such non-overlapping windows. Every window has one in-sample day (Day 0) 

and up to seven out-of-the-sample days (Days 1-7) depending on the number of trading 

holidays in a window. Depending on the option liquidity around 50 delta ATM region, on 

Day-0 a window can carry the information of 18 to 33 hypothetical options of maturities 

ranging from 22 days to 6.5 years.  

6.1. String Shock model calibration 

We estimate six parameters   ( ̂   ̂         ̂) for string shock model by minimizing the 

squared relative pricing error loss function, 

   
 

 
∑(

  ( )    

  
)

  

   

  

 

Subject to the constraints:  ̂   ̂         , and    ̂   , where   is the number of 

option contracts of different maturities in a window,    is the fair price of the call option with 

the i
th

 maturity and   ( ) is the price given by string shock model for the same option. To 

minimize the above loss function we have used Differential Evolution
7
 (DE) algorithm (Storn  

7
DE is a heuristic approach that optimizes a problem by iteratively trying to improve a candidate solution. It can 

work with a loss function that is not differentiable, nonlinear, multidimensional, or have many local minima and 

constraints.  
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and Price, 1997) as implemented in DEoptim package in R software (Mullen et al. 2011). 

Figure 1 illustrates the fitting of term structure of volatility for string shock model on May 

02, 2016, which is also a typical fit for other calibration days. Without loss of generality, we 

have considered zero interest rates, i.e.,  (   )    for the rest of this section. 

6.2. 2FS-97 model calibration 

MS (1998) showed how to value options under the three factor model of Schwartz (1997) 

with suitable parametrization (see pg. 44-46). One can obtain option price for 2FS-97 model 

by making the volatility of interest rates zero, i.e.,     . As we have assumed deterministic 

interest rates, option prices obtained under 2FS-97 model will be the right benchmark for the 

evaluation of string shock model. The call option formula on futures prices stated in Eq. (16) 

of MS (1998) for 2FS-97 model using our notation is: 

 

     (   ) ( (   ) (
  

 (   )

 
 

  

 

 
)    (

  
 (   )

 
 

  

 

 
))                (27) 

where    ∫ ‖ ̃ ( )  ∫  ̃ (   )
 

   
  ‖

  

   
                              (28) 
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Figure 1: Fitting of the volatilities implied by string shock model to the empirical Black-76 volatility term structure on May 02, 2016 

 

We calibrate the 2FS-97 model on Day 0 of 63 observation windows similarly as we did it for 

our proposed model. The four estimated 2FS-97 model parameters are obtained by 

minimizing   ⃑⃑  where    ( ̌   ̌        ) subject to the constraints: 

 ̌   ̌       and 0 <      . 

Like before the minimization is carried out using the DEoptim package in R software. A 

description of estimated parameters for both the models is given in Table 1(a) and (b). 

 

Parameter 

Estimates 
              

Median (Q2) 0.434 0.509 0.419 0.446 0.219 0.641 

IQR (Q3-Q1) 0.127 0.430 0.521 1.028 0.374 0.166 

Table 1(a): Summary statistics of estimated String shock model parameters (Number of observations: 63) 

 

 

Parameter 

Estimates 
 ̌   ̌         

Median (Q2) 0.434 0.352 0.665 0.905 

IQR (Q3-Q1) 0.127 0.260 0.580 0.140 

Table 1(b): Summary statistics of estimated 2FS-97 model parameters (Number of observations: 63) 
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7. Results 

We estimated 63 sets of parameters for our string shock model and 2FS-97 model and 

calculated the in-sample and out-of-sample call prices for 63 observation windows. Based on 

the fair values of call options and prices given by the two models we obtain the mean 

absolute pricing error for both the models. Summary statistics presented in Table 2, where we 

report in-sample and out-of-sample mean absolute pricing error averaged over the entire term 

structure for both the models, indicates that the string shock model is found to be more 

accurate than the 2FS-97 model over the study period. The plot of the errors from the two 

models over the observation windows (see Figure2) also suggests a superior performance of 

string shock model. In general, the margin of excess mean absolute price error fades as we 

move further away from calibration date (Day-0) which suggests a need for frequent 

calibration to back out the model parameters.  

 

 

 

 

Number of 

Observations 

Mean Absolute Pricing Error ($) 

Minimum 1
st
 Quartile Median 3

rd
 Quartile Maximum 

String 2FS-97 String 2FS-97 String 2FS-97 String 2FS-97 String 2FS-97 

Day-0  63 0.0237 0.0255 0.0366 0.0505 0.0484 0.0800 0.0785 0.1035 0.1919 0.3339 

Day-1 63 0.0367 0.0398 0.0750 0.0847 0.1182 0.1319 0.1752 0.1829 0.3306 0.4200 

Day-2 63 0.0428 0.0439 0.0949 0.1090 0.1323 0.1584 0.2080 0.2204 0.6635 0.6625 

Day-3 63 0.0439 0.0440 0.0982 0.1284 0.1698 0.2011 0.2761 0.2966 0.9762 0.9937 

Day-4 63 0.0403 0.0453 0.1400 0.1479 0.2241 0.2631 0.3504 0.4271 1.2718 1.2909 

Day-5 60 0.0553 0.0465 0.1616 0.1613 0.2548 0.2765 0.4237 0.4509 1.2982 1.3185 

Day-6 44 0.0545 0.0564 0.1323 0.1318 0.2546 0.2676 0.4866 0.4998 1.2849 1.2850 

Day-7 21 0.0505 0.0788 0.2171 0.2114 0.4377 0.4381 0.6162 0.6147 1.4149 1.4150 

Table 2: Summary statistics of in-sample and out-of-sample mean absolute option pricing errors  

 

The degree of accuracy is not very clear when option pricing error in absolute term is 

considered. For example, a pricing error of $0.05 on an option with a fair price of $2 is more 

significant than an error of $0.10 if the fair price of the option is $5. Hence, we use relative 

root mean square error (rRMSE) given as: 
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        √ 

 
∑ (

    ( )     

    
)
 

 
      

where d=0 indicates in sample day (Day 0), and   {       } indicates out-of-sample day. 

To scrutinize which segment of term structure of call option is priced more (or less) 

accurately we divide it into three parts, i.e., options having maturity of less than 6 months 

(short segment), options with maturity in between 6-18 months (middle segment), and 

options with maturity more than 18 months (long segment). We obtain in-sample and out-of- 

sample RMSEs for these three segments and for the entire term structure for both the models. 

Summary statistics of Tables 3(a)-(c) suggest that string shock model does less mispricing 

than the 2FS-97 model for all segments up to Day-2. For both the models, mispricing 

increases with the maturity of options.  However, for entire term error dispersion for string 

shock model is lesser than 2FS-97 model for all the days (see Table 3(d)).  

 

Figure 2: Topmost: Mean absolute in sample pricing errors (Oct 30, 2014 to Jul 20, 2016; 63 observations); 

Middle: Mean absolute out-of-sample pricing errors on Day-4 (Nov 05, 2014 to Jul 26, 2016; 63 observations); 

Bottom: Mean absolute out-of-sample pricing errors on Day-7 (Nov 19, 2014 to Jul 29, 2016; 21 observations) 
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Sample 

 

Number of 

Observations 

Relative Root Mean Square Pricing Error (%)- Short Segment 

Minimum 1
st
 Quartile Median 3

rd
 Quartile Maximum 

String 2FS-97 String 2FS-97 String 2FS-97 String 2FS-97 String 2FS-97 

Day-0  63 0.44 0.49 0.89 1.06 1.25 2.30 2.61 3.60 7.15 17.80 

Day-1 63 0.37 0.59 2.19 2.46 3.16 3.74 4.21 5.76 9.03 23.78 

Day-2 63 0.73 0.80 2.34 2.81 3.81 4.24 5.74 7.13 13.54 24.51 

Day-3 63 0.50 0.38 2.85 3.72 4.89 5.56 7.98 8.96 18.90 20.16 

Day-4 63 0.42 0.60 3.13 3.99 6.07 6.53 10.13 10.55 19.89 21.91 

Day-5 60 1.13 1.29 3.69 3.93 6.76 6.29 9.53 10.94 20.37 20.32 

Day-6 44 1.81 2.21 4.13 4.30 6.29 5.83 9.56 9.70 25.64 25.59 

Day-7 21 1.43 1.43 4.89 5.04 6.88 6.26 10.22 10.17 28.24 28.20 

Table 3(a): Summary Statistics of in sample (Day-0) and out-of-sample (Days 1-7) pricing errors for short term 

options (up to 6 months) 

 

 

 

Sample 

 

Number of 

Observations 

Relative Root Mean Square Pricing Error (%)- Middle Segment 

Minimum 1
st
 Quartile Median 3

rd
 Quartile Maximum 

String 2FS-97 String 2FS-97 String 2FS-97 String 2FS-97 String 2FS-97 

Day-0  63 0.45 0.44 0.73 0.89 0.94 1.24 1.69 2.12 3.91 5.33 

Day-1 63 0.56 0.55 1.33 1.60 2.13 2.31 3.29 3.51 6.64 9.78 

Day-2 63 0.65 0.66 1.79 1.98 2.66 2.70 4.25 4.35 11.11 11.27 

Day-3 63 0.54 0.55 1.65 1.97 3.10 3.28 5.40 5.45 14.50 13.64 

Day-4 63 0.55 0.56 2.31 2.23 3.64 3.95 7.40 7.40 18.23 17.40 

Day-5 60 0.40 0.40 2.67 2.73 5.22 5.01 8.49 8.18 18.07 17.23 

Day-6 44 0.67 0.99 2.06 2.34 4.99 4.98 9.10 9.13 21.22 21.26 

Day-7 21 0.67 1.30 4.28 4.26 8.27 8.14 13.06 13.13 22.38 22.41 

Table 3(b): Summary statistics of in sample (Day-0) and out-of-sample (Days 1-7) pricing errors for medium 

term options (6-18 months) 

 

 

Sample 

 

 

Number of 

Observations 

Relative Root Mean Square Pricing Error (%)- Long Segment 

Minimum 1
st
 Quartile Median 3

rd
 Quartile Maximum 

String 2FS-97 String 2FS-97 String 2FS-97 String 2FS-97 String 2FS-97 

Day-0  63 0.38 0.38 0.83 1.11 1.15 1.54 1.61 2.12 3.46 7.50 

Day-1 63 0.34 0.43 1.44 1.74 2.05 2.32 3.35 3.57 7.91 7.92 

Day-2 63 0.64 0.67 1.58 2.01 2.67 2.63 3.66 3.91 12.25 11.35 

Day-3 63 0.76 0.77 1.97 2.32 3.49 3.87 4.60 4.83 16.30 15.07 

Day-4 63 0.78 0.77 2.52 2.63 4.44 4.49 5.68 6.35 21.37 20.18 

Day-5 60 0.67 0.30 3.01 3.04 4.76 4.93 7.56 7.66 20.64 20.61 

Day-6 44 0.97 1.04 2.80 2.82 4.58 4.96 8.33 8.15 20.67 19.16 

Day-7 21 0.94 1.32 3.02 3.00 7.35 7.46 11.57 11.90 18.81 22.80 

Table 3(c): Summary statistics of in sample (Day-0) and out-of-sample (Days 1-7) pricing errors for long term 

options (above 18 months) 
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Sample 

 

Number of 

Observations 

Relative Root Mean Square Pricing Error (%)- Entire Term 

Minimum 1
st
 Quartile Median 3

rd
 Quartile Maximum 

String 2FS-97 String 2FS-97 String 2FS-97 String 2FS-97 String 2FS-97 

Day-0  63 0.60 0.69 0.88 1.13 1.20 1.78 1.89 2.44 4.82 9.67 

Day-1 63 1.08 1.15 1.93 2.12 2.67 2.86 3.56 3.94 6.72 12.75 

Day-2 63 1.06 1.08 2.25 2.46 3.29 3.57 4.32 4.92 11.84 13.93 

Day-3 63 1.05 1.30 2.46 3.13 4.12 4.39 5.92 6.80 14.65 15.52 

Day-4 63 0.95 1.07 3.10 3.29 5.21 5.79 7.72 7.94 18.12 18.86 

Day-5 60 1.37 1.47 3.98 4.11 5.49 6.02 8.17 8.47 18.20 18.75 

Day-6 44 1.57 1.98 3.72 3.79 5.31 5.66 9.73 9.78 21.35 21.35 

Day-7 21 1.62 3.11 4.46 4.27 8.16 8.18 12.28 12.34 22.65 22.65 

Table 3(d): Summary statistics of in sample (Day-0) and out-of-sample (Days 1-7) pricing errors for the entire 

term structure of 50 delta call prices 

To gather statistical evidence that on average, pricing error under string shock model is less 

than 2FS-97 model a hypothesis test is conducted. As neither rRMSE samples nor their 

difference exhibit normality, we resort to nonparametric Wilcoxon signed rank test. Null and 

alternate hypothesis are given as: 

H0: mean of rRMSEstring      mean of rRMSE2FS-97 

HA: mean of rRMSEstring     mean of rRMSE2FS-97 

There is strong indication that that string shock model outperforms the 2FS-97 model (see 

Table 4). Except for “Day-5” in middle segment and “Day-7” in short segment, one can reject 

the null hypothesis at 10% level of significance in all the other cases. For the long segment 

and the entire segment, the null hypothesis can be rejected at 5% level of significance.  

P-value Number of 

Observations 

Short 

Segment 

Middle 

Segment 

Long 

Segment 

Entire 

Segment 

 

 

 

 

Day-0 63 0.00002 <10
-5

 <10
-5

 <10
-5

 

Day-1 63 0.0029 0.0005 0.0004 <10
-5

 

Day-2 63 0.0049 0.0012 0.0006 <10
-5

 

Day-3 63 0.0777* 0.0009 0.0002 <10
-5

 

Day-4 63 0.0002 0.0025 0.0005 <10
-5

 

Day-5 60 0.0111 0.1684** 0.0021 <10
-5

 

Day-6 44 0.0118 0.0629* 0.0020 <10
-5

 

Day-7 21 0.3166** 0.0555* 0.0274 0.0351 

 
Table 4: P-values of 32 Wilcoxon signed rank tests. Values without stars indicate rejection of null hypothesis at 

5% level of significance. 

*Null hypothesis can be rejected in favor of alternative hypothesis at 10% significance level 

**Failed to reject the Null hypothesis in favor of alternative hypothesis even at 10% significance level 
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In general, option formula for two and three factor Schwartz (1997) model is a special case of 

MS (1998) in which authors use the same vector Wiener process to model the dynamics of 

the spot price, future convenience yield, and forward rates. To obtain a realistic correlation 

between these processes, it becomes necessary to make volatility a function of correlation 

coefficients (see MS, 1998, p. 44, Eq. (27) and (28)). Calibration of such a model may yield 

unrealistic
8
 parameter values, i.e., optimum solution may occur outside permitted parameter 

space.  

8. Conclusion 

 

In this article, we present a new approach to price options on commodity futures when a 

string shock perturbs the term structure of future convenience yield. Fluctuation at each point 

on the term structure is governed by a correlation structure which depends on the string shock 

used for modeling. We decomposed the forward curve dynamics into a level shift and higher 

order distortions. Former is due to the spot price movement while latter is the net effect of 

perturbation due to future convenience yields. In the back end of the forward curve, higher 

order distortions dominate the level shift.  This is empirically consistent with the observed 

low correlation between commodity spot and long-term futures contracts. Using string shock 

instead of (multidimensional) Wiener process allows much-needed separation of volatility 

and correlation functions. This gives a modeler freedom to choose appropriate volatility and 

correlation functions. Model calibration is relatively easy and yields realistic values for the 

parameters. This aspect is missing in the earlier term structure models. 

 

8
To keep pricing error as low as possible, we accept the model parameters corresponding to          during 

Jan 11- Mar 01, 2016 (six Day-0 days). Due to excessive crude oil inventory build-up around this time 

(Preciado, 2016), we feel such a high value is implausible
 
during contango. Routledge et. al. (2000) posits 

correlation between spot price and spot convenience yield depends on inventory level, and is higher in 

backwardation than in contango.  
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We have obtained the no-arbitrage drift for the future convenience yield under the risk neutral 

measure. This is useful for pricing complex derivatives by simulation. We derived an explicit 

closed-form solution for a European style commodity futures option for a general qualified 

string stock. Finally, using O-U sheet as a noise source, we obtained option-based estimates 

for the proposed model parameters and showed that it leads to a lower pricing error when 

compared to benchmark 2FS-97 model. As calibration process is similar for both the models, 

the new proposed model is better specified than the 2FS-97 model. 
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Appendix A.  SDE for process   

 

By definition, 
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By interchanging the integrals we get, 
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Note that both double integrals have deterministic integrands. As the first double integral 

does not have a stochastic integrator, integrals can be interchanged using the Fubini’s 

theorem. One can show that ∫ ∫   (   )      
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   (   )   are identical (Bueno-Guerrero et al., 2015, p. 234). Splitting 

the above integrals will yield 
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 we get: 
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Interchanging the order of integration of double integrals (inside parenthesis only) 
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 ∫ ∫   (   )      

   

   

 (   )
 

   

 

By using Eq. (2) the term in parenthesis can be reduced as  

  (   )  ∫  (   )
 

     

   ∫ ∫   (   )
   

   

     
 

   

 ∫ ∫   (   )      

   

   

 (   )
 

   

 

By putting        and        in ∫  (   )
 

     
     we get∫  (     )

 

   
  . This 

gives us SDE for   in desired form 

 (   )   (   )  ∫ ( (     )  ∫   (   )
   

   

  )
 

   

  

 ∫ ∫   (   )       (   )
   

   

 

   

 

 

Appendix B.    is a continuous semimartingale 
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  is a continuous time real-valued process on the filtered probability space (    {  }   ). 

The SDE (8) can be written as 

 (   )   (   )        
 

where    ∫ ( (     )  ∫   (   )
   

   
  )

 

   
   , and 

   
 ∫ ∫   (   )       (   )

   

   

 

   

 

Bichteler-Dellacherie Theorem states that a semimartingale can be decomposed into the sum 

of a local martingale and a finite variation process (see Protter, 2004, p. 146). For   to be a 

continuous semimartingale, we have to show that   is a continuous process with paths of 

finite variation and   is a continuous local martingale. 

 (   ) is   -measurable.    is continuous and adapted with initial value zero. It is evident 

that    is differentiable in interval [   ] and its derivative is integrable in Riemann sense. The 

total variation of   is 

    ∫ |  
 |

 

   

   

 ∫ | (     )  ∫   (   )
   

   

  |
 

   

   

Since    is continuous and differentiable in [   ] as a function of   , its slope will always be 

finite which makes the integrand a positive finite quantity. Thus, total variation will be 

bounded as     [   ) and thus,    is a process of finite variation. 

Now consider    
 ∫ ∫   (   )       (   )

   

   

 

   
. Note that, 
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 (   
|   )   [∫ ∫   (   )      (   )

   

   

  

   

|   ]

  [∫ ∫   (   )      (   )
   

   

 

    

|   ] 

, for         . 

Let   ̌ and   ̌ be a sequence of finite random partitions of time windows [    ] with 

   
 ̌  

    (  ̌)   , and [      ] with    
 ̌  

    (  ̌)    respectively. Discretizing the 

first and second integral we get, 

  (   
|   )  ∫ ∫   (   )   (   )  

   

   

  

   

  [    
 ̌  ̌  

∑   ∑   (     )

           ̌

(       )( (       )

            ̌

  (     )) |   ] 

By Dominated Convergence Theorem, 

     
    

 ̌  ̌  
∑   

            ̌

( ∑   (     )

           ̌

(       )( (       )

  (     ))|   ) 

     
    

 ̌  ̌  
∑   

            ̌

[ ( ∑   (     )

           ̌

(       )( (       )

  (     ))|   
) |    ] 

Again using Dominated Convergence Theorem we have, 
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 ̌  ̌  
∑   

            ̌

[ ∑  

           ̌

(  (     )(       )( (       )

  (     ))|   
)|    ] 

     
    

 ̌  ̌  
∑   

            ̌

[ ∑ (       )  (     ) 

           ̌

(( (       )

  (     ))|   
) |    ] 

  (   
|   )      

 

Hence,    
 is a local martingale. This proves   is a continuous semimartingale process.  

 

Appendix C.  Quadratic variation of futures price process,    

 

The SDE for futures price dynamics, Eq. (15) can be written in integral form as,  

 (   )    (   )     
    

 

, where    
 ∫   ( ) (   )

 

   
  ( ) and    

 ∫  (   ) ∫   (   )     (   )
   

   

 

   
 

Since   ( ) is a finite valued deterministic function and futures price process   is assumed to 

be continuous, bounded and progressive we have that    
 is progressively measurable, such 

that ∫ [  ( ) (   )]   
 

   
   , for all  . With Wiener process as integrator,    

 is a 

continuous local martingale starting at  . Its quadratic variation is 

〈  〉  ∫   ( )  (   ) 
 

   

   

   
 can be written as,     

 ∫  (   )    
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 is a continuous local martingale (see Appendix B for proof) and the integrand   has all 

the required properties which makes    
 also a continuous local martingale with zero initial 

value. Its quadratic variation is given as 

〈  〉  ∫  (   ) 
 

   

 〈  〉  ∫  (   ) ∫   (   )∫   (   ) (   )  
   

   

  
   

   

   
 

   

 

The quadratic covariation of    and    is, 

〈     〉  〈∫   ( ) (   )
 

   

  ( ) ∫  (   )    

 

   

〉 

 ∫   ( ) (   ) 
 

   

 〈    〉  

By using Eq. (3) we obtain, 

〈     〉  ∫   ( ) (   ) 
 

   

∫   (   ) (   )     
   

   

 

Finally by using 〈 〉  〈  〉   〈     〉  〈  〉 , the quadratic variation of futures price 

process is, 

〈 〉  ∫   ( )  (   ) 
 

   

    ∫   ( ) (   ) 
 

   

∫   (   ) (   )     
   

   

 ∫  (   ) ∫   (   )∫   (   ) (   )  
   

   

  
   

   

   
 

   

 

 

 


