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Abstract

The prediction of the destination location at the time of pickup
is an important problem with potential for substantial impact on the
efficiency of a GPS enabled taxi service. While this problem has been
explored earlier in the batch data set-up, we propose in this paper new
solutions in the streaming data set-up. We examine four incremental
learning methods using a Damped window model namely, Multivariate
multiple regression, Spherical-spherical regression, Randomized spher-
ical K-NN regression and an Ensemble of these methods for their ef-
fectiveness in solving the destination prediction problem. The perfor-
mance of these methods on several large datasets are evaluated using
suitably chosen metrics and they were also compared with some other
existing methods. The Multivariate multiple regression method and
the Ensemble of the three methods are found to be the two best per-
formers. The next pickup location problem is also considered and the
aforementioned methods are examined for their suitability using real
world datasets. As in the case of destination prediction problem, here
also we find that the Multivariate multiple regression method and the
Ensemble of the three methods gives better performance than the rest.

Keywords: Directional Data Analysis, Incremental Learning, Intelli-

gent Transportation Systems, Multivariate Multiple Regression, Slid-
ing Windows, Streaming Data
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1 Introduction

In recent times, across the world we have seen a spurt in the usage of GPS-
based taxi (interchangeably also called cabs in this paper) services viz. Uber,
Lyft, Ola, Didi etc. For GPS enabled taxis it is possible to continuously
collect the geo-spatial location data for every trip. These recordings are
often referred to as GPS traces. This is rich source of data which can give
insights on passenger demand and their mobility patterns. The GPS traces
generated by a vehicle is a rich source of streaming data. Streaming data
is often subject to concept drift as discussed in Section below. Some
scenarios where this concept drift can be clearly visualized are in case of an
accident or some other event leading to congestion in an usually not so busy
conference center or an unexpected weather change such as heavy rain, storm
or snow leading to blockage of some routes (Moreira-Matias et al., 2016b)).

Geo-spatial data streams have many applications in the passenger trans-
portation industry. The intelligent transportation systems literature is re-
plete with various applications viz. traffic monitoring (Herring et al., [2010)),
passenger finding (Veloso et al.,|2011]), vacant taxi finding(Phithakkitnukoon
et al.,|2010)), hotspots identification (Chang et al., 2010), trajectory mapping
(Liu et al., 2012)), etc. where GPS traces have been instrumental in finding
interesting insights (see (Chen! (2014) for more details).

Generally, some of the most important questions for a transport dispatch
system as elucidated in Moreira-Matias et al.| (2016b) are (a) What's the des-
tination passengers are traveling to i.e. where the vehicle would be vacant?,
(b) Travel Time Estimation i.e. how long the vehicle would be occupied?
and (c) What is the demand at a particular location in the time interval ¢?
(Liu et al.l 2009, Mendes-Moreira et al. 2012, Moreira-Matias et al., 2013a,
2014). The answers to the above questions give insights on the transporta-
tion system properties and the passenger mobility. The knowledge of a trip
destination before the passenger boards the vehicle can help the transport
dispatch system in its operational planning. Also, the knowledge of the next
pickup location of a vehicle can help the transport dispatch system in guid-
ing the taxi drivers to find their next passengers in a systematic and efficient
manner. These problems are well explored in the literature but mostly in the
batch learning set-up (Gandhil 2015, [Veloso et al., 2011)) (see section |3| for
more details). But analyzing the GPS trace data in streaming data context
enables a transport dispatch system to take decisions in real time.
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In this paper, we are interested in the real time destination / next pickup
location prediction problem. The analysis of GPS data streams of taxis or
any public transport for real time prediction opens up new research oppor-
tunities for improving the reliability of a transport dispatch system such as
introduction of real time decision models to support “operational control”
(Moreira-Matias et al., 2016a). Eberlein et al| (1999) gives more details
about the various models to solve real-time transit operational control prob-
lems using real-time vehicle location information.

Real-time location prediction can have other interesting applications for
the transport dispatch system such as in vehicle allocation for the future rides
(Powell, 1986, |1987)), diversion in real time (Ichoua et al., | 2000), ride-sharing
(Tran, 2015)) and reduction of the total idle time (Miao et al., [2015)). Powell
(1986)) is a key reference on the dynamic vehicle allocation problem which
has seen many extensions and applications over the years. In recent years, we
have seen that several on-demand transportation services such as Uber (i.e.
UberPool), Ola (i.e. OLA Share), etc. provide ride-sharing as well. [Tran
(2015) worked on the real-time ride-sharing schedule and dispatch problem
by using the location information of the passengers who requested a pickup
and the location of drivers in the near-by region. [Ichoua et al.[ (2000) worked
on diversion issues in real-time vehicle dispatching system. Miao et al.| (2015)
worked on the taxi dispatch problem using real-time sensor information to
reduce the taxi idle driving time. Overall, real-time location prediction helps
the transport dispatch system in increasing the reliability and efficiency of
their services which finally leads to an increase in profits.

The cost of collection of mobility trace data in real-time is decreasing
with the advancement of technology and nowadays, the availability of such
data is increasing. Also, it is expected that in near future we would be easily
able to collect real-time mobility trace data from multiple sources such as
taxis, buses, individual smart-phones, etc. (Moreira-Matias et al., [2016b)
The analysis of these data streams offer a great opportunity for development
of new methodologies that have applications in the area of Intelligent Trans-
portation Systems as mentioned above and this is our primary motivation for
exploring newer methods for solving the destination / next pickup prediction
problem.

In this paper we discuss four new methods which to the best of our
knowledge have never been applied for solving the destination / next-pickup
location prediction problem in a streaming data context. One of these meth-
ods has its origin in the literature on directional data analysis, another one
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is an adaptation of a popular machine learning algorithm for analysis of
streaming spherical data, the third one is an adaptation of a multivariate
statistics method which has been previously implemented only with static
(a.k.a. batch) data, and finally we build an ensemble using the above men-
tioned three methods. We give details of these methods in Section 5} An
extensive performance study of these methods is carried out with five real
world datasets and recommendation for use is also given. Our contribution
is not only in development of new approaches for the real-time destination /
next-pickup location prediction problem but also in development of a frame-
work for selection of suitable methods for different scenarios.

The paper is structured as follows. Section [2| gives a backgound of vari-
ous concepts that we will be using in this paper. This is followed by a brief
review of literature in Section [3l Section [l describes the Destination Predic-
tion problem statement. Section [5| discusses the methodology and Section
[0] describes the datasets used in this paper. Section [7] discusses the results
of the various experiments conducted. Section [J] presents the Next Pickup
Prediction problem. Finally, Section [10| concludes the paper.

2 Background

In this section, we give a brief overview of streaming data, Spherical data
analysis, K-nearest neighbor regression, Multivariate Multiple Regression
and Ensemble learning framework. In Section [2.1] we discuss the concept of
streaming data and the data analytic challenges emanating from the same.
In Section [2.2], we have given a brief overview of Spherical data analysis with
particular reference to spherical spherical regression (see Section . Then
we discuss KNN regression, Multivariate multiple regression and Ensemble

methods in Sections [2.4] 2.5 and [2.6] respectively.

2.1 Streaming Data

In recent years development of various devices has made collection of con-
tinuously flowing data possible. Advances in data storage technology and
plummeting cost of data storage has enabled organizations to store such
data for possible future use. Streaming data (a.k.a. Data Streams) can be
defined as continuous flow of data from a source that arrives at a very high
speed (Aggarwal, 2007). The input stream s1, s2, s3, ... arrives in a sequen-
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tial order. In some situations there may be multiple streams of input data
(Muthukrishnan, 2003). Some of the major sources of streaming data are op-
erational monitoring using sensors, online advertising, customer clickstreams,
GPS data stream, mobile voice and data traffic, social networks and machine
to machine communication. The growing scope of Internet of things (IoT)
is likely to expand streaming data sources and volumes greatly in the com-
ing years. Streaming data analysis can benefit decision making in multiple
domains viz. web mining, network monitoring, high frequency finance and
remote monitoring of machines (Ellis, 2014).

The traditional methods of analysis with static data assumes that the
full data is available for analysis and multiple passes over the full dataset
are possible. However both these assumptions are not true in the streaming
data context. At no point of time we can have the full data and multiple
passes over the dataset are not possible. Thus the well known methods of
data analysis for static data does not apply directly to streaming data. Some
of the major challenges of analyzing streaming data identified by |Aggarwal
(2007),Gamal (2010) and [Babcock et al.| (2002)) are (a) the data needs to be
processed in one pass since multiple passes are not feasible, (b) the distri-
bution of the input streaming data may change i.e. it may evolve over time
(Concept Drift) and algorithms for streaming data need to be designed to
take care of this and (c) high speed of the streaming data with concept drift
requires that the analysis is done within a very short time for that to be
of any use in decision making. Thus, Stream data analysis algorithms are
required to update the model parameters frequently, discard the older data
points according to some predefined scheme and should be able to deal with
concept drift.

2.2 Spherical Data

Directional data analysis is an area of statistics in which the observations
are in the form of directions. These directions can either be in two, three
or higher dimensions. Directional data in two dimensions can be viewed as
points on a unit circle and hence such type of data are often referred to as
circular data. Similarly, directional data in three dimensions can be viewed
as points on an unit sphere and hence the name spherical data (Jammala-
madaka and Senguptal, 2001, Mardia and Juppl, 2000). Such data arise in a
variety of contexts such as in geological studies of paleomagnetism in rocks
(Mardia and Jupp, 2000), wildlife tracking using GPS data (Urbano and

W.P. No. 2017-03-02 Page No. 6,



Inis & [NDLA

Cagnacci, 2014)), understanding structure of proteins in bioinformatics (Old-
field and Hubbard, [1994]), etc.

Let vT = (vi,v9,v3) be a unit random vector that is taking values on the
surface of a unit sphere S? centred at the origin. This vector v can be viewed
as a vector comprising direction cosines i.e. v = (cos a, cos 3, cosy) where
a, f and 7 are the angles made by v with the X, Y and Z axes in three
dimensional space respectively. Analysis of spherical data is substantially
different from that of conventional linear data. Even the basic descriptive
analysis of spherical data is different from that of trivariate linear data. For
example the spherical mean of n spherical data points x4, ..., z, is To = H%H
and not simply & which is the case with trivariate linear data(Mardia and
Jupp, [2000). A detailed account of statistical analysis of spherical data can be
found in [Fisher et al| (1993) and Mardia and Jupp (2000)). All the currently
available methods are with static data i.e. in the batch learning setting.
These methods cannot be applied directly when working with streaming data.
Adaptation of these methods to the streaming data context has not been
previously reported in the literature to the best of our knowledge.

2.3 Spherical-Spherical Regression

Spherical-spherical regression is an extension of the linear regression model-
ing idea to the case when both predictor and response variables are spherical.
The objective is to describe the relationship between the predictor and re-
sponse variables when both are spherical random variables i.e. these take
values on a unit sphere Mardia and Jupp| (2000). Some practical applica-
tions of this method that have been reported in different areas are: plate
tectonic data analysis (Chang), 1986|) and spatial rock magnetism data anal-
ysis (Stephens, [1979) in geology, Vectorcardiogram data analysis in medicine
(Downs, 2003)), orientation relationship data analysis in Crystallography in
(Mackenzie,, 1957)).
The simplest spherical-spherical regression model introduced by |Chang
(1986) is of the form
y=Az (1)

where z,y € S? , and A € SO(3) where SO(3) is the set of all 3x 3 orthogonal
matrices with det(A) = 1. The matrix A is unknown and has to be estimated
from the data. This method is also known as the “Rigid rotation” method. In
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Section [5.2]of this paper, we have extended this method to the streaming data
scenario using a Damped window model and have also applied the same on
a real-world problem arising in intelligent transportation system operations
as discussed in Section [7l

2.4 KNN Regression

The k nearest neighbor (k- NN) algorithm is an extension of the nearest
neighbor rule developed by |Cover and Hart| (1967) which is a simple non
parametric classification technique. The basic idea behind classification using
the nearest neighbor rule is that a new observation (7) is classified based
on the category of its nearest neighbor which is identified using a distance
metric d. Formally if there are n training pairs (z1,6:),. .., (¥, 8,) where z;
is of dimension p and 6; indicates the class category of z;. Now suppose that
T is a test pattern whose class category is not known. Now, if

(T, xy) = min{d(T,z;)} (2)

where j = 1,...,n, then T is assigned class 6, (Cover and Hart|, 1967, [Murty
and Devi, 2011).

It has been theoretically proved by (Cover and Hart| (1967) that when large
samples are involved, the asymptotic error rate of the one nearest neighbor
rule is bounded above by twice the bayes error rate. When k > 1 for a new
observation (7) k-NN algorithm creates a set Sy consisting of k observations
from the training set which are nearest to 7 as per the distance metric d.
The class assignment for 7 can be done using a ’voting’ technique i.e. the
class category that occurs most frequently in St is assigned to 7. Ties may
be broken by choosing one of the tied classes at random. This same method
can be used in a regression set-up by predicting the value of the response
for a given test instance by averaging the values of the response for the
observations in S7. This method is referred to as k-NN Regression (Navot
et al., 2006).

The choice of the distance metric can greatly affect the performance of
the KNN model and the choice of the same should be taken in cognizance of
the application in hand. The most commonly used distance metric is the Eu-
clidean distance. Alternative distance metrics that have been considered in
the literature include Manhattan distance, Chebychev distance, Mahalanobis
distance and many more (Weinberger and Saul, |2009). In Section of this
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paper we have used the spherical distance as the distance metric. In this
context it may be mentioned that |Lunga and Ersoy| (2010) have explored
the idea of spherical nearest neighbor classification using a different distance
metric.

Moreover, the K-NN method is computationally very expensive for large
sized training datasets. Since the whole of training dataset is being used for
finding similarity with the test instance, so for n training patterns with p
dimensions, the time complexity of the K-NN algorithm is O(np) (Kusner
2014)). So one way to increase the computational speed is to reduce the
size of the training dataset without impacting the accuracy of the algorithm
and also by using efficient algorithms (Murty and Devi, 2011). Some meth-
ods for dealing with the slow computational speed of the K-NN algorithm
are the branch and bound technique (Fukunaga and Narendral, 1975 Miclet]
and M.Dabouz, [1983), the cube algorithm (Yunckl [1976)), the projection al-
gorithm (Friedman et al. [1975), ordered partitions (Kim and Park] [1936))
and cluster based trees (Zhang and Srihari, [2004). Sometimes even special-
ized data structures like k-d trees (Shakhnarovich et al., 2005) and hashing
methods (Papadopoulos and Manolopoulos, 2005) are used to increase the
computation speed. Also, there have been some works on online / incre-
mental K-NN learners for handling large data streams (Bosnic et al., |2011]
Forster et al., [2010)). In section we propose a modified k-NN regression
method that is much faster than conventional k-NN regression and have an
almost similar predictive accuracy.

2.5 Multivariate Multiple Regression

The Multivariate multiple regression model can be seen as a generalization
of the multiple linear regression model where instead of a single response
variable, we have several response variables. We model the relationship be-
tween multiple responses (Yi,...,Y,,) and the predictors (z1,...,z,). Each
of these responses Y7, ...,Y,, is assumed to follow its own regression model
as shown in Equation [3| (Johnson and Wichern, 2007)). It may be noted that
it is possible for the multiple responses (Y7,...,Y,) to be correlated among
themselves.
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Yi = Bo + Buxi + ...+ Buixp, + e
Yo = Bo2 + Biaw1 + ... 4 Bz, + €

(3)

Ym :60m+51m$1 +'--+ﬂpm$p+€m

where, the ¢ = [e1,...,€,] has E(¢) = 0 and Var(e) = . So, the error
terms associated with different responses may be correlated (Johnson and
Wichern, 2007)).

Let, [0, ®i1, - .., x;p) be the values of the predictor or independent vari-
ables for the i'* trial. And let, Y;' = [V}, Yjs,..., Y] be the response or
target variables and let e;r = [€i1, €2, - - -, €m)]. The multivariate multiple re-

gression model as described in |Johnson and Wichern| (2007)) is given below.

Yy = X B+ € (4)
(nxm)  (nx(p+1)) ((p+1)xm)  (nxm)
where, X is the design matrix, ( € : = |ep) i€ .- €| and E(ep = 0)
nxm
and Cov (e, €) = 0w, where i,k =1,...,m. Simply put, the j* response

Y|;) follows the linear regression model
Yijp = X0y +ep, J=1,...,m (5)

where Cov(ef;)) = 01 (Johnson and Wichern| 2007)). And the least squares
estimate is as follows.

B=(X'X)'X'Y (6)

2.6 Ensemble Methods

Ensemble learning is a widely used technique in machine learning and statis-
tics and has been used in both classification and regression problems. The
intuition behind using the ensemble method is that often (though not guar-
anteed) it performs better than the individual base models. The goal of the
ensemble learning approach is to combine various methods for improving the
predictions for out-of-sample data. The basic idea here is to take the predic-
tions from the various alternative models and combine them (Hastie et al.,

- II——
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2009). Over the years various technique have been developed for creating en-
sembles e.g- Bagging(Breiman, [1996)), Boosting (Freund and Schapire, {1997,
Schapire, 1990), Random Forests (Breiman, [2001)) and Stacking (Wolpert,
1992).

In this paper, we focus on multi-model ensembles. The simplest way to
create such an ensemble is to use a variety of regression models on the training
data and then combine their predictions using an averaging scheme. Among
the various combination methods, the simplest to implement is the averaging
rule since it needs no prior training (Hjort and Claesken) 2003, |Kotsiantis and
Pintelas|, 2005). The other combination techniques include weighted average
and Bayesian Model Averaging (BMA) (Hjort and Claesken, 2003).

2.7 Stochastic Dominance

While comparing predictive performance of the different methods considered
in this paper we have used the notion of stochastic dominance of the error
distributions. We briefly introduce the concept below. For more details the
reader may look at Davidson| (2008).

Let P and @ be two distributions having cumulative distribution func-
tions (CDFs) Fp and Fg respectively. The distribution @ is said to be
stochastically dominant over distribution P at first order, if for every z,
Fp(x) > Fg(x) (Davidson, 2008)). Graphically the stochastic dominance of
the first order can be visualized by examining the plots of the CDFs for the
two distributions P and @) together. If P is stochastically dominant over @)
of the first order then the CDF of P is to the right of that of () and they do
not cross each other. Since in many situations, as in this paper, the CDF's
P and @) are not known they need to be estimated from the data. Since
by the Dvoretzky-Kiefer-Wolfowitz inequality (Wasserman), 2010, p. 99) we
know that the empirical cumulative distribution function (ECDF') approxi-
mates the CDF very well when sample size is large, we use the ECDF for
graphically checking the stochastic dominance of first order in this paper in

Sections [7], [§ and [0

3 Related Work

Analysis of GPS trace data is a challenging problem with lots of applications
in the transportation domain. Most of the currently available methods use

L ——
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batch learning methods (Gambs and Killijian, 2012, Krumm), 2008, Krumm|
and Horvitz, 2006, |Li et al., [2012, [Simmons et al., [2006). It’s only recently,
that some papers have taken into account the streaming nature of GPS trace
data where online and incremental learning methods for solving some specific
problems have been proposed (Lam et al., 2015, Moreira-Matias et al., 2013b,
2016b;, [Sun et al., 2012)).

Predicting destination from partial trajectories is a problem that has
tremendous potential of real world applications. Several solutions of this
problem from different perspectives has been proposed in the literature us-
ing Origin-Destination (OD) matrix (Barceld et al., 2010, [Jin et al. 2008,
Moreira-Matias et al. [2016b| Park et al, 2014, [Yue et al., 2009, [Zhang et al.,
2011)), Bayesian inference (Hazelton| 2008 [Parry and Hazelton) 2012)), Sup-
port Vector Machine (SVM) (Li et al.,[2011)), Clustering (Chang et al. [2010],
Li et al 2012), Mobility markov chains (Gambs and Killijian) 2012), Opti-
mization (Miao et al., [2015), ensemble learning (Lam et al.,[2015) and many
more. In this section, we have given a brief literature review of some of the
works done in this field.

Krumm and Horvitz (2006 implemented a method termed predestination
that predicts where the driver is going on the go. A Bayesian inference
model is built that uses driving behavior data along with GPS data. Other
papers that have used Bayesian inference for solving similar problems are
Marmasse and Schmandt| (2002) and |Liao et al. (2004). Gambs and Killijian|
(2012)) discusses the next place prediction problem using the information of
coordinates of visited places applying the n-MMC (Mobility Markov Chain)
algorithm. n-MMC is a modified version of the Mobility Markov Chain model
where they keep a track of n-previous locations visited.

Simmons et al.| (2006) used a hidden markov model (HMM) for prediction
of route and intended destination. Markov models have also been used in
other studies for making short term route predictions (Krumm, [2008). Xue
proposed the sub-trajectory synthesis method for destination
prediction. Chen et al.| (2011) worked on extracting route pattern from user’s
personal trajectory data using a probabilistic model which they termed as
“Continuous Route Pattern Mining (CRPM)”.

In recent years, some work has been reported in the literature which
have given emphasis to the streaming nature of the GPS traces data and
has shifted the focus towards real time or near real time prediction.
Matias et al. (2013b)) worked on predicting the passenger demand in a stream-
ing data context and proposed a ensemble method with sliding window tech-

L OI——
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nique. Sun et al.| (2012) worked on taxi trajectory anomaly detection in real
time from GPS data streams. A nearest neighbor technique (NNT) was pro-
posed by Tiesyte and Jensen| (2008]), where they used euclidean distance as a
distance measure for travel time prediction of vehicles. Moreira-Matias et al.
(2016a) worked on eliminating bus bunching in real time using an online
learning approach.

The destination prediction problem in streaming data context has not
been explored much in the literature. Lam et al| (2015) worked on real
time prediction of destination and travel time estimation from given partial
trajectories using an ensemble learning model, while Persad-Maharaj et al.
(2008) used a geometric representation approach to predict an individual‘s
travel path and destination in real time. In |Lam et al| (2015), for the des-
tination prediction problem, the authors first used Kernel regression (KR)
for feature extraction and then the latitude and the longitude of the destina-
tion was obtained independently by using Random Forests (RF). They also
experimented with Support Vector Regression (SVR).

The next pickup prediction problem is well explored in the literature in
the batch learning set-up. The next pickup prediction problem is a problem
of “Operational dynamics” which can be grouped under Passenger/ Taxi-
Finding Strategies as in |Castro et al| (2013). A common approach taken
by most of the papers in the literature for these kind of problems is to first
extracting hotspots i.e. high demand zones using cluster analysis and then
perform further analysis on these clusters (Chang et al., 2008, [Liu et al.,
2010, [Palma et al., 2008). |Li et al. (2011]) used L1 Norm SVM to determine
what course of action the driver should take using both time and location
information. |Palma et al. (2008)) used the density based clustering algorithm
(DBSCAN) for speed based clustering of trajectories.

Hu et al.|(2012) worked on a tree based recommendation system that helps
taxi drivers in selecting suitable routes for picking up passengers. [Veloso et al.
(2011)) explored the relationship between pickup and drop-off locations and
analyze the behavior between the previous drop-off location and the following
pickup location. They also performed a predictability analysis for next pickup
area type given the current drop-off location information. |Gandhi| (2015)
worked on predicting driver's next pickup location given various factors such
as time of the day, weather information, etc. using Artificial Neural Networks
(ANN). While most of the work done in the literature focuses on the batch
learning set-up but in this paper we concentrate on the streaming data set-up.

L ——
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4 Dynamic Location Prediction

Prediction of final destination of a vehicle while in service based on the
location of the pickup point can improve the efficiency of a transport dispatch
system through improved vehicle allocation for future pickups. Thus, in this
paper we focus on predicting the drop-off location coordinates of a trip taking
the pickup location coordinates as input. Since there is substantial variation
in passenger movements depending on variety of factors such as time of the
day, weekday or weekend, special events etc. a static model is unlikely to
perform well over time than a dynamic model which uses the most relevant
recent information is required. It is in this context we attempt to develop
dynamic models which use the recent information and perform prediction
in a user defined prediction horizon. A similar problem arises when we are
interested in predicting the next pickup location for a cab given the dropoff
location coordinates of the previous trip as input (see Section E[) Thus we
refer to our problem as the Dynamic Drop / Next-pickup Prediction Problem
(DDNPP).

We focus on building an incremental learning algorithm for this problem.
Predictive models for data streams need to adapt to the evolving data over
time i.e. it needs to handle the inherent concept drift in the data streams.
Otherwise, the predictive accuracy of the model decreases. Also, the model
parameters need to be updated by taking into account the recent informa-
tion in the data and the predictive model should ideally use a fixed amount
of memory for any storage (Gama et al., 2014). We need to use either an
online or an incremental learning algorithms for modeling data streams. In-
cremental learning algorithms differ from online learning algorithms in that
the model parameters are updated in batches instead of whenever a new
observation arrives.

The most common approach for handling evolving data over time is by
forgetting or discarding the older observations (Gama et al., [2014). One way
to do it is by using a gradual forgetting mechanism where weights are as-
signed to the observations and a fading function is used to discard the older
observations. The fading function can be either linear decay (Koychev, 2000)
or exponential decay (Klinkenberg, 2004)). The forgetting mechanism is im-
plemented using a windowing technique which is a powerful tool for handling
concept drift. An incremental learning algorithm can be approximated by
using a non-incremental learner along with a sliding window (Biittcher et al.|

L ——
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2010, p. 337). Hence, we use a learner £ which is fed a sequence of points sy,
89, weenr , Sp using a windowing technique (see Section for more details).
Note that n may vary from window to window.

5 Methodology

We use the four different methods, namely Spherical-Spherical Regression-
SSR (see section [5.2), Spherical K-NN Regression- SKNNR (see section
5.3) , Randomized Spherical K-NN Regression- RSKNNR (see section
and Multivariate Multiple Regression- MMR (see section as learners
along with a sliding window with exponentially fading strategy applied on
the incoming data stream (to be called Damped window model in section
to develop four different incremental learning algorithms. We also build
an ensemble method (see Section [5.6). It may be noted that the data stream
consists of a sequence of pickup and drop-off location coordinates and their
timestamps.

5.1 Damped Window Model

A window can be defined as a snapshot of data - either observation count-
based or time based (Gama) 2010). This is a very useful technique in stream-
ing data context since at no point in time we will have the “entire data” avail-
able with us. Further, windowing is a very powerful tool when it comes to
dealing with concept drift which is a major challenge in streaming data analy-
sis as discussed earlier. There are various types of windowing techniques such
as damped window model, landmark window and sliding windows discussed
in [Zhu and Sashal (2002)), Chang and Lee (2004) and |Li et al.| (2009).

In case of Landmark windows, there is no discarding of older data points
and all the data points are accumulated in the window. We don 't consider
this suitable in a streaming data context since this is computationally expen-
sive particularly with fast streaming data. The other windowing technique
is the Sliding windows. Sliding windows are one of the popular ways of dis-
carding the older data points and considering only the recent data points for
analysis (Aggarwal, [2007)). In case of a Damped Window Model, the window
length is time-based and an exponential fading strategy is used to discard
the old data. We adopt this model in our problem since very old data has
little relevance for taking a decision at the current time point.
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A data window is defined to contain all the data collected during a spec-
ified unit of time interval. The latest data window is numbered 1, the one
before the latest is numbered 2 and so on. We assign weights to the data
windows and these decrease exponentially over time as discussed below. The
t'" window is assigned the weight h(t) where

h(t) = 1/2, where A > 0,t =1,2, ... (7)

All data windows which have weights less than a preassigned value ¢ are
discarded in the sense that these data points are not used by the learners.
In this paper we have used ¢ = 0.09. It may be noted that by changing the
value of A, the decision regarding the discarding of the older data can be
influenced. The more the value of A, the less importance is given to the older
data compared to more recent data (Cao et al., 2006). Once the length of the
window is determined using the damping function mentioned in Equation [7]
we treat this as a mini batch and proceed.Therefore, this may also be called
a “Mini-batch Window Model” as it has been done in [Putatunda; (2017)).

5.2 Spherical Spherical Regression (Rigid Rotation)
with Damped Window Model

The SSR method is an extension of the Spherical-Spherical regression method
discussed in Section [2.3] where the model parameters are estimated by using
only the retained data as discussed in Section [5.1] above. The estimated
parameters are then used to predict the pickup/ drop-off locations of the new
data arriving in the prediction horizon. The model parameters are updated
whenever a new prediction horizon is chosen thus enabling the model to
handle the concept drift.

5.3 Spherical K-NN Regression with Damped Window
Model

The SKNNR method uses the Spherical distance as the distance metric
of the K-NN regression as discussed in Section [2.4, The spherical distance
between two points v and v on the surface of a sphere is the shortest route
along the surface from u to v. Mathematically, it is defined as

d = arccos(u - v) (8)
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where u - v represents the dot product (Ratcliffe] 2006). We have imple-
mented the K-NN regression with the above spherical distance metric and
the damped window model.

The KNNRSD algorithm is described below in Algorithm 1. Since the
value of k is chosen from an array given to the user in some cases especially
for very sparse datasets we may have training windows, the size of which is
less than our chosen value of k. In such cases the we need to modify the
choice of k for that window to ensure that the algorithm doesn't terminate.
For this window, we take the value of k to be an integer lower than the
training window size n. For example, suppose we want to run the k-NN
regrssion with spherical distance with & = 50 but the number of observations
in the training window is say 49, then the algorithm chooses the next value
of k from the array which should be lower than 49 i.e. k = 25.

Algorithm 1 SKNNR Pseudocode

Require: n > 0, t > 0, k € [5,10,15,20,25,50,100] where,n —
Training Window Size, t — Test Window Size, k —
no. of mnearest neighbors (chosen from the array), ky —
the value of k at the i*" position in the array, i — 1 to length(array k)
Choose k* from array k {Let k* = kp; }
if kg <n then

Set k£ = /{Z[i]
Run k-NN Regression {with Spherical distance metric}
else

Initialize j = 1

While k[i—j} >n

J—J+1

End While

Set k = k[i_j}

Run k-NN Regression {with Spherical distance metric}
end if

5.4 Randomized Spherical K-NN Regression with Damped
Window Model

In this paper we propose a new method RSKNNR where we first perform a
simple random sampling of the training dataset. Since this sample is repre-
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sentative of the whole training dataset we replace the training dataset with
this randomly sampled subset and proceed to use the SKNNR algorithm as
discussed in Section [5.3] The proportion of the original dataset that needs
to be sampled (sampling rate) is an important decision variable and later in
this paper we do extensive sensitivity analysis to suggest a thumb rule for
the same. We observe that this method greatly increases the computation
speed without sacrificing the accuracy of the procedure.

It may be noted that sometimes especially for sparse training datasets,
the sample size obtained with a sampling rate of r% may be less than the
value of the k nearest neighbors where k is the user defined input. In such
cases we run the SKNNR on the whole training data.

Algorithm 2 RSKNNR Pseudocode

Require: n > 0, t > 0, 0 < r < 1, k € [5,10,15,20,25,50,100], s =
r x n, where, n — Training Window  Size, t —
Test  Window Size, r — Sampling  Rate, S —
sample size after performing SRS with sampling rate r, k —
no. of nearest neighbors (chosen from the array)
if s < k then

Run SKNNR (with training window size = n)
else

Run SKNNR (with training window size = s)
end if

5.5 Multivariate Multiple Regression with Damped Win-
dow Model

An alternative approach for analyzing spherical data is to first flatten the
sphere and then apply linear models. Since in our applications we are op-
erating in small regions of sphere and hence we propose the MMR method
which proceeds in the manner discussed above. The points on the surface
of a unit sphere centered at the origin can be represented either as an unit
vector (X, Y, Z) or as angles (¢1, ¢2) where (¢1,¢2) € [0,7) x [0,27). ¢ and
o are called latitude and longitude respectively. Now,

(X,Y, Z) = (cos g1, sin ¢ €os @y, sin ¢ sin p9) 9)

L ——
W.P. No. 2017-03-02 Page No. 18



Wi ]
e ——— Research and Publications

as defined in Jammalamadaka and Senguptal (2001)).

In the MMR method first, both the directional predictor and response
variables i.e. the pickup and dropoff latitude and longitude respectively,
are converted into FEuclidean data using equation @ Then we build the
multivariate multiple regression model as discussed in section 2.5 This model
is then used to predict the euclidean dropoff coordinates when the euclidean
pickup coordinates of a new pickup is given. Finally, the predicted euclidean
dropoff coordinates are converted back to polar coordinates by using equation

@D again.

5.6 Multi-Model Ensemble

We build a multi-model ensemble (discussed in Section by combining
the predictions of the RSKNNR (with the selected hyperparameters), SSR
and MMR. We have taken the drop-off locations (longitude, latitude) pre-
dicted by these three methods and converted each of them to euclidean data
using equation @D Then these euclidean dropoff coordinates are averaged
coordinatewise to obtain m = (X,Y, Z). Then we convert (X', Y’ Z') into a
unit vector by dividing it by its norm ||m/|| = V. X2 4+ Y2 4 Z2 to ensure that
it lies on the unit sphere. Finally we convert m/||m|| into polar coordinates
(Fisher et al.;|1993). We use the output of this ensemble model for predicting
the drop-off location. We will refer to this technique as “Ensemble” in the
rest of this paper.

6 Data

We use the New York City (NYC) yellow taxi data from 1st January, 2013 to
5th January, 2013 as our primary dataset. This is a publicly available data
which can be found at the NYC Taxi and Limousine Commission website
(NYC-TLC, [2014). The dataset description and other details related to its
pre-processing are given in Section Apart from this, we have also tested
our methods on other real world datasets which are discussed in Section [6.21

6.1 NYC Yellow Taxi GPS Data

The NYC Yellow Taxi GPS dataset consists of various attributes related to
the taxi pickup and drop-off coordinates, their corresponding timestamps,
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information related to trip travel time and distance travelled and payment
related information. Here, we would be using some of the attributes as
given in Table [I, The dataset has been cleaned of missing values and some
other anomalies like erroneous GPS coordinate values. The total number of
observations in the cleaned dataset for the period 1st to 5th January, 2013 is
824,799. This dataset is used as training dataset for model building. We use
this dataset for determining the value of K to be used in SKNNR and also
to determine the the sampling rate for the RSKNNR. Further, dataset is
used for comparing the performance of the various methods discussed above.
We will refer to this dataset as NycC1

Another slice of this dataset for the time period 13th - 16th January, 2013
containing 680,865 observations after cleaning, is also used for comparison of
performances of the different methods. We will refer to this dataset as NYC2

Table 1: NYC Yellow Taxi GPS Data - Attribute Description

Attributes Description
medallion an unique id of the taxi - vehicle bound
hack license an unique id for the taxi license

pickup_datetime  time when the passenger(s) were picked up
dropoff_datetime  time when the passenger(s) were dropped off
pickup_longitude  pickup location’s longitude coordinate
pickup_latitude pickup location’s latitude coordinate
dropoff_longitude drop-off location’s longitude coordinate
dropoff latitude  drop-off location’s latitude coordinate
trip_time_in_secs  time taken for the trip

trip_distance distance travelled in miles

6.2 Other datasets

This section gives a brief description of the various datasets that have been
used in this paper for testing purposes.

6.2.1 NYC Boro Taxi GPS Data

The NYC Boro Taxi GPS Data is a publicly available dataset comprising
of trip details of Boro taxis or Green taxis (NYC-TLC, [2014). This dataset
also contains information related to the taxi pickup and drop off coordinates,
their corresponding timestamps, trip distance travelled and payment related
information. We use the attributes given in Table 2] For our analysis, we
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have used have used data from 1st- 7th June, 2014. We will refer to this
dataset as BORO.

Table 2: NYC Boro Taxi GPS Data- Attribute Description

Attributes Description

Ipep_pickup_datetime time when the passenger(s) were picked up
Ipep_dropoff_datetime time when the passenger(s) were dropped off

pickup longitude pickup location’s longitude coordinate
pickup_latitude pickup location’s latitude coordinate
dropoff_longitude drop-off location’s longitude coordinate
dropoff_latitude drop-off location’s latitude coordinate
passenger_count no. of passengers that boarded the taxi
trip_distance distance travelled in miles

6.2.2 Porto GPS Taxi Data

The Porto GPS taxi dataset is publicly available at the UCI Machine Learn-
ing Repository (Lichman| 2013)) and was first used in Moreira-Matias et al.
(2013b)). This dataset contains for each trip information regarding taxi stand,
call origin details, unique taxi id, unique trip id and the Polyline. The Poly-
line is a string of GPS coordinates with each coordinate being obtained after
every 15 seconds of the trip beginning with the pickup and ending with the
dropoff. For our analysis we have taken the trip details for 1st- 7th July,
2013 which consists of 34,768 observations. We obtained the pickup coordi-
nates (start_latitude, start_longitude) and drop-off coordinates (dest_latitude,
dest_longitude) from this dataset. We will refer to this dataset as PORTO.

6.2.3 San Francisco black cars GPS traces

This publicly available dataset consists of anonymized GPS traces of Uber
black cars in San Francisco for one week (Henry, 2011). For each trip lo-
cation coordinates are recorded every 4 seconds starting with pickup and
ending with drop-off. The first record for each trip gives the pickup time,
pickup latitude and longitude and the last records gives the drop-off time,
dropoff latitude and longitude. The dataset has 24,552 observations after
data cleaning. We will refer to this dataset as SFBLACK.
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7 Experimental Results

In this section, we report the findings of the different experiments done on
the NYC GPS taxi dataset with the four methods discussed in Section [l
to assess their performance. The performance evaluation metrics are dis-
cussed in Section [7.1] The entire data stream flow, model building and data
analysis is implemented using the software R version 3.3.1. (R Core Team,
2016)). The R packages Directional (Tsagris and Athineou, 2016)), lubridate
(Grolemund and Wickham)| |2011)), Imap (Wallacel 2012)), nnet (Venables and
Ripley|, [2002), 1071 (Meyer et al., 2015), randomForest (Liaw and Wiener,
2002)) and ggplot2 (Wickham, 2009) has been used for doing our experiments.
A sensitivity analysis on the choice of A, window size and sampling rate (for
RSKNNR method) has been carried out and the results are reported in Sec-
tion [T.3l

7.1 Evaluation Metrics

We use two evaluation metrics for comparing the performance of the four
different methods. The geodesic distance between predicted and actual drop
off points is calculated using the Vincenty inverse formula (Vincenty, |1975)
and is called the Geodesic Distance Error GDE. Geodesic distance can be
defined as the shortest path between two points on the surface of the earth
(Economou et al., 2004)). If there are two points say x and y on the surface
of the earth (i.e. a sphere with radius R) then the geosedic distance between
these two points is represented by G,,. The radius of earth is assumed to be
6378137 meters and (¢, f,) and (¢, p,) denotes the latitude and longitude of
the points  and y. Then the geodesic distance between these two points can
be obtained by using the following equation (i.e. equation ) as described
in |Gade| (2010).

Gy = R - arccos(sin ¢, - sin ¢, + cos ¢y, - o8 @y, - cos(fiz — fy)) (10)

In this paper, we use the Vincenty inverse formula for calculating the
geodesic distances between points on earth's surface. The Vincenty inverse
formula assumes earth to be an ellipsoid (WGS84 coordinates) to calculate
the geodesic distance. This is more accurate than the great circle distance
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methods (Vincenty, 1975). |Chang et al. (2010) discusses the Vincenty for-
mula for the computation of the geodesic distance G, and it is represented

in equation below.

cos sin( gy — 24 (cos ¢z COS (yy —sin ¢y cos cos( by — 2
nyZR-arctan(\/( Py S0 (a —jry))?+(c08 § cOS by —sin b cOS Gy cos(p uy))) (11)

Sin g -Sin ¢y +COS P -COS Py -COS Lz —[hy )

The GDE between the actual and the predicted coordinates are calculated
using the Imap package (Wallace, 2012). Now for each prediction horizon H,
both the mean GDE and median GDE are recorded and are referred to as
MGDE and MedGDE respectively.

If MGDE, MGDEs, ..., MGDE, are MGDE recorded for n prediction
horizons (assumed to be pairwise disjoint) the Aggregated Mean Geodesic
Distance Error
(AMGDE) can be defined as follows.

MGDE, + MGDEs +---+ MGDE,
n

Similarly, if MedGDE,, MedGDE, ..., MedGDFE, are the MedGDE
recorded for n pairwise disjoint prediction horizons then the Aggregated Me-
dian Geodesic Distance Error (AMedGDE) can be defined as follows.

AMGDE =

(12)

MedGDE, + MedGDE; + ---+ MedGDE,
n

The AMGDE and AMedGDE are the two evaluation metrics used in this
paper for comparing the performance of the different methods. The method
with the least value of the chosen evaluation metric is considered the “best”
method as per that metric. The units of both of these evaluation metrics are
in “miles”.

AMedGDE =

(13)

7.2 Concept Drift

As mentioned in Section 2.1 concept drift refers to the change in the dis-
tribution of the streaming data over time. A consequence of the presence
of concept drift is that an off-line learning model’s predictive performance
changes unpredictably (and often seen to deteriote) as we move forward in
time. This induces a need to update the model by taking into consideration
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the recent data and information. In this section, we show that concept drift
is present in the Nycl dataset. We consider a part of the Nycl dataset
(time interval 00 : 00 — 01 : 00 of 3" January, 2013) and use it as training
data for the off-line learners. We then use these models for drop-off location
prediction when the pickup location coordinates are known for the next four
1 hour prediction horizons.

We consider the off-line learners to be Random Forests and Support Vec-
tor Regression (see Breiman| (2001)) and [Vapnik| (1995) for more details) which
we will refer to as RF _batch and SV R_batch respectively. The reason for
choosing these two offline learning methods is that they were used in Lam
et al. (2015) and showed good performance for a related problem. We build
Random forests with 2000 trees (as done in [Lam et al. (2015)) and imple-
ment an e-SVR method with a Radial basis function (RBF) kernel. We then
plot the mean geodesic distance error (MGDE) for both these methods with
respect to the prediction horizons as shown in figure [II We can see an in-
crease in the MGDE over time for both these methods which is indicative of
presence of concept drift. In a similar way we observe the presence of concept
drift in the other datasets used in this paper. In this context, it has been
noted by |[Moreira-Matias et al. (2016b) that GPS trace data are inherently
subject to concept drift and some scenarios where this concept drift can be
clearly visualized are car accidents on a busy road, unexpected weather event
such as rain or snow etc.

375-

w
@
=]

linetype

w

n

@
"

— RF_balch

--=-- SVR_baich

w

o

S
'

mean geodesic distance error

o

~

@
I

1 z 3 4
prediction horizon number

Figure 1: Demonstration of presence of concept drift in taxi GPS data
streams on the NycC1 dataset
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7.3 Results

In this section we describe the results of the various experiments and sensi-
tivity analyses that were performed. The methods were first applied on the
NYC1 dataset and the performance of the different methods are evaluated.
Then these methods were applied on the other datasets discussed in Section
[6.2] and the findings are discussed in Section [7.4]

In Table [3] below we give the values of AMGDE and AMEDGDE when
the SSR method discussed in Section [5.2| is applied on Nycl dataset. It
can be seen that the SSR method does not show dependence on the window
size as well as the chosen value of \. We confirm the above observation by
carrying out two way ANOVA with AMGDE as the response variable and
the window size and A value as two factors. We find that both these factors
are not significant at 5% level of significance. Thus we take window size as
1 hour and A as 0.5 for further study. When A = 0.5 we have h(t) < ¢ for
all t > 7 and hence only the data contained in the data windows numbered
1 to 6 are used by the learners for prediction purposes. We obtained similar
results when we considered AMedGDE as the response variable.

Table 3: Performance of SSR across various A and Window sizes

Window A AMGDE AMedGDE

0.25 2.7307 1.8897
15 mins 0.5  2.7250 1.8888
0.75  2.7240 1.8916

0.25 2.7327 1.8840
30 mins 0.5  2.7266 1.8868
0.75 2.7228 1.8862

0.25 2.7274 1.8616
1 hour 0.5 2.7293 1.8808
0.75 2.7286 1.8855

In Table 4] we give the AMGDE and AMedGDE when the MMR method
discussed in Section [5.5]is applied to the NYC1 dataset. As with SSR we see
that the AMGDE and AMedGDE does not depend on the choice of window
size and the value of \. We confirm this by carrying out two separate ANOVA
procedures once with AMGDE and the other with AMedGDE as the response
variable. As in the earlier case the factor variables window size and A did not
turn out to be significant at 5% level. Thus we take window size as 1 hour and
A as 0.5 for further study. Further we compare the AMGDE values obtained
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from the SSR method with those of the MMR method using a two sample
paired t-test. The test turns out to be significant at 5% level indicating that
the AMGDE from the MMR method is significantly lower than that of the
SSR method. We arrive at the same conclusion when considering AMedGDE.
Thus we can say that MMR performs better than SSR for this dataset.

Table 4: Performance of MMR method across various A and Window sizes

Window A AMGDE AMedGDE

0.25 2.2621 1.7258
15 mins 0.5  2.2523 1.7154
0.75 2.2481 1.7106

0.25 2.2620 1.7178
30 mins 0.5  2.2650 1.7302
0.75  2.2606 1.7256

0.25 2.2458 1.6960
1 hour 0.5  2.2609 1.7176
0.75 2.2671 1.7296

In table [5] we show the performance of the SKNNR method for different
values of K, window sizes and A\. We vary K= 5, 10, 15, 20, 25, 50 and 100.
It may be noted that while a larger K may increase prediction accuracy a
little but it simultaneously increases the computational cost. Thus there is
a accuracy-computational cost trade off that needs to be taken into consid-
eration. We perform an ANOVA with AMGDE as the response variable and
the window size, K and A values as three factors. We find that A is not sig-
nificant but window size and k are significant at 5% level of significance. We
observe that while the mean AMGDE for & = 100 is slightly lower than that
for £ = 50 but computationally it is far more expensive. Hence, we choose
k = 50. For the window size, we can see in Figure [J(b) that there isn‘t much
difference in the mean AMGDE values for three window sizes considered in
this experiment. We therefore proceed with a window size of 1 hour and
A = 0.5. We obtained similar results when we considered AMedGDE as the
response variable.

The performance of RSKNNR is given for different sampling rates viz.
5%, 10% and 20%, K and window sizes with A held fixed at 0.5. As before
we vary K= 5, 10, 15, 20, 25, 50 and 100. We perform an ANOVA with
AMGDE as the response variable and the window size, K and Sampling rate
as three factors. We find that all the three factors are significant at 5% level
of significance. In Figure [3] we have shown the main effects plot for each
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of these factors. For similar reasons ad discussed in the case of SKNNR we
choose k = 50. For both the window size and sampling rate, we can see
that that there is not much difference in the mean AMGDE values for the
different levels of these two factors. Thus we take window size as 1 hour and
sampling rate as 10 % for further study. We obtained similar results when
we considered AMedGDE as the response variable.

In Table |7l we show the dependence of the time taken by the RSKNNR for
different sampling rates. Note that SKNNR can be thought of as a special
case of RSKNNR with sampling rate = 100%. The experiments were carried
out on a system with 24 GB RAM and Intel Xeon processor 2.67 GHZ with
a 64 bit Windows Server 2012 OS. We have recorded the mean time taken in
seconds for each of these methods with K = 50, A = 0.5 and window size as
1 hour. As expected we see that RSKNNR is much faster than SKNNR. Also,
the execution speed increases with lowering of sampling rate as expected.

Table 5: Performance of SKNNR method across various A and window sizes

W)

)

K Window 0.25 0.50 0.75
AMGDE AMedGDE AMGDE AMedGDE AMGDE AMedGDE
5 25436 2.0311  2.5376 2.027 2.534 2.0276
10 2,422 19200 24133 1.9146 2.408 1.9088
15 23751 18675 23667 18627  2.3625 1.8585
20 15min  2.3514 1.84 23433 1.8348  2.3396 1.8311
2 23365 18219  2.3283 18172 2,326 1.8125
50 23074 17835 23009 17795 2.2999 1.7759
100 22938 17641 22901 17618 2.2889 1.7573
5 25478 2.0206  2.5472 2.037 2,544 2.0375
10 24246 19137 24238 19256  2.4207 1.923
15 23787 18619 23779 18726 2.3735 1.8702
20 30min 2355 18338 23536 1.8416  2.3499 1.8423
2 923104 1.8146 2.339 18261 2.3352 1.8239
50 23008 17748 23007 17868  2.3057 1.7851
100 92954 17552 22062 17665  2.2042 1.7652
5 25380  2.0152 25487 20316 2.5519 2.0416
10 924136 1.8906 2,426 19163 24273 1.9259
15 23668  1.8382  2.3796  1.8639  2.3822 1.8743
20 1hour 23419  1.8096 23558  1.8356  2.3574 1.8451
2 23271 17926 23407 18160  2.3427 1.8265
50 2.297 L7545 23100 17776 23129 1.7877
100 22827 17357 22057  1.7568 2.299 1.7676
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Figure 2: Main effects plots for AMGDE as response variable and the chosen
value of k and Window Sizes as the factor variables for the SKNNR method
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Table 6: Performance of RSKNNR with different sampling rates across three
different window sizes (with A = 0.5)

K  Window

Sampling Rate

5%

10%

20%

AMGDE AMedGDE AMGDE AMedGDE AMGDE AMedGDE

5 2.5532 2.0483 2.5469 2.0414 2.5441 2.037
10 2.4293 1.9279 2.4241 1.9256 2.42 1.9241
15 2.3851 1.8745 2.3803 1.8748 2.3754 1.8726
20 15 min 2.3616 1.8465 2.3574 1.8439 2.3528 1.8444
25 2.3484 1.8276 2.3435 1.8276 2.3396 1.8274
50 2.3233 1.7848 2.3162 1.7878 2.312 1.7874
100 2.3185 1.6822 2.3062 1.7625 2.2995 1.7636

5 2.5595 2.0452 2.5548 2.0447 2.5546 2.0445
10 2.4367 1.9332 2.4299 1.9294 2.4283 1.9253
15 2.3904 1.8826 2.3849 1.8762 2.3825 1.8743
20 30 min 2.3667 1.8524 2.3631 1.8521 2.3589 1.8448
25 2.3528 1.8346 2.3495 1.8357 2.3447 1.8251
50 2.3271 1.765 2.3223 1.7711 2.3183 1.7711
100 2.3153 1.765 2.3105 1.7711 2.3058 1.7711

5 2.5506 2.028 2.5564 2.0339 2.5542 2.0304
10 2.4318 1.9186 2.4305 1.9166 2.428 1.9175
15 2.3867 1.8641 2.3846 1.8693 2.3816 1.8647
20 1 hour 2.3637 1.8369 2.3616 1.8402 2.3578 1.8369
25 2.3497 1.8201 2.347 1.8237 2.3431 1.8193
50 2.3208 1.7806 2.3189 1.7837 2.3148 1.7815
100 2.3065 1.7564 2.3058 1.7624 2.3013 1.759

Table 7: Comparison of the average time taken (in secs) for SSONNR and
RS50NNR with different sampling rates across a period of 5 days with a 1
hour window (with A = 0.5)

Method Name

Average Time Taken (in secs)

S50NNR 111.31
RS50NNR20P 21.91
RS50NNR10P 8.52
RS50NNR5P 4.50
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Figure 3: Main effects plots for AMGDE as response variable and the chosen
value of k, Window Size and the Sampling Rate as the factor variable for the

RSKNNR method
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As discussed in Section [2.6], Ensemble methods sometimes work better
than the individual methods. In view of this we create an ensembles com-
prising of SSR, MMR and RS50NNR10P. Table [8] gives the performance of
this ensemble with A = 0.5 and different window sizes. We see that the
AMGDE and AMedGDE does not depend on the choice of window size.
Thus we take window size as 1 hour for further study.

Table &: Performance of the ensemble model across different window sizes

with A = 0.5

Method Window AMGDE AMedGDE

15 mins  2.2980 1.7150
Ensemble 30 mins  2.3092 1.7275
1 hour 2.3089 1.7210

Table [0 gives a summary of the AMGDE and AMedGDE for each of the
four methods viz. SSR, RS50NNR10P, MMR and the ensemble of these three
methods on NYC1 dataset with prediction horizon of 1 hour and A = 0.5. We
see that the MMR method performs the best for both of the evaluation
metrics. It is closely followed by the ensemble of the three methods.

An alternative way to compare the performances of these five methods
is by using the Stochastic dominance approach discussed in Section 2.7, We
compute the MGDE for each prediction horizon (i.e. for 119 prediction hori-
zons with 1 hour duration in this case) and use the same to compute the

ECDF of the MGDE. The ECDF of the MGDE is defined as

Fo(x) = #{MGDE; <z}
n

where n is the number of prediction horizons, MGDE; is the MGDE in the

it" prediction horizon and #{MGDE; < x} is the number of MGDE; that

are less than or equal to x.

Figure[d shows the ECDF plots for the four methods on the Nyc1 dataset.
We find that the ECDF curve of the MMR method is to the left of that of the
SSR and the RS50NNR10P methods. So, in terms of prediction accuracy,
the MMR method is the best performer. But since the ECDF curves of the
MMR and the Ensemble methods overlap, so we cannot say which one of
them is stochastically dominant over the other. Hence, both the MMR and
the Ensemble can be said to be comparable.

(14)
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Table 9: Performance of the four methods using a Damped window model
with A = 0.5 and window size= 1 hour

Method Name AMGDE AMedGDE

SSR 2.7293 1.8808
RS50NNR10P 2.3189 1.7837
MMR 2.2609 1.7176
Ensemble 2.3089 1.7210

Methods
- -+ S8R

— RSEZONNR10P

ecdl

-==* Ensemble

3 4
Mean Geodesic Distance Error (MGDE)

Figure 4: ECDF plots for the Mean Geodesic Distance Errors (MGDE) by
prediction horizons for SSR, RS50NNR10P, MMR and Ensemble on the NyYC1
dataset
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7.4 Performance on other datasets

In this section, we have have tried the four methods viz. SSR, RS50NNR10P,
MMR and Ensemble method for predicting the drop off coordinates i.e. lat-
itude and longitude using the pickup latitude and longitude as independent
variabes on different datasets. These four methods are applied on each of the
following datasets namely, NYC2, PORTO, SFBLACK and BORO (see Section
for details). We keep the window size as 1 hour and A = 0.5 fixed all
through this section.

In the NYC2 dataset we again find that the MMR method performs the
best both in terms of having the lowest AMGDE and AMedGDE. In the
PORTO dataset, we find that AMGDE and AMedGDE values of MMR and
Ensemble method are very close and these values are smaller than those of
SSR and RS50NNR10P. While by AMGDE criterion the Ensemble method
performs the best, the MMR is the best performer by AMedGDE criterion.
In the SFBLACK dataset, we find that the MMR method is the best performer
while considering the AMGDE criterion but SSR is the best performer by
AMedGDE criterion. In the BORO dataset, we find that the MMR method
performs the best in terms of having the lowest AMGDE while the SSR
method is the best performer as per having the lowest AMedGDE. The En-
semble method comes second as per both of these criteria. The AMedGDE
value of the MMR method is very close to that of the Ensemble method. A
summary of the above results is given in Table [10]

In Figure [5| we show the ECDF plots of the MGDE for the four methods
on the four datasets discussed above. For the Nyc2 dataset in Figure 5| (a),
we get similar results as it was for the Nyc1 dataset i.e. both the MMR
and the Ensemble are the best performing methods in terms of prediction
accuracy. We get similar results for the BORO and PORTO datasets as well
(see Figures[f| (b) and (c)). In case of the SFBLACK dataset, we find MMR and
Ensemble methods have the best prediction accuracy and the SSR method
has a better prediction accuracy than that of the RS50NNR10P method (see
Figure || (d)).

In figure [0] we examine whether the performance of the four methods
show any marked dependence on the average training window size of the
five datasets for the destination prediction problem. We note that the rel-
ative performance of the four methods are not varying much with the av-
erage training window size. However, it may be noted that performance of
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Figure 5: ECDF plots for the Mean Geodesic Distance Errors (MGDE) by

prediction horizons for SSR, RS50NNR10P, MMR and Ensemble on each of
the four datasets
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Table 10: Performance of the four methods on NYC2, PORTO, SFBLACK and
BORO datasets using a 1 hour Damped window model with A = 0.5

Dataset Name Method Name

AMGDE AMedGDE

SSR 2.7043 1.8855
RS50NNR10P  2.2954 1.77
NYC2 MMR 2.2522 1.7291
Ensemble 2.3024 1.735
SSR 2.2438 1.7649
RS50NNR10P  2.1365 1.66
PORTO MMR 2.1115 1.5957
Ensemble 2.0837 1.602
SSR 1.1256 0.8609
RS50NNR10P  1.3437 1.0672
SFBLACK MMR 1.0932 0.8716
Ensemble 1.1104 0.8849
SSR 2.6469 2.0052
RS50NNR10P 2.9434 2.4807
BORO MMR 2.5933 2.0984
Ensemble 2.6003 2.0888

RS50NNRI10P is better when the average training window size is high.
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Figure 6: Plot of AMGDE/ AMedGDE vs. Average Training Window Size
for all the four methods for the Destination Prediction Problem
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8 Discussion

The choice of the suitable method for use needs to take into account the
time-accuracy trade-off. Since, in a streaming data context, the paradigm
is to provide good results fast rather than giving the best possible solution
we need to take into account the the total time taken (i.e. sum of training
and prediction time) for the method to execute along with the prediction
accuracy of the method. In this context we compare the MMR method with
the Random Forests (RF) and Support Vector Regression (SVR) methods
which are two standard methods which have been used earlier in destination
prediction problem (Lam et al.; 2015). In section we investigate the
variation of the total time taken and the prediction accuracy of these three
different methods for different data sizes.

8.1 Static data experiment

We first perform an experiment to demonstrate how the total time taken
and accuracy varies with respect to the training data size for each of the
three methods viz. MMR, SVR and RF for the drop-off location predic-
tion when the pickup location coordinates are known. We take random
samples of different sizes for training and test data from the Nyc1 dataset.
The data size for different training data windows varies from 262 to 70,000
for the five datasets used in this paper viz. NYCl, NYC2, BORO, porto
and SFBLACK. So for this experiment we consider training datasizes of
250(250)1000(1000)10000(2000)20000(5000)70000. We take 20% of the train-
ing data size as the test data size. The test data is also randomly sampled
fromnycl. We then apply each of the three methods and plot the MGDE
and the total time taken with respect to the training data size for MMR and
RF in figure [7] We also do the same for MMR and SVR as shown in figure
[k

We see in figures [7] and [§ that compared to MMR, both RF and SVR
have a better prediction accuracy but the time taken is very high especially
for larger datasets. Hence RF and SVR are not suitable in situations where
the velocity of the data stream is high. But

We notice from figures[7]and [§ that for smaller training data sizes, say less
than 10000 the total time taken by both RF and SVR are comparable to that
of MMR. Hence it indicates the possibility that for slow data streams which
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Figure 7: Time and MGDE vs. different training data size for static exper-
iment with MMR and RF for drop-off location coordinate prediction given

the pickup location coordinates are known
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ment with MMR and SVR for drop-off location coordinate prediction given
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leads to training data size less than 10000 these methods may be useful.
Thus it is of interest to investigate how the incremental variations for RF
and SVR performs with respect to MMR for such datasets. Since the PORTO
and SFBLACK are of this kind we compare these three methods on these two
datasets the details of which are given in section [8.2]

8.2 Performance Comparison of Incremental RF and
SVR with MMR

As before we use a Damped window model with A\ = 0.5 for comparison
purposes. In table[LT] we report the results of the comparison of performances
of MMR, RF and SVR on the PORTO and SFBLACK datasets. We find that
MMR is a better performer in terms of prediction accuracy than RF but
the prediction accuracy of SVR is slightly better than MMR, across both
these datasets. In figure [9] we find that the ECDF of the MMR method
is to the right of that of the SVR method for PORTO indicating that SVR
method is better in terms of prediction accuracy for this dataset. However
for the SFBLACK dataset, the ECDFs of the SVR method and MMR method
overlaps and the ECDF of the RF method is to the right of both. Thus we can
conclude that both SVR method and MMR method have better prediction
accuracy than the RF method. Since no stochastic dominance is indicated
between the SVR and MMR methods we cannot say which of these two have
greater predictive accuracy.

From sections and it can be concluded that for smaller datasets
i.e. data size less than 10000, both SVR and MMR methods can be used but
for larger datasets, the MMR is the method of choice.

Table 11: Performance of the MMR, RF and SVR methods on PORTOand
SFBLACK datasets using a 1 hour Damped window model with A = 0.5

Dataset Name Method Name AMGDE AMedGDE

MMR 21115 1.5957
RF 93352 1.8520
PORTO SVR 20241  1.4852
MMR 10932 08716
RF 11661 0.9292
SFBLACK g 10761 0.8373
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Figure 9: ECDF plots for the Mean Geodesic Distance Errors (MGDE) by
prediction horizons for MMR, RF and SVR on the PORTO and SFBLACK
datasets
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8.3 Choice of Paramters for Damped Window Model

In this section, we give an illustration for the method that may be adopted
for selecting the parameters A and ¢ for the Damped window model. In Table
12 we give the results obtained when the MMR method is applied on the
NYC1 dataset for different values of ¢ ( i.e. 0.05,0.09,0.15 and 0.20) and A
(i.e. 0.25, 0.5 and 0.75). We choose the MMR method for this illustration
since it is the best method among the new methods proposed in this paper.
The window size is held constant at 1 hour. We find that as we increase the
value of ¢, the predictive accuracy of the model drops. In Table [12| we see
that the method is not very sensitive to the choice of the values of A and c.
In this paper, we have mostly worked with A = 0.5 and ¢ = 0.09. Any other
choice of A and c is expected to yield similar results.

Table 12: AMGDE of MMR method using a Damped window model (with
window size= 1 hour) across different values of A and the cut-off ¢ for the
NYC1 dataset

Damped window model
c¢=0.05 ¢=0.09 ¢=0.15 c=0.2

0.25 22444 22458 2.2496 2.2516
0.5 22544 22609 2.2642 2.2671
0.75 22642 22671 2.2682 2.2682

A

In this section, we carry out a performance comparison study for the
Damped window model and the sliding windows techniques. In Table [13], we
compare compare a 1 hour sliding windows with a 1 hour Damped window
model (with A = 0.5 and ¢ = 0.09) using a dense dataset i.e. NyCl and a
sparse dataset i.e. PORTO. We find that for the NyC1 dataset, the predictive
accuracy for the MMR method using a Damped window model and a sliding
windows are comparable whereas, in case of the PORTO dataset, the MMR
method using the Damped window model clearly performs better than the
one using sliding windows.
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Table 13: Performance of MMR method using a 1 hour Damped window
model (with A = 0.5 and ¢ = 0.09) and a 1 hour Sliding windows for the
NYC1 and the PORTO datasets

Damped window model Sliding windows

Dataset

AMGDE AMedGDE AMGDE AMedGDE
NYC1 2.2609 1.7176 2.2579 1.7234
Porto 2.1115 1.5957 2.3805 1.637

9 Predicting Next Pickup Location

In this section we have explored the dynamic next pickup prediction problem
where the dropoff latitude and longitude are used as the predictor variables.
The four methods discussed earlier namely, SSR, RS50NNR10P, MMR and
the Ensemble method are used for solving this problem and their performance
are compared using the evaluation metrics discussed in Section [7.1, We have
used the Nycl, NYC2 and PORTO datasets as described in section [ We
have derived the next pickup latitude and next pickup longitude variables of
a vehicle after the completion of every trip from the information existing in
these datasets.

In the NYC1 dataset we find that the Ensemble method performs the best
but it is closely followed by the MMR method if we take the AMGDE as the
evaluation metric. But if we take the AMedGDE as the evaluation metric
then both the Ensemble method and the SSR method perform almost equally
well and both are better than the other two methods.

In the NYC2 dataset we find that the Ensemble method performs the
best in terms of having the lowest AMGDE and also AMedGDE. The MMR
method comes second when AMGDE is considered while the SSR method is
the second best when the AMedGDE is considered.

In the PORTO dataset, the MMR method performs the best followed
closely by the RS50NNR10P method and the Ensemble method if one con-
siders the AMGDE as the evaluation metric. But if we take the AMedGDE
as the evaluation metric, then the ensemble method turns out to be the best
followed closely by MMR and RS50NNR10P. A summary of the above results
is given in Table

In Figure [10] we compare the four methods in each of the three datasets
by using stochastic dominance approach as we did in sections and for
the destination prediction problem. Here also we find that the ECDF curves
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Table 14: Performance of the four methods on the modified NYC1, NYC2 and
PORTO datasets for next pickup prediction using a 1 hour Damped window
model with A = 0.5

Dataset Name Method Name AMGDE AMedGDE

SSR 1.6817 0.9917
RS50NNRI10P 1.7114 1.1887
NYCl MMR 1.5555 1.0647
Ensemble 1.5288 0.984
SSR 1.6635 1.0223
RS50NNR10P  1.6464 1.5533
NYC2 MMR 1.5274 1.0565
Ensemble 1.4905 0.9796
SSR 1.8326 1.2711
RS50NNR10P  1.2589 1.0176
PORTO MMR 1.2495 1.0023
Ensemble 1.2605 0.9858

of both the MMR and the Ensemble methods overlap each other and both
of these are to the left of the other methods. So we can say that the MMR
and the Ensemble methods are the best performers in terms of prediction
accuracy.

We have mentioned in Section |3| that |Gandhi (2015) worked on the next
pickup location problem where the author applied Artificial Neural Networks
(ANN) in a batch setting. The author uses a simple 3-layer feed-forward
neural network with an input layer, a hidden layer and an output layer.
In this paper, the number of hidden nodes is taken in accordance with the
Geometric pyramid rule (Masters| [1993) which states that for a three layer
feed neural network with m inputs and n outputs the number of nodes H in

the hidden layer is
H=+m=xn (15)

Since the next pickup latitude and longitude are predicted separately using
two inputs viz. drop-off latitude and longitude, the number of nodes in the
hidden layer is 1.

We apply an incremental ANN method using a Damped window model
(with A = 0.5 and window size= 1 hour) on the NyCl, NYC2 and PORTO
datasets. In Table[15] we compare the MMR method with the ANN method.
We find that for the Nyc1 dataset, the ANN method performs comparably
with the MMR in terms of prediction accuracy but for both the Nyc2 and
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Figure 10: ECDF plots for the Mean Geodesic Distance Errors (MGDE) by
prediction horizons for SSR, RS50NNR10P, MMR and Ensemble on each of
the three datasets for the next pickup prediction problem
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the PORTO datasets, the MMR method has a better prediction accuracy than
that of the ANN method in terms of the AMGDE / AMedGDE. In Figure
we give the plot of the ECDF curves of the MGDE for both the ANN and
MMR methods. We find that both the ECDF curves of ANN and the MMR
methods overlap each other for all the three datasets and hence we cannot

comment on which one of these two methods is better.

Table 15: Performance comparison of the MMR method with the ANN
method on the modified NYC1l, NYC2 and PORTO datasets for next pickup
prediction using a 1 hour Damped window model with A = 0.5

Dataset Name Method Name AMGDE AMedGDE

ANN 1.5538 1.0605
NYCl MMR 1.5555 1.0647
ANN 1.5555 1.0817
NY©2 MMR 1.5274 1.0565
ANN 1.3696 1.0854
PORTO MMR 1.2495 1.0023
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Figure 11: ECDF plots for the Mean Geodesic Distance Errors (MGDE) by
prediction horizons for MMR and ANN on each of the three datasets for the

next pickup prediction problem
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10 Conclusion

In Table [L6] we give a summary of performance of the four methods viz. SSR,
RS50NNR10P, MMR and the Ensemble method (using an one hour Damped
window model with A = 0.5) for the destination prediction problem on the
five different datasets considered in this paper. We find that on the whole,
the MMR and the Ensemble method performs better than the other two
methods. Thus if a single method is desired to be implemented for such
a problem we recommend the MMR method while if enough resources are
available then the Ensemble method can be implemented.

In Table 17 we give a summary of performance of the four methods for
the next pickup prediction problem on three different datasets using an one
hour Damped window model with A = 0.5. We find that the Ensemble
method performs better than the other three methods in this case. However,
if resource constraints dictate implementation of a single method then we rec-
ommend the MMR method as on the whole it has the next best performance
after the Ensemble method.

In the datasets considered in this paper the travel distances were generally
short. Thus the true potential of the SSR method may not have been fully
exploited. It would be interesting to see whether the accuracy of the SSR
method improves when the travel distances are larger, say in the case of
inter-city travel.

In this paper, we have examined the destination / next pickup location
prediction problem and have proposed four new incremental learning meth-
ods. We find from our studies that the MMR is the best performing method
in terms of prediction accuracy when the training data sizes are large. When
the training data sizes are small to moderate then both the RF and SVR
methods are good choices considering both prediction accuracy and total
computation time. When the next pickup prediction problem is consid-
ered the MMR method and the Ensemble (combination of SSR, MMR and
RS50NNR10P) are both good performers in terms of prediction accuracy.
The MMR method is also seen to be generally better than incremental ANN
method in terms of prediction accuracy.
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Table 16: Summary of performance of the four methods for destination pre-
diction on different datasets using a 1 hour Damped window model with

A= 0.5
. No. of Pred Avg. Pred Avg. Training Method } /
Dataset Horizons Horizon Size* Window Size* Name AMGDE - AMedGDE
SSR 2.7293 1.8808
RS50NNR10P 2.3189 1.7837
g
NYC1 119 6825 39879 MMR 2.9609 L7176
Ensemble 2.3089 1.721
SSR 2.7043 1.8855
RS50NNRI10P 2.2954 1.77
.
NYez2 95 6806 38433 MMR 22522 1.7291
Ensemble 2.3024 1.735
SSR 2.2438 1.7649
RS50NNR10P  2.1365 1.66
PORTO 167 208 1233 MMR 2.1115 1.5957
Ensemble 2.0837 1.602
SSR 1.1256 0.8609
RS50NNR10OP  1.3437 1.0672
SFBLACK 167 146 869 MMR 1.0932 0.8716
Ensemble 1.1104 0.8849
SSR 2.6469 2.0052
RS50NNRI10P 2.9434 2.4807
EQR
BORO 167 1481 8585 MMR 25933 2.0984
Ensemble 2.6003 2.0888

* rounded up to the nearest integer
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Table 17: Summary of performance of the four methods for the next pickup
location prediction on different datasets using a 1 hour Damped window
model with A = 0.5

No. of Pred Avg. Pred Avg. Training Method

Dataset Horizons Horizon Size* Window Size* Name AMGDE  AMedGDE
SSR 1.6817 0.9917
RS50NNRI10OP 1.7114 1.1887
NYC1 119 6335 37057 MMR 15555 1.0647
Ensemble 1.5288 0.984
SSR 1.6635 1.0223
.. . RS50NNRI10OP 1.6464 1.5533
NYC2 % 6320 35803 MMR 1.5274 1.0565
Ensemble 1.4905 0.9796
SSR 1.8326 1.2711
RS50NNR10P 1.2589 1.0176
PORTO 167 191 1139 MMR 1.2495 1.0023
Ensemble 1.2605 0.9858

* rounded up to the nearest integer
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