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Abstract
The analysis of data streams offers a great opportunity for develop-

ment of new method- ologies and applications in the area of Intelligent
Transportation Systems. In this paper, we propose a new incremental
learning approach for the travel time prediction problem for taxi GPS
data streams in different scenarios and compare the same with four
other existing methods. An extensive performance evaluation using
four real life datasets indicate that when the drop-off location is known
and the training data sizes are small to moderate the Support Vector
Regression method is the best choice considering both prediction ac-
curacy and total computation time. However when the training data
size becomes large the Randomized K-Nearest Neighbor Regression
with Spherical Distance becomes the method of choice. Even when
the drop-off location is unknown then the Support Vector Regression
method is the best choice when the training data size is small to mod-
erate while for large training data size the Linear Regression method
is a good choice. Finally, when continuous prediction of remaining
travel time and continuous updating of total travel time along the
trajectory of a trip are considered we find that the Support Vector
Regression method has the best predictive accuracy. We also propose
a new hybrid method which improves the prediction accuracy of the
SVR method in the later part of a trip.

Keywords: Data Stream Mining, Incremental Learning, Real-time,
Spherical Data Analysis, Stochastic Dominance, Streaming Data
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1 Introduction

Nowadays, one can find and avail GPS based cab services such as Uber,
Lyft, Didi, Ola etc. almost anywhere in the world. A GPS enabled taxi
continuously collects and records the geo-spatial location data for each trip
it travels. These recorded geo-spatial location data are often referred to as
GPS traces which is a very rich data source for understanding the mobility
patterns of passengers and also the demand.

The GPS traces are a rich source for streaming data which can be defined
as continuous flow of data from a source that arrives at a very fast pace
Ellis (2014). Streaming data (a.k.a Data Streams) allows for gathering of
real time or near real time insights. Analysis of streaming data comes with
a great deal of challenges which we will discuss in details in Section 2.1.

In this paper, we are interested in the travel time prediction problem. For
a transport dispatch system, it is useful to know that for how long a cab will
be occupied. This can help the transport dispatch system in vehicle allocation
and can also help in improving their service efficiency. We propose a new
method and adapt four other methods already existing in the literature to the
streaming data context and carry out an extensive performance comparison
study on four real world datasets. A similar comparison of performance study
was conducted using a trajectory level dataset details of which is discussed
in Section 9.

The rest of the paper is structured as follows. Section 2 gives a back-
ground of various concepts that we will be using in this paper. This is
followed by a brief review of the literature in Section 3. In Section 4 we
describe the dynamic travel time prediction problem. Section 5 discusses the
methodology and Section 6 describes the datasets used in this paper. Sec-
tion 7 discusses the results of the various experiments conducted. In Section
8 we discuss the static data experiment and the computation time analysis
conducted for the different methods. Section 9 presents the analysis of the
continuous travel time prediction and continuous updating of total travel
time problem with a trajectory level dataset. Finally, Section 10 concludes
the paper.
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2 Background

2.1 Streaming Data

Streaming data (a.k.a. Data Streams) can be defined as a sequential and
continuous flow of data from a source that arrives at a very high speed (Ag-
garwal, 2006, Muthukrishnan, 2003). The major sources of streaming data
presently are customer clickstreams, social networks, GPS data streams, op-
erational monitoring using sensors, mobile data traffic, online advertising
and Internet of Things (IoT). Analysis of streaming data can benefit deci-
sion making in multiple domains viz. network monitoring, high frequency
finance, web mining, etc (Ellis, 2014). Analysis of streaming data comes
with its share of challenges which were identified in Aggarwal (2006), Gama
(2010) and Babcock et al. (2002) as (a) single pass processing of data since
multiple passes are not feasible (b) the presence of Concept Drift i.e. the
characteristics of the incoming streaming data may change over time and (c)
fast near real time analysis of data due to high speed of incoming streaming
data.Thus, we see that streaming data is very different from static data.The
conventional methods for static data analysis assume that the entire data
is always available and multiple passes over the data set is possible. Since
both of these assumptions are not true in a streaming data set up, analysis
of streaming data needs newer methods.

A major challenge for streaming data mining algorithms is the ability
to tackle the Concept Drift. Often such algorithms need to discard older
data points and update the model parameters frequently to ensure that the
model performs well. These algorithms continuously learn from the incoming
streaming data which is very much different from batch learning methods
where we don't need to update the parameters repeatedly.

The streaming data mining algorithms can be broadly classified into on-
line learning or incremental learning algorithms based on the update fre-
quency of model parameters.The online learning methods update the model
parameters as new observations comes in whereas an incremental learning
algorithm updates the parameters when a batch of new training examples
comes in (Büttcher et al., 2010). We will discuss this further in the Method-
ology section of this paper (see Section 5).
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2.2 Spherical Data

Sometimes observations come in the form of directions. It can be either in
two, three or even higher dimensions. This kind of data is known as Direc-
tional data and the area of statistics that deals with such data is known as
Directional data analysis. Directional data in two dimensions can be viewed
as points on a unit circle and directional data in three dimensions can be
viewed as points on a unit sphere. That's why these are called Circular
data and Spherical data respectively (Jammalamadaka and Sengupta, 2001,
Mardia and Jupp, 2000). Spherical data arise in various contexts such as
in understanding structure of proteins in bioinformatics (Oldfield and Hub-
bard, 1994), geological studies of paleomagnetism in rocks (Mardia and Jupp,
2000), etc.

The analysis of spherical data is very different from that of linear data.
For example let us take the case of a basic summary statistic like mean.
The spherical mean of n spherical data points y1, . . . , yn is ȳ0 = ȳ/||ȳ|| and
not simply ȳ which is the case with trivariate linear data(Mardia and Jupp,
2000). Both Fisher et al. (1993) and Mardia and Jupp (2000) gives a detailed
account of different methods for statistical analysis of Spherical data. But
most of these methods are in the batch learning setting and application of
these methods in the streaming data context has not been previously reported
in the literature to the best of our knowledge.

In the context of this paper, we focus on the spherical data analysis for
geo-spatial location coordinate data since these location coordinate points
can be seen as points on earth (which is approximately spherical). We will
incorporate the idea of spherical distance in k-NN regression (see Section 5.2)
and will also compare it's performance with conventional k-NN regression i.e.
using euclidean distance assuming location coordinates are linear data (please
refer to Table 3).

2.3 K Nearest Neighbour (k-NN) Regression

Suppose there are n training pairs (x1, θ1), . . . , (xn, θn) where xj is of dimen-
sion p and θj indicates the class category of xj. Now suppose that T is a test
pattern whose class category is not known. Now, if

d(T , xu) = min{d(T , xj)} (1)

where j = 1, . . . , n and d is a distance metric, then T is assigned class θu
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(Cover and Hart, 1967, Murty and Devi, 2011).

The above rule is referred to as the nearest neighbor rule (Cover and
Hart, 1967). A generalization of this rule is the k-NN algorithm where a new
observation T is assigned the the class category that occurs most frequently
in ST where ST consists of k observations (k > 1) from the training set which
are nearest to T as per the distance metric d. In case of a tie, it may be
broken by choosing one of the tied classes at random. In a regression set-
up the above method can be used for predicting the value of the response
for a given test instance by averaging the values of the response for the
observations in ST . This method is referred to as k-NN Regression (Navot
et al., 2006).

The choice of the distance metric can greatly affect the performance of the
k-NN model and the choice of the same depends on the application in hand.
The most commonly used distance metric is the Euclidean distance. Alter-
native distance metrics that have been considered in the literature include
Manhattan distance, Mahalanobis distance and many more (Weinberger and
Saul, 2009). In Section 5.2 of this paper we have used the spherical distance
as the distance metric.

2.4 Artificial Neural Networks

The origins of Neural networks can be traced back to studies trying to under-
stand and mathematically represent the information processing in biological
systems (Rosenblatt, 1962, Rumelhart et al., 1986, Widrow and Hoff, 1988).
In this paper, we focus on a specific class of neural networks called “Feed
forward neural networks” (a.k.a Multilayer Perceptrons) (Bishop, 2006). A
neural network basically consists of an input layer, an outpur layer and with
one or more hidden layers sandwitched between the input and output layers.
Each layer consists of one or more nodes (a.k.a. neurons). A basic neural
network structure with one hidden layer is given below. Suppose the input
layer consists of P nodes coreesponding to the input variables are x1, . . . , xP .
Then let

c
(1)
j =

P∑
i=1

w
(1)
ji xi + w

(1)
j0 (2)

where j = 1, . . . , N and the superscript (1) denotes that all these parameters
belong to the first (or hidden) layer of the network. Equation 2 represents N

W.P. No. 2017-03-03 Page No. 6



linear combinations of the input variables x1, . . . , xP where N is the number
of nodes in the hidden layer. w

(1)
j0 is known as the bias, w

(1)
ji are the weights

and c1j are called the activations. These activations are transformed by a non-
linear differentiable activation function g(·), as represented below in equation
3.

dj = g(c
(1)
j ) (3)

The dj's represent the output of the hidden units (i.e. hidden nodes). The
dj's are again combined as shown in equation 4 below to obtain c2k's which
are the output unit activations.

c
(2)
k =

N∑
j=1

w
(2)
kj dj + w

(2)
k0 (4)

Here k = 1, . . . , K and K denotes the total number of outputs. Again the
superscript (2) denotes that these weights are related to the second layer
of the network (in this case the output layer). Then again an activation

function g2(·) is used to transform the c
(2)
k 's to finally give the network outputs

yk = g2(c
(2)
k ) (Bishop, 2006). The activation functions are often taken as the

sigmoidal function. A neural network can be used for both classification and
regression problems.

A neural network can be represented using a network diagram and in
case of a feed forward neural networks, there is no closed directed cycles
(Bishop, 2006). Ripley (1996), Kreinovich (1991), Hornik et al. (1989) and
Hornik (1991) explores the approximation properties of feed forward neural
networks and Hornik et al. (1989) describes multilayer feed forward neural
networks as “universal approximators”. In this paper, we have used a three
layer feed forward neural network with one hidden layer and a sigmoid ac-
tivation function. The number of hidden nodes is taken in accordance with
the Geometric pyramid rule (Masters, 1993) which states that for a three
layer feed neural network with p inputs and q outputs the number of hidden
nodes H in the hidden layer is

H =
√
p ∗ q (5)

2.5 Support Vector Regression

The Support Vector Regression (SVR) technique (Vapnik, 1995) is an exten-
sion of the Support Vector Machine (SVM) technique for classification (Boser
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et al., 1992). Using the kernel trick the support vector machines map the
input vectors x into a high dimensional feature space Z (Cortes and Vap-
nik, 1995). This makes the data linearly separable in the higher dimensional
space (Hastie et al., 2009).

Suppose the training data is represented as {(x(1), z1), . . . , (x(n), zn)} ⊂
I × R where I denotes the feature space of the input patterns. A simple
linear regression function is represented as given below in equation 6.

y(x) = w · x+ b where w ∈ I, b ∈ R (6)

Here w and b are the parameters and (w · x =
∑k

i=1wixi) represents the
dot product of parameter w = (w1, . . . , wk) and input data x = (x1, . . . , xn).
In case of support vector regression, the quadratic error function used in
ordinary least squares (OLS) linear regression is replaced by an ε-sensitive
error function (Vapnik, 1995). For any ε > 0, the ε-sensitive error function
Fε has the property that Fε(y(x) − z) = 0 if |y(x) − z| < ε (Bishop, 2006).
Here, y(x) and z denotes the prediction and the target respectively. So
the goal is to fit a linear function y(x) such that y(x(i)) are within the ε
deviation from the targets zi for as many of the training data points as
possible (Smola and Schölkopf, 2004). Since an ε deviation between y(x(i))
and zi is “permissible”, so this technique is also known as ε-SVR. More
precisely, in ε-SVR we minimize the regulated error function as formulated
by Vapnik (1995) which is given below

Min C
N∑
n=1

Fε(y(x(n))− zn) +
1

2
||w||2 (7)

where C is the regularization parameter, Fε and y(·) are as given above.
Vapnik (1995) also gave an alternative formulation for this optimization

problem given in equation 7 by using slack variables ζn, ζ
∗
n as given below

Minimize
1

2
||w||2 + C

N∑
n=1

(ζn + ζ∗n)

subject to zn ≤ y(xn) + ε+ ζn,

zn ≥ y(xn)− ε− ζ∗n,
ζn, ζ

∗
n ≥ 0, C > 0.

(8)

The above optimization problem can be solved by introducing Lagrange mul-
tipliers and by optimizing the Lagrangian (see Bishop (2006) for more de-
tails).

W.P. No. 2017-03-03 Page No. 8



In this paper, as is typical for non linear regression problems, we first use
the “kernel trick” with the Radial basis function (RBF) kernel discussed in
James et al. (2014). We then apply the SVR algorithm as discussed above.
The RBF kernel is defined as

K(x, x∗) = exp(−γ||x− x∗||2) (9)

where γ > 0 is a parameter. The training time and space complexity for SVR
(or SVM) with kernels are O(n3) and O(n2) respectively where n is the size
of the training dataset (Tsang et al., 2005). Thus, we can see SVR requires
a high computation time especially for large datasets.

2.6 Ensemble Methods

Ensemble learning is an effective method for increasing the prediction accu-
racy for out-of-sample data and it is widely used in machine learning and
statistics disciplines (Hastie et al., 2009). It basically combines the predic-
tions from various alternative models. Over the years various technique have
been developed for creating ensembles e.g- Bagging(Breiman, 1996), Boost-
ing (Freund and Schapire, 1997, Schapire, 1990), Random Forests (Breiman,
2001) and Stacking (Wolpert, 1992). A summary of these techniques for
ensemble learning can be found in Hastie et al. (2009).

In this paper, we focus on multi-model ensembles. The simplest way
to create such an ensemble is to use a variety of regression models on the
training data and then combine their predictions using an averaging scheme.
Among the various combination methods, the simplest to implement is the
averaging rule since it needs no prior training (Hjort and Claesken, 2003,
Kotsiantis and Pintelas, 2005). The other combination techniques available
in the literature include weighted average and Bayesian Model Averaging
(BMA) (Hjort and Claesken, 2003). We have chosen the simple averagng
rule for use in this paper (see Section 7).

2.7 Stochastic Dominance

Suppose there are two distributions P and Q with cumulative distribution
functions (CDFs) FP and FQ respectively. The distribution Q is said to
be stochastically dominant over distribution P at first order, if for every
x, FP (x) ≥ FQ(x) (Davidson, 2008). The distribution Q is said to be sec-
ond order stochastically dominant over P if for every x,

∫ x
−∞ FQ(y)dy ≤
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∫ x
−∞ FP (y)dy (Levin, 2006). Stochastic dominance of higher orders can be

similarly defined. Also, it is well established fact that stochastic dominance
at an order say S implies stochastic dominance at all orders higher than S
(see Davidson (2008) for more details).

Geometrically the stochastic dominance of the first order can be visual-
ized by examining the plots of the CDFs for the two distributions P and
Q together. If P is stochastically dominant over Q of the first order then
the CDF of P is to the right of that of Q and they do not cross each other.
Since in many situations, as in this paper, the CDFs P and Q are not known
they need to be estimated from the data. Since by the Dvoretzky-Kiefer-
Wolfowitz inequality (Wasserman, 2010, p. 99) we know that the empirical
cumulative distribution function (ECDF) approximates the CDF very well
when sample size is large, we use the ECDF for geometrically checking the
stochastic dominance of first order in this paper in Sections 7.2.1, 7.3.1 and
9.

2.8 Geodesic Distance

The geodesic distance between predicted and actual drop off points is calcu-
lated using the Vincenty inverse formula (Vincenty, 1975) and is called the
Geodesic Distance Error GDE. Geodesic distance or Great circle distance
can be defined as the shortest path between two points on the surface of the
earth (Economou et al., 2004). If there are two points say x and y on the
surface of the earth (i.e. a sphere with radius R) then the geosedic distance
between these two points is represented by Gxy. The radius of earth is as-
sumed to be 6378137 meters and (φx, µx) and (φy, µy) denotes the latitude
and longitude of the points x and y. Then the geodesic distance between
these two points can be obtained by using the following equation (i.e. equa-
tion 10) as described in Gade (2010).

Gxy = R · arccos(sinφx · sinφy + cosφx · cosφy · cos(µx − µy)) (10)

In this paper, we use the Vincenty inverse formula for calculating the
geodesic distances between points on earth's surface. The Vincenty inverse
formula assumes earth to be an ellipsoid (WGS84 coordinates) to calculate
the geodesic distance. This is more accurate than the great circle distance
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methods like Haversine distance (Vincenty, 1975). Chang et al. (2010) dis-
cusses the Vincenty formula for the computation of the geodesic distance Dxy

and it is represented in equation 11 below.

Gxy = R · arctan

(√
(cosφy sin(µx−µy))2+(cosφx cosφy−sinφx cosφy cos(µx−µy))2

sinφx·sinφy+cosφx·cosφy ·cos(µx−µy)

)
(11)

3 Related Work

In this section, we present a brief literature review of the work done on the
travel time prediction problem with GPS enabled vehicles. GPS traces are
instrumental in finding interesting insights that have applications such as
passenger finding (Veloso et al., 2011), hotspot identification (Chang et al.,
2010), vacant taxi finding (Phithakkitnukoon et al., 2010), trajectory map-
ping (Liu et al., 2012), traffic monitoring (Herring et al., 2010), etc. A sum-
mary of various applications of GPS traces in the transportation industry is
given in Chen (2014). The travel time prediction of vehicles from GPS traces
is a challenging problem having lots of applications in the transportation do-
main such as taxi dispatching (Xie et al., 2013), ridesharing (Ma et al., 2013),
etc.

Most of the work in the literature for solving the travel time prediction
problem have used batch learning methods. Mendes-Moreira et al. (2012)
worked on the long term travel time prediction problem. They did a com-
parison of three different methods and found that SVM gave the best results
out of them. Some of the commonly used methods reported in the literature
for solving the travel time prediction problem are linear regression models
(Patnaik et al., 2004), artificial neural networks (Jeong and Rilett, 2004),
SVR (Wu et al., 2004), etc.

In recent years, there has been some work reported in the literature which
has given emphasis to the streaming nature of the GPS data focusing on real
time or near real time prediction. Some of the simpler methods used in this
context are based on OD matrix and how it evolves over time (see for more
details in Moreira-Matias et al. (2016) and Barceló et al. (2010)). Lee et al.
(2009) worked on a real-time knowledge based travel time prediction model
using OD-pairs and meta-rules.

Tiesyte and Jensen (2008) worked on real time position tracking and
travel time prediction of vehicles using the nearest neighbor technique (NNT)
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technique. Hofleitner et al. (2012) worked on arterial travel time forecasting
with streaming data using a hybrid model approach. Recently, some work
has been reported in the literature that uses Artificial neural network (ANN)
for real-time travel time prediction from GPS data (Bai et al., 2015, Gurmu
and Fan, 2014).

Lam et al. (2015) worked on real time prediction of destination and travel
time estimation from given partial trajectories. They used an ensemble learn-
ing model for trip time prediction. Wang et al. (2014) worked on a real time
model for predicting the travel time of a vehicle in a city using the GPS
trajectory data of vehicles. Luo et al. (2013) worked on the travel time pre-
diction problem based on the most frequently used path extracted from large
trajectory data. Wibisono et al. (2016) discusses prediction and visualization
of traffic in a particular region using the FIMT-DD method with streaming
data.

4 Dynamic Travel Time Prediction

In this paper, we consider the dynamic travel time prediction (DTTP) prob-
lem in three different situations. In the first case, we address the problem
of predicting the travel time of a vehicle when the pickup location and the
drop-off coordinates are both known. In the second case, we consider the
more difficult situation of predicting the travel time when only the pickup
location coordinates is known. In the third and final case, we address the
prediction of travel time at different points on the trajectory of the vehicle
when the drop-off coordinates are known. We explore two different types
of problems here. The first one is the continuous prediction of remaining
travel time at each point in the trajectory for a trip and the second one is
dynamic updating of the total travel time at each point in the trajectory for
a particular trip.

5 Methodology

In this section, we propose two new methodologies namely, KNN Regression
with Spherical Distance- KNNRSD and Randomized KNN Regression with
Spherical Distance - RKNNRSD for predicting the travel time when (a)
both the pickup and drop-off location coordinates are known and (b) only the
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pickup coordinates are known. The performance of these methods are then
compared with feed forward neural networks- ANN, linear regression- LR
and support vector regression - SVR suitably adapted for the streaming data
setting. (see Section 5.4). We also build some ensembles of these methods
and compare their performance (see Section 7).

In this paper, our focus is on building an incremental learning algorithm.
Büttcher et al. (2010) mentions that an incremental learning algorithm can
be approximated by using a batch learner along with a sliding window . We
implement this idea by using a batch learner L which is fed a sequence of
data points p1, p2, ..... , pm using a windowing technique (see Section 5.1)
where the value of m may vary from window to window.

5.1 Damped Window Model

As discussed earlier, the phenomenon of “concept drift” presents a formidable
challenge when we are dealing with streaming data. A windowing technique
is a powerful technique to handle concept drift. Cao et al. (2006) defines a
damped window model as a windowing technique that uses an exponential
fading strategy to discard the old data. For this purpose, a fading function
is used where the weight assigned to each data point decreases with respect
to time t. The fading function is represented below

g(t) = 2−λt, where λ > 0 (12)

The decision regarding the discarding of the older data can be influenced
by changing the value of the decay factor (λ). If the value of λ is high
then less importance is given to the older data compared to the more recent
data. In this paper, we have used a variation of the damped window model
technique where instead of assigning weights to each individual data points
based on the fading function, we assign weights to a batch of data points
in an input data stream window and discard the older ones based on an
user defined cutoff. Once the length of the window is determined using the
damping function mentioned in Equation 12, we treat this as a mini batch and
proceed.Therefore, this may also be called a “Mini-batch Window Model” as
it has been done in Putatunda (2017).

Figure 1 shows the distribution of number of observations in training
window and testing window (i.e. the prediction horizons) for the 1 hour
Damped window model for the nyc1, porto and sfblack1 datasets.
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(a) NYC1- 1 hour Window (b) PORTO- 1 hour Window

(c) SFBLACK1- 1 hour Window

Figure 1: Number of observations vs. prediction horizon number for 1 hour
window model for different datasets
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5.2 K-NN Regression with Spherical Distance

In this paper we use the KNNRSD method for solving the travel time predic-
tion problem. We also propose a variant of the KNNRSD which is discussed
in Section 5.3. The KNNRSD has its origins in the literature on Spherical
data analysis (see Section 2.2) and K-NN Regression method (see Section
2.3). The motivation behind using this method is that the predictor vari-
ables i.e. the pickup and drop-off location coordinates (or just the pickup
location coordinates) are points on the surface of earth which can be taken
approximately as a sphere. To the best of our knowledge, there has been no
work reported in the literature that takes into account the spherical nature
of the data while solving the travel time prediction problem for GPS enabled
taxis in streaming data context.

In this paper, we treat the predictor variables as spherical data but the
response variable (in both cases) is linear. Then we perform the KNN re-
gression with the distance metric as Spherical distance which is defined as
the shortest route along the surface between two points U and V lying on
the surface of a sphere. The Spherical distance for the points U and V on
an unit sphere is defined as given below.

Sd = arccos(U · V ) (13)

where U · V represents the dot product (Ratcliffe, 2006).
For comparison purpose we also use KNN-Regression method where the

distance metric is the Euclidean distance (see Section 7). We will refer to
this method as KNNRED.

The KNNRSD algorithm is described below in Algorithm 1. Since the
value of k is chosen from an array given to the user in some cases especially
for very sparse datasets we may have training windows, the size of which is
less than our chosen value of k. In such cases the we need to modify the
choice of k for that window to ensure that the algorithm doesn't terminate.
For this window, we take the value of k to be an integer lower than the
training window size n. For example, suppose we want to run the k-NN
regrssion with spherical distance with k = 50 but the number of observations
in the training window is say 49, then the algorithm chooses the next value
of k from the array which should be lower than 49 i.e. k = 25.
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Algorithm 1 KNNRSD Pseudocode

Require: n > 0, t > 0, k ∈ [5, 10, 15, 20, 25, 50, 100] where, n →
Training Window Size, t → Test Window Size, k →
no. of nearest neighbors (chosen from the array), k[i] →
the value of k at the ith position in the array, i→ 1 to length(array k)
Choose k∗ from array k {Let k∗ = k[i]}
if k[i] < n then

Set k = k[i]
Run k-NN Regression {with Spherical distance metric}

else
Initialize j = 1
While k[i−j] > n
j → j + 1
End While
Set k = k[i−j]
Run k-NN Regression {with Spherical distance metric}

end if

5.3 Randomized K-NN Regression with Spherical Dis-
tance (RKNNRSD)

For large training datasets, the K-NN method is computationally expensive.
It is a memory based technique and has no training cost since whole training
dataset is kept in memory and used for finding similarity with test instances.
The time complexity of the K-NN algorithm is O(np) for a training dataset
with n training patterns and p dimensions (Kusner et al., 2014). So the KNN
method has speed or memory related issues especially when the dataset size
is large. One way to deal with this problem is to reduce the size of the
training dataset without adversely affecting the accuracy of the algorithm.
Also, by deploying efficient algorithms one can increase the computation
speed of the KNN method (Murty and Devi, 2011). Some of the well- known
approaches for increasing the computation speed of KNN reported in the
literature are cluster based trees (Zhang and Srihari, 2004), the branch and
bound technique (Fukunaga and Narendra, 1975, Miclet and Dabouz, 1983),
ordered partitions (Kim and Park, 1986), the projection algorithm (Friedman
et al., 1975), hashing methods (Papadopoulos and Manolopoulos, 2005) and
also use of some specialized data structures such as k-d trees (Shakhnarovich
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et al., 2005).
In this paper we propose a new method RKNNRSD where we first per-

form a simple random sampling of the training dataset. Since this sample is
representative of the whole training dataset we replace the training dataset
with this randomly sampled subset and proceed to use the KNNRSD algo-
rithm as discussed in Section 5.2. The proportion of the original dataset that
needs to be sampled (sampling rate) is an important decision variable and
later in this paper we do extensive sensitivity analysis to suggest a thumb
rule for the same. Later in this paper we demonstrate that this method
greatly increases the computation speed without sacrificing the accuracy of
the procedure.

It may be noted that sometimes especially for sparse training datasets,
the sample size obtained with a sampling rate of r% may be less than the
value of the k nearest neighbors where k is the user defined input. In such
cases we run the KNNRSD on the whole training data.

Algorithm 2 RKNNRSD Pseudocode

Require: n > 0, t > 0, 0 < r < 1, k ∈ [5, 10, 15, 20, 25, 50, 100], s =
r × n, where, n → Training Window Size, t →
Test Window Size, r → Sampling Rate, s →
sample size after performing SRS with sampling rate r, k →
no. of nearest neighbors (chosen from the array)
if s < k then

Run KNNRSD (with training window size = n)
else

Run KNNRSD (with training window size = s)
end if

5.4 Other Methods

In this paper, we will compare the proposed method with three different
methods using the evaluation metrics that are discussed in Section 7. The
methods are ANN (Bishop, 1995), SVR (Vapnik, 1995) and linear regression
(Fox, 2008). All of these methods are executed along with a Damped window
model as is the case with the KNNRSD and RKNNRSD methods discussed
above.
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LR The usage of the simple linear regression method has been reported in
the literature for solving travel time prediction problem mostly in the batch
data setting as mentioned in Section 3. Since we are working with stream-
ing data we adapt the linear regression technique to devise an incremental
method using a Damped window model in this paper. We call this method
LR.

ANN The motivation behind selecting the artificial neural networks for
comparison purpose is its popularity for solving the travel time prediction
problem as discussed in Section 3. We apply a three layer feed forward
neural network with one hidden layer and a sigmoid activation function.
The number of hidden nodes is taken to be 2. This is in accordance with the
Geometric pyramid rule as discussed in equation 5. We adapt the standard
ANN algorithm to the streaming data setting by using a Damped window
model. We call this method ANN in this paper.

SVR The SVR method, which is a popular non-linear and non-parametric
technique in the batch data setting but it is not that popular in the streaming
data set-up. Two major issues are (a) the computation of support vectors
need matrix based operations and (b) the support vectors need to be stored
in the memory during the training stage which might be infeasible for some
applications (Laskov et al., 2006, Moreira-Matias et al., 2016). Apart from
this, the time complexity of SVR is O(n3) (see Section 2.5) and so for large
training datasets, the computation time is very high. But in batch setting,
the usage of SVR for solving the travel time prediction problem is reported
in the literature and also in some studies it has been seen that SVR performs
relatively better than other methods. Taking these into account and also
the fact that not much work has been done with SVR for solving the travel
time prediction problem in streaming data context, we decide to adapt the
SVR algorithm using the Damped window model and use it for comparison
purpose. We have implemented an ε-SVR method as discussed in Section 2.5
with a RBF kernel. Henceforth we will call this method SVR.

6 Data

We use the New York City (NYC) Taxi and Limousine Commission (TLC)
yellow taxi data from 1st January, 2013 to 5th January, 2013 as our primary
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dataset. This is a publicly available dataset which can be found at the NYC
Taxi and Limousine Commission website (NYC-TLC, 2014). The dataset
description and other details related to its pre-processing are given in Section
6.1. Moreover, we have also tested the performance of our methods on other
real world datasets which are discussed in Section 6.2. We have taken a
subset of the data (period- for few days or 1 week) rather than the entire
data available at these public data sources because our focus is mainly on
examining the performance of the different methodologies and comparing
them. Since we are working with streaming data and are using a windowing
approach with a fixed prediction horizon, the total size of the data is not
going to affect the performance of these incremental learning algorithms as
it would have in the batch data setting.

6.1 NYC Yellow Taxi GPS Data

The NYC Yellow Taxi GPS dataset consists of various attributes related to
the taxi pickup and drop-off coordinates, their corresponding timestamps,
information related to trip travel time and distance travelled and payment
related information. The dataset has been cleaned of missing values and some
other anomalies like erroneous GPS coordinate values. The total number of
observations in the cleaned dataset for the period 1st to 5th January, 2013
is 824,799. This dataset serves as the primary dataset on which the different
models are tested. It is used for tasks such as determining the value of
K to be used in KNNRSD, determining the “best” sampling rate for the
RKNNRSD, comparing the performance of the various methods etc. We
will refer to this dataset as nyc1.

Another slice of this dataset for the time period 13th - 16th January, 2013
containing 680,865 observations (after data cleaning), is used for comparison
of performances of the different methods. We will refer to this dataset as
nyc2.

For both nyc1 and nyc2, we would be using the attributes as given in
Table 1.

6.2 Other datasets

This section gives a brief description of the two other datasets that have been
used in this paper for the purpose of testing the performance of the different
methods.
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Table 1: nyc1 and nyc2 - Attribute Description

Attributes Description

medallion an unique id of the taxi - vehicle bound
pickup datetime time when the passenger(s) were picked up
dropoff datetime time when the passenger(s) were dropped off
pickup longitude pickup location's longitude coordinate
pickup latitude pickup location's latitude coordinate
dropoff longitude drop-off location's longitude coordinate
dropoff latitude drop-off location's latitude coordinate
trip time in secs time taken for the trip
trip distance distance travelled in miles

6.2.1 Porto GPS Taxi Data

The Porto GPS taxi dataset is publicly available and was first used in
Moreira-Matias et al. (2013). This dataset contains for each trip information
regarding taxi stand, call origin details, unique taxi id, unique trip id and the
Polyline. The Polyline is a string of GPS coordinates with each coordinate
being obtained after every 15 seconds of the trip beginning with the pickup
and ending with the dropoff. For our analysis we have taken the trip details
for 1st- 7th July, 2013 which consists of 34,768 observations. We obtained the
travel time, pickup coordinates (start latitude, start longitude) and drop-off
coordinates (dest latitude, dest longitude) from this dataset. We will refer
to this dataset as porto.

6.2.2 San Francisco black cars GPS traces

This publicly available dataset consists of anonymized GPS traces of Uber
black cars in San Francisco for one week (1st-7th January, 2007) (Henry,
2011). For each trip location coordinates are recorded every 4 seconds start-
ing with pickup and ending with drop-off. The first record for each trip gives
the pickup time, pickup latitude and longitude and the last record gives the
drop-off time, dropoff latitude and longitude. Also, similar to the porto
dataset, we obtained the travel time, pickup coordinates and drop-off co-
ordinates for each trip from this dataset. This derived dataset has 24,552
observations after data cleaning. We will refer to this dataset as sfblack1.

For the continuous updating and continuous prediction problem as given
in Section 9, we take the trajectory level data for the 1st day of the week
(1st January, 2007) of the black cars GPS trace data (Henry, 2011). This
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dataset has 92,694 observations after data cleaning and comprises location
details and the corresponding timestamps for 1791 unique trip IDs. We will
refer to this dataset as sfblack2.

7 Experimental Results

In this section, we report the findings of the different experiments done on
the nyc1 dataset with the four methods discussed in Section 5 to assess
their performance. The performance evaluation metrics are discussed in Sec-
tion 7.1. The entire data stream flow, model building and data analysis is
implemented using the software R version 3.3.1(R Core Team, 2016). The
R packages Directional (Tsagris and Athineou, 2016), lubridate (Grolemund
and Wickham, 2011), nnet (Venables and Ripley, 2002), e1071 (Meyer et al.,
2015) and ggplot2 (Wickham, 2009) has been used for doing our experiments.
A sensitivity analysis on the choice of λ, window size and sampling rate (for
RKNNRSD method) has been carried out and the results are reported in Sec-
tion 7.2. The experiments were carried out on a system with 24 GB RAM
and Intel Xeon processor 2.67 GHZ with a 64 bit Windows Server 2012 OS.

7.1 Evaluation Metrics

To compare the performance of different methods, we will use the Aggregated
Mean Absolute Error (AMAE) and the Aggregated Median Absolute Error
(AMedAE) as the evaluation metrics.

If we record the Mean Absolute Errors (MAE) for each prediction horizons
then the AMAE can be defined as follows.

AMAE =

∑n
i=1MAEi
n

(14)

where n is the number of prediction horizons, MAEi is the MAE in the ith

prediction horizon.
Similarly, if we record the Median Absolute Errors (MedAE) for each

prediction horizons then the AMedAE can be defined as follows.

AMedAE =

∑n
i=1MedAEi

n
(15)

where n is the number of prediction horizons, AMedAEi is the MedAE in
the ith prediction horizon.
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The AMAE and AMedAE are the two evaluation metrics used in this
paper for comparing the performance of the different methods. The method
with the least value of the chosen evaluation metric is considered the “best”
method as per that metric. The units of both of these evaluation metrics are
in “seconds”.

7.2 Results- Travel Time Prediction when the drop-off
coordinates are available

In this section, we discuss the results of the various experiments that we
have conducted for the travel time estimation problem when both pickup and
dropoff coordinates are known as described in Section 4. We first apply the
KNNRSD method on the nyc1 dataset and perform a sensitivity analysis to
select the most appropriate parameters by comparing the evaluation metrics
(AMAE and AMedAE). We do the same for RSKNNRSD as well. Then we
compare the results of the RSKNNR (with the chosen parameters) with the
other methods viz. LR, ANN and SVR as discussed in Section 5.4.

In table 2 we show the performance of the KNNRSD method for different
values of K, window sizes and λ. We vary K= 5, 10, 15, 20, 25, 50 and 100,
window sizes = 15 minutes, 30 minutes and 1 hour and λ = 0.25, 0.5 and
0.75. Please note that we could have also taken much lower window sizes say
2 mins or 5 mins especially for the nyc1 dataset. But for sparse datasets such
as sfblack1 and porto, there are none or very few observations in some of
the windows. For example, if we take the case of 5 minutes window size for
the 1st hour in the sfblack1 dataset, around 25% of the 5 minutes windows
contains no observations. This can cause problem for our comparison exercise
since in some cases the model will not be updated for time duration greater
than 5 minutes. Hence, we focus our study on window sizes of 15 minutes,
30 minutes and 1 hour.

We find that for K = 25, the prediction accuracy is highest consistently
for different window size and values of λ. Hence, we choose K = 25. For
the window size, we can see that there isn't much difference in the AMAE/
AMedAE values for three window sizes considered in this experiment. We
therefore proceed with a window size of 1 hour. From the discussion in
Section 5.1, we see that the value of λ is dependent on the amount of concept
drift. For this experimental study we choose a middle value i.e. λ = 0.5.

In Table 3, we demonstrate that there isn't much difference in AMAE/
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Table 2: Performance of KNNRSD method for different values of K, λ and
window sizes (W)

K W
λ

0.25 0.5 0.75

AMAE AMedAE AMAE AMedAE AMAE AMedAE

5

15 min

173.16 117.20 168.56 117.68 168.10 121.26
10 166.81 114.71 163.17 114.46 163.30 117.52
15 165.19 114.44 162.22 113.90 163.00 116.73
20 164.80 114.89 162.46 114.04 163.74 116.24
25 164.83 115.68 163.10 114.51 164.80 116.23
50 166.70 120.32 167.87 118.10 171.03 117.84
100 171.55 127.78 176.20 124.25 181.50 121.53

5

30 min

184.84 131.26 173.80 121.35 170.67 118.97
10 178.04 127.64 167.41 117.75 164.90 115.52
15 175.95 126.50 165.69 116.68 163.55 114.77
20 175.05 125.99 165.25 116.36 163.43 114.62
25 174.67 125.88 165.25 116.31 163.75 114.89
50 174.74 125.97 167.01 117.90 166.87 117.26
100 176.53 127.41 171.71 121.23 173.27 122.02

5

1 hr

207.63 151.76 185.78 132.32 179.58 125.45
10 200.10 148.12 179.15 128.24 173.14 122.62
15 198.11 147.30 177.07 127.14 171.29 121.71
20 196.95 146.88 176.14 126.56 170.66 121.08
25 196.35 146.22 175.78 126.45 170.45 120.95
50 195.57 145.92 175.85 126.49 171.36 121.82
100 196.06 145.88 177.69 127.90 174.48 123.94
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AMedAE values if we work with Euclidean distance instead of the spherical
distance. So, we proceed with the spherical distance metric in the KNNRSD
since it hasn't been explored much in the intelligent transportation domain.

Table 3: Comparison of KNNRSD (Spherical distance) and KNNRED (Eu-
clidean distance) for different values of K using a 1 hour Damped window
model with λ = 0.5 on the NYC1 dataset

K
KNNRSD KNNRED

AMAE AMedAE AMAE AMedAE

5 185.78 132.32 185.96 131.92
10 179.15 128.24 179.39 128.38
15 177.07 127.14 177.34 127.32
20 176.14 126.56 176.39 126.69
25 175.78 126.45 176.01 126.74
50 175.85 126.49 176.06 126.78
100 177.69 127.90 177.83 128.06

In table 4 the performance of RKNNRSD is given for different sampling
rates viz. 5%, 10% and 20%, K and window sizes with λ = 0.5. As before
we vary K= 5, 10, 15, 20, 25, 50 and 100 and window sizes = 15 minutes, 30
minutes and 1 hour. For similar reasons as discussed in the case of KNNRSD
we choose K = 25 and window size = 1 hour. We note that at sampling rate
of 20 % the AMAE/ AMedAE values are quite close to that of KNNRSD .
Thus we use R25NNRSD20P (i.e. RKNNRSD with K = 25 and sampling
rate = 20%) for further study.

As discussed in Section 2.6, Ensemble methods sometimes work better
than the individual methods. In view of this we create a multi-model ensem-
ble comprising SVR and R25NNRSD20P.

7.2.1 Prediction Accuracy Analysis - Travel Time Prediction when
drop-off coordinates are available

In this section, we have studied the five methods viz. (i) R25NNRSD20P,
(ii) ANN, (iii) LR, (iv) SVR and (v) the Ensemble of R25NNRSD20P and
SVR methods for predicting the travel time using both the pickup and drop-
off latitude and longitude as predictor variables. A 1 hour Damped window
model with λ = 0.5 is fixed. This study is carried out on four different
datasets namely, nyc1, nyc2, porto and sfblack1 and the results ob-
tained are given in Table 5. Among the nonensemble methods the predic-
tion accuracy of the SVR method is found to be the best followed by the
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Table 4: Performance of RKNNRSD method for different values of K, Sam-
pling Rate and window sizes (W)

K W
Sampling Rate

5% 10% 20%

AMAE AMedAE AMAE AMedAE AMAE AMedAE

5

15 min

195.74 138.84 185.66 130.82 178.00 124.64
10 198.23 140.22 184.86 130.64 175.03 123.28
15 204.46 144.42 188.04 133.03 176.51 124.26
20 211.55 148.26 191.95 135.80 178.72 126.07
25 218.81 152.79 195.83 138.14 181.15 127.88
50 249.22 172.65 215.69 150.14 192.84 135.70
100 256.74 186.89 247.49 171.02 214.05 148.87

5

30 min

193.07 136.75 185.57 130.60 180.30 126.57
10 191.88 135.51 182.51 129.23 175.69 123.73
15 194.80 137.42 183.67 129.73 175.61 124.06
20 198.40 140.04 185.78 131.28 176.51 124.87
25 202.16 142.44 188.06 132.73 177.82 125.81
50 220.40 153.49 199.14 139.97 185.16 130.64
100 249.19 171.40 218.66 151.82 197.47 138.71

5

1 hr

197.79 140.56 193.21 136.49 189.90 134.97
10 192.56 138.16 187.74 134.11 184.03 131.63
15 192.54 138.19 186.74 134.08 182.69 130.94
20 193.71 138.97 186.91 134.39 182.36 131.04
25 195.44 139.99 187.53 134.57 182.48 131.22
50 205.70 146.08 192.83 138.16 185.07 132.96
100 223.71 156.74 204.18 145.10 191.48 137.34
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R25NNRSD20P method. The prediction accuracy of the ensemble compris-
ing SVR and R25NNRSD20P is seen to be close to be comparable with that
of the SVR method.

Table 5: Performance of the five methods on nyc1, nyc2, porto and sf-
black1 datasets using a 1 hour Damped window model with λ = 0.5

Method Name
Dataset Name

NYC1 NYC2 PORTO SFBLACK1

AMAE AMedAE AMAE AMedAE AMAE AMedAE AMAE AMedAE

R25NNRSD20P 182.48 131.22 185.89 133.72 283.75 184.35 115.37 80.72
LR 290.40 233.17 294.04 236.04 331.56 252.22 137.04 114.97
ANN 292.06 235.80 295.81 238.84 334.98 251.63 136.14 114.29
SVR 176.54 125.52 180.03 128.19 243.92 142.89 106.70 74.80
Ensemble 174.60 125.69 178.07 128.37 251.74 156.18 97.14 68.44

An alternative way to compare the performances of these five methods is
by using the concept of Stochastic Dominance as discussed in Section 2.7. We
compute the MAE for each prediction horizon and use the same to compute
the ECDF of the MAE. The ECDF of the MAE is defined as

Fn(x) =
#{MAEi ≤ x}

n
(16)

where n is the number of prediction horizons, MAEi is the MAE in the ith

prediction horizon and #{MAEi ≤ x} is the number of MAEi that are less
than or equal to x.

Figure 2 shows the ECDF plots for the five methods on the four datasets
discussed above. For nyc1, we can see from 2(a) that the curves for LR and
ANN are to the right of other three. The curve for the Ensemble method
is leftmost, followed by SVR and R25NNRSD20P. So, in terms of prediction
accuracy, the Ensemble method is the best performer, followed by SVR and
R25NNRSD20P. Similar conclusion can be drawn for nyc2 as well (see figure
2(b)). In case of porto (see figure 2(c)), we find that the curve for SVR is
to the left of the Ensemble method. So SVR is most accurate here followed
by the Ensemble Method and R25NNRSD20P. For the sfblack1 dataset
(see figure 2(d)) we see that the curves for SVR and Ensemble method cross
each other. Hence neither of them stochastically dominate the other. This
lends further support to our insights obtained from Table 5.
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(a) nyc1 (b) nyc2

(c) porto (d) sfblack1

Figure 2: ECDF plots for the Mean Absolute Errors (MAE) by prediction
horizons for each of the five methods on the four dataset
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7.3 Results- Travel Time Prediction when drop-off co-
ordinates are not known

In this section, we discuss the travel time estimation problem when only
pickup coordinates are known as described in Section 4. As in Section 7.2
we first apply the KNNRSD method on the nyc1 dataset and perform a
sensitivity analysis to choose the appropriate values of window size, K, and
λ using the evaluation metrics. We do the same for RKNNRSD for the values
of window size, K and sampling rate. We then compare the results of the
RKNNRSD method (with chosen parameters) with the LR, ANN and SVR
as discussed in Section 5.4.

In table 6 we show the performance of the KNNRSD method for different
values of K, window sizes and λ. We find that K = 50 is a good choice
of K keeping in mind both the prediction accuracy and computation time.
Moreover, for relatively sparse datasets a higher value of K may lead to
overfitting. As before we set window size = 1 hour and λ = 0.5.

In table 7 the performance of RKNNRSD is given for different sampling
rates viz. 5%, 10% and 20%, K and window sizes with λ held fixed at 0.5.
For similar reasons as discussed above we choose K = 50 and the window
size is taken to 1 hour. It can be seen by comparing Table 6 and Table 7
that for sampling rate = 20% the AMAE/ AMedAE values of RKNNSRD
are closest to the corresponding values of KNNRSD in terms Absolute Per-
centage Error. We call RKNNRSD with K = 50 and sampling rate = 20%
as R50NNRSD20P and use the same for further study.

As discussed in Section 2.6, Ensemble methods sometimes work better
than the individual methods. In view of this we create five different ensembles
with various combinations of the methods viz. R50NNRSD, SVR, LR and
ANN. The first ensemble is a combination of R50NNRSD and SVR and we
will refer to this as Ensemble1. The next one i.e. Ensemble2 is a combination
of SVR and LR. Ensemble3 is a combination of SVR, LR and R50NNRSD.
Ensemble4 is a combination of R50NNRSD and LR. And finally, Ensemble5
is a combination of ANN and LR. Table 8 gives the performance of these five
ensembles for a 1 hour Damped window model with λ = 0.5. We find that
the Ensemble2 is the best performer among the five ensembles.
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Table 6: Performance of KNNRSD method for different values of K, λ and
window sizes (W)

K W
λ

0.25 0.5 0.75

AMAE AMedAE AMAE AMedAE AMAE AMedAE

5

15 min

352.42 270.90 350.00 269.33 349.22 268.50
10 338.05 265.66 335.95 263.51 335.36 263.26
15 333.08 264.25 330.99 262.17 330.27 260.97
20 330.66 263.24 328.43 261.06 327.85 260.49
25 329.18 262.87 327.05 260.77 326.67 260.18
50 326.40 261.90 324.59 260.61 324.29 259.99
100 325.39 262.23 324.20 261.19 324.16 261.14

5

30 min

357.28 273.36 353.55 271.60 352.65 270.66
10 342.60 268.74 339.32 266.6 338.26 265.44
15 337.41 267.52 334.33 264.5 333.24 263.50
20 334.75 266.93 331.86 263.97 330.76 262.78
25 333.17 266.25 330.32 263.61 329.19 262.52
50 329.88 265.12 327.47 262.76 326.39 262.06
100 328.55 265.05 326.43 263.27 325.70 262.36

5

1 hr

360.80 278.55 357.43 273.38 355.76 273.68
10 345.63 273.49 342.69 268.86 340.96 267.38
15 340.53 272.23 337.55 267.2 336.01 265.83
20 337.97 271.64 334.88 266.79 333.41 265.30
25 336.33 271.10 333.25 266.23 331.87 264.82
50 332.98 270.31 330.11 265.24 328.95 264.33
100 331.42 273.59 328.86 265.23 327.83 264.10
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Table 7: Performance of RKNNRSD method for different values of K, Sam-
pling Rate and window sizes (W)

K W
Sampling Rate

5% 10% 20%

AMAE AMedAE AMAE AMedAE AMAE AMedAE

5

15 min

353.5 271.42 352.35 271.03 351.83 270.08
10 340.44 267.38 338.55 265.91 337.56 264.89
15 336.46 267.03 334.5 265.19 333.18 263.72
20 334.74 267.4 332.5 264.78 330.96 263.28
25 334.17 267.94 331.55 265.15 329.89 263.41
50 334.09 271.55 330.46 266.82 328.36 264.45
100 311.28 270.69 332.11 270.58 328.89 266.59

5

30 min

355.12 272.98 354.4 272.46 354.5 272.89
10 341.73 268.38 340.51 267.87 340.04 266.83
15 337.43 267.29 336 266.21 335.24 265.47
20 335.35 266.99 333.96 265.72 332.9 264.91
25 334.44 267.35 332.86 265.98 331.66 265.09
50 333.15 269.04 331.1 266.53 329.77 265.4
100 334.07 272.08 331.48 268.61 329.73 266.62

5

1 hr

358.61 275.31 358.06 275.04 357.24 275.15
10 344.37 270.85 343.43 269.98 342.87 269.21
15 339.96 270.07 338.65 268.68 337.87 267.82
20 337.86 269.78 336.46 268.44 335.43 267.49
25 336.61 269.23 335.17 268.4 333.98 267.11
50 334.49 269.84 333.09 268.45 331.58 267.13
100 334.27 271.13 332.69 269.53 331.03 267.34

Table 8: Performance of Ensemble1 (combination of R50NNRSD and SVR),
Ensemble2 (combination of SVR and LR), Ensemble3 (combination of SVR,
LR and R50NNRSD), Ensemble4 (combination of R50NNRSD and LR) and
Ensemble5 (combination of ANN and LR) using a 1 hour Damped window
model with λ = 0.5

Method AMAE AMedAE

Ensemble1 304.12 239.24
Ensemble2 299.00 234.12
Ensemble3 303.75 243.71
Ensemble4 315.26 260.56
Ensemble5 311.52 256.88
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7.3.1 Prediction Accuracy Analysis- Travel Time Prediction when
drop-off coordinates are not known

In this section, we have examined the prediction accuracy of the different
methods viz. R50NNRSD20P, ANN, LR, SVR and the five different ensem-
bles described in Section 7.3. We consider a 1 hour Damped window model
with λ = 0.5. The results obtained for applying these methods on each of
the following datasets namely, nyc1, nyc2, porto and sfblack1 are given
in Table 9. We find that SVR method has the highest predictive accuracy
followed by Ensemble2.

Table 9: Performance of the different methods on nyc1,nyc2, porto and
sfblack1 datasets using a 1 hour Damped window model with λ = 0.5

Method Name
Dataset Name

NYC1 NYC2 PORTO SFBLACK1

AMAE AMedAE AMAE AMedAE AMAE AMedAE AMAE AMedAE

R50NNRSD20P 331.58 267.13 336.73 270.96 331.64 248.19 136.10 111.42
LR 310.97 255.88 315.06 258.94 331.56 252.22 137.05 115.02
ANN 312.22 257.87 316.25 260.94 334.98 251.63 136.15 114.30
SVR 294.83 217.91 298.07 220.16 313.35 212.99 129.96 93.17
Ensemble1 304.12 239.24 307.85 242.01 317.37 226.73 130.82 102.08
Ensemble2 299.00 234.12 302.60 236.66 317.44 227.41 131.38 102.93
Ensemble3 303.75 243.71 307.47 246.49 320.12 233.20 132.21 105.99
Ensemble4 315.26 260.56 319.44 264.01 329.65 248.29 135.98 113.27
Ensemble5 311.52 256.88 315.58 259.95 332.74 251.38 136.49 114.76

Figure 3 shows the ECDF plots of the Mean Absolute Errors (MAE) when
the four non-ensemble methods are applied on the four datasets. For nyc1,
we can clearly see in figure 3(a) that the curves for R50NNRSD20P, LR and
ANN are to the right of the SVR. So the SVR is the best performer here.
Among LR, ANN and R50NNRSD20P, we can clearly see that the curve for
the R50NNRSD20P is to the right of the other two whereas both the LR
and ANN curves cross each other. So LR and ANN are comparable and
both of them perform better than the R50NNRSD20P. Similar conclusion
can be drawn for nyc2 as well (see figure 3(b)). For both the porto and
sfblack1 datasets, it can be concluded that the SVR is a better performer
when compared to the other three methods. Also we cannot say anything
about the stochastic dominance of one method over the other among LR,
ANN and R50NNRSD20P since their curves cross each other (see figure 3(c)
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(a) nyc1 (b) nyc2

(c) porto (d) sfblack1

Figure 3: ECDF plots for the Mean Absolute Errors (MAE) by prediction
horizons for SVR, R50NNRSD20P, LR and ANN on each of the four datasets
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and 3(d)).

(a) nyc1 (b) nyc2

(c) porto (d) sfblack1

Figure 4: ECDF plots for the Mean Absolute Errors (MAE) by prediction
horizons for different ensembles on each of the four datasets

We can see in table 9 that none of the five ensembles perform better than
the SVR but most of them perform better than the other three individual
methods i.e. LR, ANN and R50NNRSD20P. In figure 4, we show the ECDF
plots for the five different ensembles on each of the four datasets. For nyc1,
we can clearly see in figure 4(a) that ECDF curve of the Ensemble2 is to the
left of all the other ensembles and hence has the best predictive accuracy.
The ECDF curves of Ensemble1 and Ensemble3 cross each other but both of
them perform better than Ensemble4 and Ensemble5. Similar conclusion can
be drawn for nyc2 as well (see figure 4(b)). For both porto and sfblack1,
we find that ECDF curves of Ensemble1, Ensemble2 and Ensemble3 crosses
each other and they are to the left of Ensemble4 and Ensemble5. Hence,
Ensemble4 and Ensemble5 have lesser predictive accuracy than the other
three ensembles.
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8 Discussion

The choice of the suitable method for use needs to take into account the
time-accuracy trade-off. Since, in a streaming data context, the paradigm
is to provide good results fast rather than giving the best possible solution
we need to take into account the the total time taken for the method to run
(i.e. sum of training and prediction time) along with the prediction accuracy
of the method. The SVR method performs consistently well in terms of
prediction accuracy but it takes relatively higher time especially for large
datasets. In section 8.1 we investigate the variation of the total time taken
by the different methods for different data sizes.

8.1 Static Data Experiment

We first perform an experiment to demonstrate how the time and accuracy
varies with respect to the training data size for each of the following three
methods viz. SVR, R25NNRSD20P, and LR for travel time prediction when
the drop-off location coordinates are known. We take random samples of
different sizes for training and test data from the nyc1 dataset. The data
size for different training data windows varies from 262 to 70, 000 in the three
datasets viz. nyc1, porto and sfblack1. So for this experiment we consider
training datasizes of 250, 500, 750, 1000, 2000, . . . , 10000, 12000, 14000, . . . ,
20000, 25000, 30000, . . . 70000. We take 1/5th of each of the training data size
as test data size. We then apply each of the three methods and plot the MAE
and the total time taken with respect to the training data size for these four
methods as shown in figure 5.

In figure 5, we can see that even though LR is the fastest of the three
methods but it has the worst predictive accuracy among them. The SVR can
be recommended for training data size less than 10, 000 since it has higher
predictive accuracy and the time taken is not very high compared to that
of the other methods. But for training data size more than 10000, we find
that R25NNRSD20P has the best predictive accuracy and also the total time
taken is much lower than that of the SVR method.

We carry out a similar experiment for travel time prediction when the
drop-off coordinates is unknown. We again apply the three methods viz.
SVR, R50NNRSD20P and LR and plot the MAE and the total time taken
with respect to the training data size as shown in figure 6. We find here
that in terms of predictive accuracy, SVR is the clear winner. But again for
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Figure 5: Time and MAE vs. different training data size for static experiment
with travel time prediction when the drop-off location coordinates are known

Figure 6: Time and MAE vs. different training data size for static experiment
with travel time prediction when the drop-off location coordinates are not
known

W.P. No. 2017-03-03 Page No. 35



large datasets the computation time for SVR is high and hence it can be
recommended for training data size less than 10000. For training data size
greater than 10000, LR is the method of choice.

8.2 Computation Time Analysis- Travel Time Predic-
tion when drop-off coordinates are available

In section 7.2.1, we have seen that the SVR method performs better in terms
of predictive accuracy than the R25KNNRSD20P for most of the datasets.
However, the SVR method requires comparatively higher computation time.
In Table 10 below, we show the average cpu time taken for training and
prediction of 25NNRSD (i.e. KNNRSD with K = 25), R25NNRSD20P and
SVR methods on the nyc1 dataset and a relatively sparse porto dataset.

For the nyc1 dataset we observe that even with a window size of 15
minutes the average number of observations in the training data is quite
large (8629). In this case the 25NNRSD method is quite competitive in
terms of AMAE (being within 1.3% of the best i.e. SVR method) with its
average total time being 78% less than that of the SVR method. Hence in
such situations 25NNRSD can be a good choice. With larger window size say,
30 minutes or 1 hour we find that R25NNRSD20P becomes a competing a
method of choice. Specifically when an 1 hour window is considered which has
average training data size of 39879 the R25NNRSD20P has accuracy within
4% of the best i.e. 25NNRSD method while its computing time is 84.6% less
than 25NNRSD method. The SVR method in this case has accuracy within
0.5% of the 25NNRSD method but the time taken by it is 576% more than
that of 25NNRSD. But in the porto dataset where the training data size is
small we find that SVR method has best predictive accuracy and the total
time taken is also quite small. This is in line with our findings in Section 8.1.

8.3 Computation Time Analysis- Travel Time Predic-
tion when drop-off coordinates are not available

In section 7.3.1, we have seen that between the R50NNRSD20P and the SVR
methods, the SVR method performs better in terms of predictive accuracy
than the R50NNRSD20P for most of the datasets. But we have discussed
earlier that the SVR method is computationally expensive for larger datasets.
In Table 11 below, we show the average cpu time taken for training and
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Table 10: Time- Accuracy analysis for 25NNRSD, R25NNRSD20P, SVR, LR
and ANN on nyc1 and porto datasets for different window sizes (W) with
λ = 0.5 for the travel time prediction problem when the drop-off coordinates
are known

Dataset W

Average
training
data
size*

Average
Pred
horizon
size*

Method

Average
Training
Time
(in Secs)

Average
Testing
Time
(in Secs)

Average
Total
Time
(in Secs)

AMAE

NYC1

15 min 8629 1450

25NNRSD 0 5.3038 5.3038 163.1
R25NNRSD20P 0 1.0117 1.0117 181.15
SVR 23.1674 0.9368 24.1043 161.03
LR 0.0164 0.0074 0.0238 280.52
ANN 0.0759 0.0011 0.0769 287.38

30 min 20295 3421

25NNRSD 0 22.8227 22.8227 165.25
R25NNRSD20P 0 3.7570 3.7570 177.82
SVR 132.7734 4.9974 137.7708 165.77
LR 0.0557 0.0043 0.0600 284.69
ANN 0.1226 0.0012 0.1238 288.71

1 hour 39879 6825

25NNRSD 0 70.3121 70.3121 175.78
R25NNRSD20P 0 10.8071 10.8071 182.48
SVR 459.0018 16.0120 475.0138 176.54
LR 0.0505 0.0047 0.0552 290.4
ANN 0.1406 0.0014 0.1420 292.06

PORTO

15 min 262 44

25NNRSD 0 0.0107 0.0107 272.98
R25NNRSD20P 0 0.0058 0.0058 303.82
SVR 0.0246 0.0027 0.0273 246.10
LR 0.0049 0.0047 0.0096 321.67
ANN 0.0141 0.0003 0.0144 321.75

30 min 619 104

25NNRSD 0 0.0291 0.0291 268.01
R25NNRSD20P 0 0.0211 0.0211 294.10
SVR 0.0722 0.0032 0.0754 242.79
LR 0.0079 0.0024 0.0103 327.01
ANN 0.0166 0.0008 0.0174 311.73

1 hour 1233 208

25NNRSD 0 0.0895 0.0895 265.38
R25NNRSD20P 0 0.0437 0.0437 283.75
SVR 0.1940 0.0122 0.2062 243.92
LR 0.0068 0.0030 0.0098 331.56
ANN 0.0256 0.0003 0.0259 334.98

* rounded up to the nearest integer
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prediction of 50NNRSD (i.e. KNNRSD with K = 50), R50NNRSD20P,
SVR, LR and ANN models along with their AMAE values for the nyc1 and
porto datasets for different window sizes i.e. 15 min, 30 min and 1 hour.

Table 11: Time- Accuracy analysis for 50NNRSD, R50NNRSD20P, SVR, LR
and ANN on nyc1 and porto datasets for different window sizes (W) with
λ = 0.5 for the travel time prediction problem when the drop-off coordinates
are not known

Dataset W

Average
training
data
size*

Average
Pred
horizon
size*

Method

Average
Training
Time
(in Secs)

Average
Testing
Time
(in Secs)

Average
Total
Time
(in Secs)

AMAE

NYC1

15 min 8629 1450

50NNRSD 0 5.2667 5.2667 324.59
R50NNRSD20P 0 0.9849 0.9849 328.36
SVR 24.1053 1.0549 25.1602 288.49
LR 0.0150 0.0031 0.0181 304.8
ANN 0.0767 0.0007 0.0774 308.9

30 min 20295 3421

50NNRSD 0 22.8144 22.8144 327.47
R50NNRSD20P 0 3.7393 3.7393 329.77
SVR 128.8913 5.6280 134.5193 291.78
LR 0.0419 0.0032 0.0451 307.92
ANN 0.0859 0.0030 0.0889 310.76

1 hour 39879 6825

50NNRSD 0 69.3269 69.3269 330.11
R50NNRSD20P 0 10.7011 10.7011 331.58
SVR 408.901 18.2975 427.1985 294.83
LR 0.0462 0.0047 0.0509 310.97
ANN 0.1592 0.0020 0.1612 312.22

PORTO

15 min 262 44

50NNRSD 0 0.0092 0.0092 327.23
R50NNRSD20P 0 0.0097 0.0097 327.43
SVR 0.0225 0.0034 0.0259 314.25
LR 0.0033 0.0014 0.0047 330.52
ANN 0.0029 0.0007 0.0036 330.35

30 min 619 104

50NNRSD 0 0.0378 0.0378 328.67
R50NNRSD20P 0 0.0286 0.0286 329.75
SVR 0.0622 0.0042 0.0664 313.59
LR 0.0083 0.0032 0.0115 329.73
ANN 0.0095 0.0003 0.0098 329.91

1 hour 1233 208

50NNRSD 0 0.0878 0.0878 331.80
R50NNRSD20P 0 0.0310 0.0310 331.64
SVR 0.1634 0.0084 0.1715 313.35
LR 0.0071 0.0012 0.0083 331.56
ANN 0.0114 0.0003 0.0117 334.98

* rounded up to the nearest integer

For the nyc1 dataset we observe that across different window sizes viz.
15 minutes, 30 minutes and 1 hour, the SVR method is consistently the best
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performer in terms of prediction accuracy but the total time taken by it
also increases with the increase training data size. With larger window size
say, 30 minutes or 1 hour we find that LR method becomes a competing a
method of choice. Specifically when an 1 hour window is considered which
has average training data size of 39879 the LR has accuracy within 5.5% of
the best i.e. the SVR method while its computing time is 99.9% less than
that of the SVR method. But in the porto dataset where the training data
size is small we find that SVR method has best predictive accuracy and the
total time taken is also quite small. This is in accordance with our findings
in Section 8.1.

9 Continuous Prediction and Continuous Up-

dating of travel time for trajectory data

In this section, we discuss the performance of our proposed method RKN-
NRSD along with other methods viz. LR, ANN, SVR and an Ensemble
method on a trajectory level dataset i.e. sfblack2 details of which is given
in Section 6.2.2. The dataset consists of location coordinates i.e. latitude
and longitude recorded every 4 seconds for each trip.

We intend to give continuous updates of the travel time from the time of
pickup till drop-off. We assume that the drop-off coordinates are known since
it is expected that the passenger would inform the driver about the drop-off
location at the time of pickup. Two kinds of updates may be useful to the
transport dispatch system and also to the passenger - the remaining time
to the reach the destination and the total travel time. In the first case, we
calculate the remaining travel time by considering the current latitude and
longitude readings as the pickup point and using the algorithms mentioned
in Section 7. In the second case, we compute the remaining time taken and
then add the time elapsed since pick-up to it to get the total time taken.

We apply and compare the performance of R25NNRSD20P, LR, ANN,
SVR and an Ensemble of R25NNRSD20P and SVR for both continuous
prediction of remaining travel time and also the continuous updating of total
travel time. As before we use a 1 hour Damped window model with λ = 0.5.
For the remaining travel time problem we obtain root mean squared error
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(RMSE) for each trip ID, L, as follows:

RMSE(L) =

√√√√ 1

nL − 1

nL−1∑
i=1

(tPred,i − tActual,i)2 (17)

where nL is the number of recordings for trip-id L, tPred,i is the predicted
remaining travel time at instant i and tActual,i is the actual remaining travel
time, 1 ≤ i ≤ nL − 1. The ECDF of the RMSE is defined as

Gn(x) =
#{RMSEi ≤ x}

n
(18)

where n is the number of trip IDs, RMSEi is the RMSE of the ith trip ID
and #{RMSEi ≤ x} is the number of RMSEi that are less than or equal
to x.

Similarly, for the continuous updating of total travel time problem we
obtain RMSE for each trip ID, L, using equation 17 where tPred,i denotes
the predicted total travel time at instant i and tActual,i = tActual is the actual
total travel time, 1 ≤ i ≤ nL − 1.

The performance comparison is based on the RMSE obtained by using
the different methods. We use the ECDF of the RMSEs for each method
and check for stochastic dominance as discussed in Section 2.7.

Figure 7 (a) shows the ECDF plot for the RMSE of the five methods men-
tioned above for the continuous prediction of remaining travel time. We can
see that the ECDF of the RMSE for LR and ANN methods are to the right
of the other three. So, LR and ANN are stochastically dominant over the
other three i.e. their performance is poorer than that of the other three. The
ECDFs of R25NNRSD20P and SVR methods are closely placed together.
In Figure 7 (b) which shows the ECDF plots for the RMSE for continuous
updating of the total travel time, we find that the ECDFs of R25NNRSD20P
and SVR methods are closely placed together with the ECDF of SVR method
being slightly to the left of that of R25NNRSD20P. Thus the SVR method
performs the best in terms of prediction accuracy for this problem. The
ECDF of the Ensemble method crosses that of the SVR method in both of
these cases indicating that it is a competing method when enough resources
to run the ensemble are available.
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(a) Continuous prediction of remaining travel
time

(b) Continuous Updating of total travel time

Figure 7: Empirical CDF plots for the RMSE of the five different methods
for continuous prediction of remaining travel time and continuous updating
of total travel time on trajectory data
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9.1 The Naive Method

We have applied five different methods for continuous prediction of remaining
travel time and for continuous updating of total travel time in the earlier
section. We find that the SVR method is consistently a better performer
in terms of prediction accuracy. In this section, we explore the dynamic
updation of remaining travel time and total travel time at each points in a
trajectory of a trip using the distance remaining to be covered and speed
information. We will refer to this method as the Naive method. Some of the
transport dispatch systems may possibly be using this kind of an approach
and hence it is interesting to see how it performs vis-a-vis the SVR method.

We implement the Naive method on the sfblack2 dataset for both the
continuous prediction of remaining travel time and the continuous updating
of total travel time problems. We first compute the Geodesic distance (see
Equation 11 in Section 2.8) from each point in the trajectory to the drop-off
location coordinates to obtain the remaining distance at each point in the
trajectory. The speed of the vehicle at a point is calculated by first computing
the geodesic distance from the previous point to the current point and the
time taken to cover the distance between these two points.

Suppose the previous location coordinates of the cab is at (φx, µx) and the
same for the current position is (φy, µy) and suppose the geodesic distance
between these two points is l. If it has taken time t to travel between these
two points then we calculate the speed v of the cab at the current point as
v = l/t. For the continuous prediction of remaining travel time problem,
we divide the remaining distance by the speed to get the remaining travel
time (in secs) at each points in a trajectory for a trip ID. Whereas, for the
continuous updating of total travel time problem, we compute the remaining
time taken and then add the time elapsed since pick-up to it to get the total
time taken. Figure 8 (a) and (b) depicts the ECDF plots for the RMSEs of
the Naive and the SVR methods for both of these cases and we see that the
Naive method curve is to the right of that of the SVR method. Hence, the
SVR method is a better performer in terms of prediction accuracy.

9.2 The Hybrid Method

In this section, we propose another new method for both the continuous
prediction of remaining travel time and the continuous updating of total
travel time problems by combining the SVR and the Naive methods. In
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(a) Continuous prediction of remaining travel
time

(b) Continuous Updating of total travel time

Figure 8: Empirical CDF plots for the RMSE of the Naive and the SVR
methods for continuous prediction of remaining travel time and continuous
updating of total travel time on trajectory data
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section 9.1, we find that the SVR method has a better prediction accuracy
than the Naive method. But if we investigate the predicted values for the
remaining travel time of the SVR method for each trip IDs, we find that
the absolute error (i.e. the absolute difference between the predicted and
the actual remaining travel time) of the SVR method is more than that of
the Naive method when the trip is nearing its end. We find this pattern
consistently in almost all the trip IDs. So we propose a new method that
combines both the SVR and the Naive methods and further improves the
prediction accuracy of the SVR method. We will refer to this method as
the Hybrid method. In the Hybrid method, we begin with the SVR method
for predicting the remaining travel time (or updating the total travel time)
from the start of a trip and then after a pre-specified part of the journey, the
algorithm switches to the Naive method for predicting the remaining travel
time (or updating the total travel time). To obtain the appropriate point
of switching, we conduct a sensitivity analysis for the Hybrid method with
different switching points (viz. 65%, 70%, 75%, 80%, 85% and 90%) of the
total distance traveled for both the problems using the sfblack2 dataset.
We find that the Hybrid method with the switching point at 85% of the
total distance traveled for a trip is the best performer in terms of prediction
accuracy and we refer to this as the Hybrid method for the remaining part
of this paper.

We further compare the predictive accuracy of the Hybrid method with
the SVR method in the last 15% of the journey for each trip. In figure 9
(a) and (b), we plot the ECDFs for the RMSEs of the Hybrid and the SVR
methods for both the problems. We find that for continuous updating of the
total travel time problem, the RMSE of the SVR method is stochastically
dominant over that of the Hybrid method and hence, we conclude that the
performance of the Hybrid method is better than that of the SVR method.
However, for the continuous prediction of the remaining travel time, none of
the two methods dominate over each other.
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(a) Continuous prediction of remaining travel
time

(b) Continuous Updating of total travel time

Figure 9: Empirical CDF plots for the RMSE of the Hybrid (with 85%
switching point) and the SVR methods for continuous prediction of remaining
travel time and continuous Updating of total travel time on the sfblack2
dataset for the last 15% of the total distance for each trip IDs
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10 Conclusion

In this paper, we have examined the travel time prediction problem and have
suggested the best algorithm to use in different situations: (a) When the
drop-off location is known and the training data sizes are small to moderate
the SVR method is the best choice considering both prediction accuracy and
total computation time. However when the training data size becomes large
the RKNNRSD becomes the best choice. (b) When the drop-off location
is unknown then we find that the SVR method is the best choice when
the training data size is small to moderate while for large training data
size the LR method is a good choice. (c) When continuous prediction of
remaining travel time and continuous updating of total travel time along the
trajectory of a trip are considered we find that the SVR method has the best
predictive accuracy. We also propose a new hybrid method which improves
the prediction accuracy of the SVR method in the later part of a trip.
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