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Abstract

In this paper, we present computationally efficient formulations for the hub interdiction and
hub protection problems, which are bi-level and tri-level mixed integer linear programs, respec-
tively. In the hub interdiction problem, the aim is to identify a set of r critical hubs from an
existing set of p hubs that when interdicted results in the greatest disruption cost to the hub-and-
spoke network. Reduction of the bi-level interdiction model to single level is straightforward using
Karush-Kuhn-Tucker (KKT) conditions corresponding to the lower level problem; however, this
turns out to be computationally inefficient in this context. Therefore, we exploit the structure of
the problem using various closest assignment constraints to reduce the hub interdiction problem
to single level. The modifications lead to computational savings of almost an order of magnitude
when compared against the only model existing in the literature. Further, our proposed modifi-
cations offer structural advantages for Benders decomposition, which lead to substantial savings,
particularly for large problems. Finally, we study and solve the hub protection problem exactly by
utilizing the ideas developed for the hub interdiction problem. The tri-level protection problem is
otherwise intractable, and to our best knowledge, has not been solved in the literature.

Keywords: Location, hub-and-spoke network, interdiction, protection, Benders decomposition.

W.P. No. 2014-03-01 Page No. 2



Hub Interdiction & Hub Protection problems:

Model formulations & Exact Solution methods

1 Introduction

Certain infrastructural assets are critical to the functioning of a nation’s economy and societal
well being. The United States’ Department of Homeland Security1 identifies 16 infrastructure sectors
as critical, such that their incapacitation or destruction can be debilitating to the national secu-
rity, economy, and public health. Three out of these sixteen critical infrastructure sectors, namely
transportation systems, communications, and energy employ hub-and-spoke as a dominant network
structure because of its operational advantage. Hub-and-spoke networks exploit the economies of scale
arising from consolidating at hubs the traffic originating from different sources and/or those destined
to different demand points, instead of serving each origin-destination pair directly. Flows from the
same origin with different destinations in a hub-and-spoke network are consolidated on their route
at the hub where they are combined with flows that have different origins but the same destination
(Campbell, 1996). In multi-hub networks, traffic concentrated at a hub is directed to a second hub,
which distributes it to the final destinations, thereby exploiting the economies of scale on the inter-hub
flows. Another advantage of a a hub-and-spoke network is that it results in fewer links, which makes
the network construction cheaper and its maintenance easier, compared to an alternate network with
direct connections between all sources and destinations.

O’Kelly (1986) was the first paper to study locating hubs between interacting cities. Campbell
(1994) gave the first integer programming formulations for the p-hub median problem, uncapacitated
hub location problem, p-hub center and hub covering problems. These models are largely inspired by
their facility location counterparts: p-median problem, facility location problem, p-center problem and
maximal covering problem. Since then research papers have been published in both single allocation (a
non-hub is allocated to only one hub) or multiple allocation (a non-hub is allocated to one or more than
one hub), capacitated (hubs have a fixed capacity) or uncapacitated (no limit on hub capacity) median
and location problems. Skorin-Kapov et al. (1996), Ebery et al. (2000), Ernst and Krishnamoorthy
(1996), Hamacher et al. (2004) are some of the important works in this area. In recent years several
variations of the hub location problems have also appeared in literature. Notable among those are,
hubs with congestion (Elhedhli and Hu, 2005), (Jayaswal and Vidyarthi, 2013), cycle hub location
problem, where hubs are connected in a cycle (Contreras et al., 2016), tree of hubs location problem,
where hubs are connected by a tree structure (Contreras et al., 2010), flow dependent economies of
scale (O’Kelly and Bryan, 1998), stochastic demands (Contreras et al., 2011b), and hub location over
a time period (Contreras et al., 2011a). A review of research papers in hub location can be found in:
Alumur and Kara (2008), Campbell and O’Kelly (2012) and Farahani et al. (2013).

While a hub-and-spoke network structure is attractive due to its cost effectiveness, it is prone to
sever disruptions in the event of a failure of any of its hubs. This is because failure of any hub in the
network disrupts the flows from all the origin and destination points that it serves. A study states
that it is possible to disrupt the entire United States’ air network by interdicting just 2% of its all

1https://www.dhs.gov/what-critical-infrastructure
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airports (Lewis, 2006). A related real incident is the June’16 attack on Ataturk International airport
in Turkey. Ataturk International airport is one of the busiest airports in the world and it serves as
a hub for Turkish Airlines, Onur Air and Atlas Global. It was attacked on 28th June 2016 by some
gunmen, which left 45 people dead and more than 230 injured. Following the attack, flights destined for
Istanbul were diverted to other hubs in the vicinity. The Federation Aviation Administration (FAA)
and the Transportation Security Administration (TSA) of the United states’ government grounded
all passenger and commercial flights to and from Turkey for several hours post the attack, which
resulted in traffic disruptions throughout the world. Incidents like this, make it necessary to identify
critical hubs in a hub-and-spoke network so that resources may be focused towards their fortification
(protection), and this forms the motivation of our study. We study the problem of identifying the
critical hubs, which when disrupted will cause the maximum disruption. We call this problem as the
hub interdiction problem (HIP). We further study the hub protection problem (HPP), which identifies
the hubs to protect, taking into account the reaction of the interdictor (attacker). The hub interdiction
and protection problems are modeled as bi-level and tri-level mixed integer programs (MIPs), which are
challenging to solve. We present efficient solution methods that are capable of solving large instances
of the problems in a reasonable time.

Following are the major contributions of the paper:

• This is among the first few papers to study the bi-level interdiction and tri-level protection
problems in the context of hub-and-spoke network design.

• We present alternate ways to exploit the structure of the bi-level interdiction problem to reduce
it to a tractable single-level optimization problem.

• We further present Benders decomposition for the different single-level formulations to efficiently
solve large instances of the hub interdiction problem.

• To the best of our knowledge, this is the only paper to efficiently solve large instances of the hub
interdiction and protection problems to optimality.

In Section 2, we present a literature review on interdiction and protection problems. Section 3 presents
the model formulation of the bi-level interdiction problem, followed by two alternate ways of reducing
it to a single level problem to make it tractable. The first approach uses the well-known Karush-
Kuhn-Tucker (KKT) conditions for the lower level problem, while the second approach exploits the
structure of the solution to the lower level problem to replace it by what we call as the closest
assignment constraints (CACs). We present alternate forms of CACs, and present their relative
merits and computational performances in Sections 4 and 5, respectively. In Section 6, we exploit
Benders decomposition of the reduced single level formulation of the hub interdiction problem to solve
it more efficiently, and present its computational results. In Section 7, we present the tri-level hub
protection problem, followed by its solution using Implicit enumeration in combination with Benders
decomposition. We conclude by providing possible future research directions in Section 8.

2 Literature Review

Interdiction problems have been widely studied with respect to network flows (network interdiction)
and facility location (facility interdiction) problems. The decision maker in an interdiction problem
is interested in identifying the set of nodes/arcs (in network interdiction) or facilities (in facility
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interdiction) that when interdicted causes the maximum loss to her. The problem is modeled as
a Stackleberg game in which the attacker is the leader and the network operator (defender) is the
follower.

2.1 Network Interdiction

Network interdiction problems identify critical nodes or arcs in a network. The defender operates
on the network to optimize her objective that can be one of the following: (i) to pass through the
network as fast as possible (shortest path network interdiction) (Corley and Sha, 1982; Israeli and
Wood, 2002; Cappanera and Scaparra, 2011) (ii) to move through the network without getting caught
(most reliable path interdiction) (Shimizu et al., 2012) or (iii) to maximize the amount of flow passing
through the network (maximum flow network interdiction) (Wood, 1993; Cormican et al., 1998). The
objectives of the attacker in these models are: (i) to intercept or destroy the arc(s)/node(s) so as
to maximize the length of the shortest path, or (ii) to minimize the maximum flow in the network,
or (iii) to maximize the probability of detection in the network. These models find applications in
disrupting enemy flows (McMasters and Mustin, 1970), infectious disease control (Assimakopoulos,
1987), counter-terrorism (Farley, 2003), interception of nuclear material (Morton et al., 2007) and
contraband smuggling (Washburn and Wood, 1995). A review of network interdiction models with
applications can be found in Collado and Papp (2012).

2.2 Facility Interdiction and Protection

Facility interdiction problems study the identification of critical facilities in a supply network. Church
et al. (2004) proposed the r -interdiction median problem (r-IMP) and r -interdiction covering problem
(r-ICP) to study interdiction of facilities under different location scenarios. The r-IMP identifies the set
of r facilities to remove from the existing ones to maximize the overall demand weighted transportation
cost of serving customers from remaining facilities, whereas r-ICP identifies the set of r facilities that
when removed minimizes the total demand that can be covered within a specific distance or time.

Different variants of r-IMP are studied in the literature. Church and Scaparra (2007a) studied an
extension of the problem where the success of the attack is uncertain. The authors assumed that the
attacks are successful with a given probability. Losada et al. (2012) studied another type of uncertainty
in r-IMP which is the uncertainty of the degree of impact created by the attack. This problem identifies
disruption scenarios that result in the maximum overall traveling distance for serving all customers
when the impact on a facility after an attack is uncertain. A key assumption here is that the degree
of interdiction impact on a facility is proportional to the amount of resources employed.

The problems described above assume no restrictions on the capacity of the facilities. Aksen et al.
(2014) studied the partial interdiction of capacitated r -IMP, wherein facilities operate with a fixed
capacity, which when interdicted, operate with a reduced capacity. The amount of capacity reduction
is directly proportional to the interdiction resources deployed. Though various versions of r -IMP are
studied (capacitated and uncapacitated, partial and full interdiction), its counterpart (r -ICPs) have
received only limited attention in literature.

Church and Scaparra (2007b) studied an extension of r -IMP, known as the r -interdiction median
problem with fortification (r -IMF). This problem identifies optimal fortification/protection strategies
against interdiction. According to this model, when a facility is fortified/protected, it is completely
immune to an attack. Scaparra and Church (2008a) formulated the r -IMF as a bi-level MIP, which is
solved using an Implicit enumeration algorithm. Scaparra and Church (2008b) proposed an alternate
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method for r -IMF. The idea is to reformulate the problem as a maximal covering problem with
precedence constraints, which is solved using an approximate heuristic. This helps in identifying the
upper and lower bounds of the problem, which is used to reduce the size of the original problem.
This reduced problem is then solved to optimality using a standard MIP solver. Losada et al. (2010),
Scaparra and Church (2012), Aksen et al. (2010), Aksen and Aras (2012), Aksen et al. (2013) and
Liberatore et al. (2012) are other related works in this area.

2.3 Hub interdiction

Interdiction of hubs in a hub-and-spoke network has received scarce attention in the literature, despite
its many useful applications as discussed in Section 1. However, there have been a few studies in
closely related areas. An et al. (2015) and Azizi et al. (2016), for example, studied the reliable hub-
and-spoke network design problem, which includes the possibility of re-routing flows through backup
hubs when the active hubs are disrupted. However, the objective in both these papers is to minimize the
weighted sum of pre-disruption and the expected value (over all disruption scenarios) post-disruption
transportation cost. HIPs by contrast, study the worst-case loss to the defender.

To the best of our knowledge, Lei (2013) is the only paper on HIP/HPP. The author presented
bi-level and tri-level MIP for HIP and HPP, respectively. However, due to the complexity of the
problem, computational results are presented only for small instances of HIP, whereas no solution
method for HPP is presented. The objective of this paper is to present efficient solution methods
capable of solving large instances of HIP and HPP.

3 Problem Description and Model formulation

We consider a hub-and-spoke network with a set of flows (Wij) associated with every source node
i P N and destination node j P N . The flows are always routed through one or two of the hubs from
the set H Ď N of p hubs to benefit from economies of scale in transportation. The objective of the
operator of the network (called defender) is to identify the set of r hubs, which when destroyed by
an attacker causes her the maximum cost from rerouting of flows that are affected because of the
interdicted hubs. We make a reasonable assumption of r ă p since the attacker (typically a terrorist
organization) might not have resources to interdict all the hubs. This is the context of HIP, which is
modeled as a Stackleberg game. In HIP, the attacker makes the first move by choosing the r hubs to
interdict, followed by the defender who decides how to route the flows through the remaining p ´ r
hubs with minimum cost. This is represented as a bi-level MIP. The hierarchical structure of the
problem is shown through Figure ??.

3.1 Model Formulation

In this section, we provide a mathematical formulation for the HIP. To begin with, we introduce the
notations used, and then move on to the formulation.

3.1.1 Notations

To model the problem, we define the following indices and parameters:
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i : Index for source nodes, i P N ;
j : Index for destination nodes, j P N ;
k : Index for hub which is connected to i, k P H;
m : Index for hub which is connected to j, m P H;
α ; Discount factor for collection (source to hub), piÑ kq
δ ; Discount factor for transhipment (hub to hub), pk Ñ mq
χ ; Discount factor for distribution (hub to destination), pmÑ jq
H : set of all hubs, H Ď N ;

Wij : Flow from source i to destination j;
dij : Cost of travelling from node i to node j;
dijkm : Cost of traversing from source i to destination j; dijkm “ αdik ` δdkm ` χdmj ;
p : No. of hubs present in the system;
r : No. of hubs to interdict:

The decision variables are defined as follows:

Xijkm : Fraction of flows from source i to destination j through hubs k and m after interdic-
tion;

zk : 1, if hub k remains open after interdiction, 0 otherwise.
With the above notation, the hub interdiction problem can mathematically be stated as the fol-

lowing bi-level MIP.

rHIP2Ls : max
zk

Z (1)

s.t.
ÿ

kPH

zk “ p´ r (2)

zk P t0, 1u @k P H (3)

Z “ min
Xijkm

ÿ

iPN

ÿ

jPN

ÿ

kPH

ÿ

mPH

WijdijkmXijkm (4)

s.t.
ÿ

kPH

ÿ

mPH

Xijkm “ 1 @i, j P N (5)

ÿ

mPH

Xijkm `
ÿ

mPH{pkq

Xijmk ď zk @i, j P N ; k P H (6)

Xijkm ě 0 @i, j P N ; k,m P H (7)

Attacker’s objective function (1) maximizes the defender’s objective of minimizing the weighted
transportation cost. Constraint (2) ensures that p´r hubs remain open after interdiction. Constraints
(4) to (7) form the lower level routing problem. Constraint (5) states that the fractional sum of flows
between source i and destination j through all possible combinations of hubs k and m should be equal
to 1. Constraint (6) models the condition that a flow can happen through and out of the hub only
if the hub remains open. The same condition can be alternatively represented by the following set of
constraints, as done by Lei (2013).

ÿ

kPH

Xijkm ď zm @ i, j P N ;m P H

ÿ

mPH

Xijkm ď zk @ i, j P N ; k P H
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However, the constraint set of the form (6) is proven to be facet defining (Hamacher et al., 2004).
Hence, constraint set (6) provides a tighter LP relaxation, which is effective in solving large instances
of the hub interdiction problem.

3.2 Reduction to Single level

Bi-level problems, even with linear programs at both levels, are NP-hard problems (Audet et al.,
1997; Frangioni, 1995). HIP, which is a bi-level MIP, is even more difficult. Bi-level problems in the
literature are traditionally solved by reducing the problem to single level using reduction techniques.
We present two alternate ways of reducing HIP to a single level MIP to make it tractable. The first
approach is based on the use of the well-known KKT conditions for the lower level problem, while
the second approach exploits the structure of the solution to the lower level problem to replace it by
CACs.

3.2.1 Single level reduction using lower level KKT conditions

The lower level problem in HIP is a linear program with continuous variables. This makes its reduction
to a single level using KKT conditions straightforward. For a given upper level variable z̄k, taking
dual variables φij and λijk for constraints (5), (6) we get the following Lagrangian relaxation:

ÿ

iPN

ÿ

jPN

ÿ

kPH

ÿ

mPH

WijdijkmXijkm `
ÿ

iPN

ÿ

jPN

φijp
ÿ

kPH

ÿ

mPH

Xijkm ´ 1q`

ÿ

iPN

ÿ

jPN

ÿ

kPH

λijkp
ÿ

mPH

Xijkm `
ÿ

mPH{pkq

Xijmk ´ szkq

Differentiating the expression with respect to Xijkm we get:

Wijdijkk ` φij ` λijk ě 0 @ i, j P N, k,m P H, k “ m

Wijdijkm ` φij ` λijk ` λijm ě 0 @ i, j P N, k,m P H, k ‰ m

The single level problem with KKT conditions can be written as:

rHIPKKT s : max
zk,Xijkm

ÿ

iPN

ÿ

jPN

ÿ

kPH

ÿ

mPH

WijdijkmXijkm (8)

s.t.
ÿ

kPH

zk “ p´ r (9)

Wijdijkm ` φij ` λijk ě 0 @ i, j P N ; k,m P H, k “ m (10)

Wijdijkm ` φij ` λijk ` λijm ě 0 @ i, j P N ; k,m P H, k ‰ m (11)

λijkp
ÿ

mPH

Xijkm `
ÿ

mPH{pkq

Xijmk ´ zkq “ 0 @ i, j P N ; k P H (12)

ÿ

kPH

ÿ

mPH

Xijkm “ 1 @ i, j P N (13)

ÿ

mPH

Xijkm `
ÿ

mPH{pkq

Xijmk ď zk @ i, j P N ; k P H (14)

Xijkm, λijk ě 0,´8 ď φij ď 8 @ i, j P N ; k,m P H (15)
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This resulting single level problem contains non-linear complementary slackness constraint (12), that
is linearized using the standard method (Fortuny-Amat and McCarl, 1981). The linearized constraints
are:

λijk ďM ˚ αijk @ i, j P N ; k P H (16)
ÿ

mPH

Xijkm `
ÿ

mPH{pkq

Xijmk ´ zk ě ´Mp1´ αijkq @ i, j P N ; k P H (17)

αijk P t0, 1u @ i, j P N ; k P H (18)

The objective function (8) along with constraints (9) - (11), (13) - (15) and (16) - (18) forms the
linearized problem. The problem contains n2p2 ` 3n2p` n2 ` 1 constraints and n2p2 ` 2n2p` n2 ` p
variables, out of which p ` n2p are binary variables. For a 25-node 10-hub problem, this results in
81,876 constraints and 6,260 binary variables out of a total of 75,635 variables, which makes it a fairly
difficult problem to solve. This enormous size is due to the addition of binary variables to convert the
mixed integer non-linear program to mixed integer linear program. Given that KKT based reduction
might not be suitable to solve large scale HIPs, we look at an alternative formulation that exploits
the properties of the problem to come up with a more tractable formulation.

3.2.2 Single level reduction using closest assignment constraints

The attacker in the upper level of the bi-level HIP decides upon his optimal set of r hubs to attack,
after which the defender routes the disrupted flows optimally through the remaining hubs. Since the
lower level problem contains just the routing decision, we can reduce the lower level problem using a
closest assignment constraint by which the flows are allocated to the cheapest cost routes.

Closest assignment constraints are used in facility location problems to allocate customers to
their nearby facilities. It is because in facility location problems cost is not always proportional
to the distance between customer and the facility. The system might assign a customer to some
facility farther from him, while he might want to be assigned to the nearest open facility. The
closest assignment constraint captures this requirement. Espejo et al. (2012) and Gerrard and Church
(1996) compare different closest assignment constraints used in location problems and study their
theoretical properties. These constraints find applications in hazardous facility location (Song et al.,
2013), facility location under competition (Dobson and Karmarkar, 1987), and interdiction problems
(Liberatore et al., 2011). Lei (2013) converted the bi-level hub interdiction problem to single level
using the following set of closest assignment constraints:

ÿ

qsPCijkm

Xijqs `Xijkm ě zk ` zm ´ 1 @ i, j P N ; k,m P H (CAC1)

where, Cijkm = {pq, sq| dijqs ă dijkm or (dijqs “ dijkm and (q ă k or (q “ k and s ă m)))}.
For a given source - destination (s - d) pair pi, jq, CAC1 ensures that the flow between them

happens only through a path that is no costlier than the path via hubs k and m as long as they are
open. This is an extension of its counterpart for facility location problems given by Church and Cohon
(1976). CAC1 arbitrarily breaks any tie between paths having the same cost. Breaking ties for HIP
is not necessary, unlike in facility location problem without which it becomes infeasible. For ease of
discussion, we redefine CAC1 as:

ÿ

qs|dijqsďdijkm

Xijqs `Xijkm ě zk ` zm ´ 1 @ i, j P N ; k,m P H (CAC1’)
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It is noteworthy that the use of CAC11 in place of CAC1 makes little computational difference.
We propose two alternative CACs, which are presented below. These constraints are designated

as CAC2 and CAC3. CAC2 forbids assignment of flows from any s - d pair (i, j) to a path costlier
than the path Xijkm (iÑ k Ñ mÑ j) when hubs k and m are open (zk and zm = 1). CAC2 is given
below:

ÿ

qsPEijkm

Xijqs ď 2´ zk ´ zm @ i, j P N ; k,m P H (CAC2)

where, Eijkm = {pq, sq| dijqs ą dijkm}. CAC2 is similar to the constraint devised by Wagner and
Falkson (1975) for facility center problems.

CAC3 ensures closest assignment by allocating flows from any s - d pair (i, j) through all the paths
Xijqs (i Ñ q Ñ s Ñ j) not greater than the current path Xijkm (i Ñ k Ñ m Ñ j) when hubs k and
m are not interdicted. This is presented below:

ÿ

qPH

ÿ

sPH

dijqsXijqs ` pM ´ dijkmqpzk ` zm ´ 1q ďM @ i, j P N ; k,m P H (CAC3)

where, M “ max
ř

iPN

ř

jPN

ř

kPH

ř

mPH dijkm.
In the above inequality, by fixing zk and zm to 1, the allocations Xijqs will be on paths shorter

than dijkm. CAC3 is an adaptation of the closest assignment constraint from Berman et al. (2009)
for hub location problems.

The single level HIP with the addition of closest assignment constraint takes the following form:

rHIP1Ls : max
yk,Xijkm

ÿ

iPN

ÿ

jPN

ÿ

kPH

ÿ

mPH

WijdijkmXijkm

s.t. p2q, p3q, p5q ´ p7q

CAC1 or CAC2 or CAC3

This single level problem is smaller in size compared to the single level problem formulation obtained
using KKT conditions. The current problem has the same number of variables as the original bi-level
problem, while the latter one has a very large model size due to the extra binary variables that were
required to linearize it. For a 25-node 10-hub problem, the reduced single level problem using the
closest assignment constraint contains 62,510 variables and 69,376 constraints compared to 75,635
variables and 81,876 constraints for the single level problem using KKT conditions. This makes the
KKT approach computationally inefficient when compared with the CACs. Hence going forward, we
focus on reduction using closest assignment constraints for solving the HIP.

3.3 Dominance relationship between CACs

In order to find the best closest assignment constraint among the proposed constraints for reduction,
we study the dominance relationships between the constraints. A constraint which dominates all the
other alternate constraints is the one with the tightest LP relaxation for the problem. Espejo et al.
(2012) proposed the rules for dominance relationship between constraints as follows: A constraint
dominates the other if the former constraint implies the latter. If both constraints imply one another
we say that the constraints are equivalent.

In the following, we state dominance relationships between the closest assignment constraints
introduced above.
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Proposition 1. CAC2 is equivalent to CAC1’

Proof. CAC2 can be written as:

1´
ÿ

pqsq|dijqsďdijkm

Xijqs ď 2´ zk ´ zm @ i, j P N ; k,m P H

ùñ
ÿ

pqsq|dijqsďdijkm

Xijqs ě zk ` zm ´ 1 @ i, j P N ; k,m P H

Separating Xijkm term we get:
ÿ

qs|dijqsďdijkm

Xijqs `Xijkm ě zk ` zm ´ 1 @ i, j P N ; k,m P H

Hence, CAC2 ùñ CAC1’. Similarly CAC1’ ùñ CAC2 can be proved. Therefore, CAC2 is
equivalent to CAC1’.

Proposition 2. CAC2 dominates CAC3

Proof. CAC2 can be written as:
ÿ

pqsqPEijkm

Xijqs ` zk ` zm ď 2 @ i, j P N ; k,m P H

CAC2 can be relaxed and written as:

Xijqs ` zk ` zm ď 2 @i, j P N ; k,m P H; pq, sq P Eijkm. (CAC2-rel)

Now it is evident that, CAC2 ùñ CAC2-rel, while CAC2-rel ùñ CAC2. Therefore CAC2
dominates CAC2-rel. In order to show that CAC2 dominates CAC3, we just need to prove that
CAC2-rel implies CAC3.

Multiplying by dijqs on both sides of CAC2-rel and summing it up over pq, sq P Eijkm we get,
ÿ

pqsqPEijkm

dijqsXijqs `
ÿ

pqsqPEijkm

dijqszk `
ÿ

pqsqPEijkm

dijqszm ď 2
ÿ

pqsqPEijkm

dijqs @ i, j P N ; k,m P H

Adding
ř

pqsq|dijqsďdijkm
dijqsXijqs ` pM ´ dijkm ´

ř

pqsqPEijkm
dijqsqpzk ` zm ´ 1q to both sides of the

above inequality, we get
ÿ

qPH

ÿ

sPH

dijqsXijqs ` pM ´ dijkmqpzk ` zm ´ 1q ď
ÿ

pqsqPEijkm

dijqs `
ÿ

pqsq|dijqsďdijkm

dijqsXijqs

`pM ´ dijkmqpzk ` zm ´ 1q ´
ÿ

pqsqPEijkm

dijqspzk ` zm ´ 1q @ i, j P N ; k,m P H.

In the above constraint, the right hand side takes the maximum value when both zk and zm are one.
This value is always bounded by M since

ř

pqsq|dijqsďdijkm
dijqsXijqs ď dijkm. Therefore, we get the

following
ÿ

qPH

ÿ

sPH

dijqsXijqs ` pM ´ dijkmqpzk ` zm ´ 1q ďM @ i, j P N ; k,m P H,

which proves that CAC2-rel ùñ CAC3. Hence, CAC2 dominates CAC3.

In the following section, we suggest refinements of CAC1 and CAC2, and present two additional
CAC sets that lead to fewer constraints.
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3.4 Reduced formulation

In this section, we propose a reduced formulation for CAC1 and CAC2 based on constraint dominance
principles.

Proposition 3. For a given s - d pair (i, j) and hubs (k,m ‰ k) between them, CAC1ijkm dominates
CAC1ijmk when dijkm ă dijmk.

Proof. For given CAC1ijkm, CAC1ijmk and dijkm ă dijmk, comparing CAC1ijkm and CAC1ijmk we
see that RHS of both the constraints are the same and LHS of CAC1ijmk contains the terms in the
LHS of CAC1ijkm (since dijkm ă dijmk) and additional Xijqs variables.

CAC1ijkm and CACijmk constraints are binding when zk and zm = 1. The additional Xijqs

variables in CAC1ijmk are set to zero because LHS of CAC1ijkm is equal to 1, thereby making
CAC1ijmk redundant. Therefore, CAC1ijkm dominates CAC1ijmk.

Based on Proposition 3, we propose a new formulation for CAC1 which is given below: We define
a set, H 1ijkm “ tpk,mq|dijkm ď dijmk; or pm, kq|dijmk ă dijkm and @ i, j P N, k,m ě k P Hu Next we
define the set C 1ijkm which eliminates the closest assignment constraint corresponding to the longest
path as follows: C 1ijkm= tpq, sq| dijqs ă dijkm or dijqs “ dijkm and (q ă k or(q “ k and s ă m));
@ i, j P N, pk,mq P H 1ijkmu. The new closest assignment constraint can then be written as follows:

ÿ

qsPC1
ijkm

Xijqs `Xijkm ě zk ` zm ´ 1 @ i, j P N ; k,m P H (rCAC1)

Proposition 4. For a given s - d pair (i, j) and hubs (k,m ‰ k) between them, CAC2ijkm dominates
CAC2ijmk when dijkm ă dijmk.

Proof. Given CAC2ijkm and CAC2ijmk and dijkm ă dijmk, comparing CAC2ijkm and CAC2ijmk we
see RHS of both the constraints are same and LHS of CAC2ijkm contains the terms in the LHS of
CAC2ijmk (since dijkm ă dijmk) and additional Xijqs variables.

CAC2ijmk and CAC2ijmk are binding when zk and zm = 1. CAC2ijkm sets the variables in LHS of
CAC2ijmk and additional Xijqs variables to zero, making CAC2ijmk redundant. Therefore, CAC2ijkm
dominates CAC2ijmk.

Based on Proposition 4, we propose a new formulation for CAC2 which is given below: We define
a set S1ijkm = tpk,mq|dijkm ď dijmk or pm, kq|dijmk ă dijkm @ i, j P N, k,m ě k P Hu. Next we
define the set E1ijkm which eliminates the closest assignment constraint corresponding to the longest
path as follows: E1ijkm = tpq, sq|dijqs ą dijkm;@i, j P N, pk,mq P S1ijkmu. The new closest assignment
constraint can then be written as:

ÿ

qsPE1
ijkm

Xijqs ď 2´ zk ´ zm @ i, j P N ; k,m ě k P H. (rCAC2)

The reduced constraint sets rCAC1 and rCAC2 have |N |2ppp2 ` pq{2q constraints, while their
parents CAC1 and CAC2 have |N |2p2 constraints.
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4 Advantages of CAC2 over CAC1

In this section, we outline the advantages of CAC2 over CAC1 in different stages of the solution
process. CAC2 has certain structural properties that help in solving the single level problem faster
than the one with CAC1. These properties are also valid for rCAC2 since it is a tighter version of
CAC2.

4.1 Advantage at Presolve

Presolve procedure is executed by the solver, prior to solving the optimization problem to reduce the
size of the given problem by removing the redundant variables and constraints. Probing is a process
that is carried out at the presolve step wherein logical consequences are investigated by setting the
binary variables at their bounds (Savelsbergh, 1994). In this subsection, we show that CAC2 and
rCAC2 together with constraint (6) eliminate a lot of variables by probing.

Proposition 5. For a given s - d pair (i,j) and hub k, Xijkm variables that appear common in
constraint (6) and CAC2ijkk can be fixed to zero.

Proof. Given CAC2ijkk, let the set A = tXijkm|Xijkm P CAC2ijkk; (6) for i, j, ku
Case 1: zk = 0 Variables in set A are reduced to zero by constraint (6) for i, j, k.
Case 2: zk = 1 Variables in set A are reduced to zero by CAC2ijkk.
Since the variables in set A are reduced to zero eitherwise, they can be eliminated from the model.

Thus, CAC2 and rCAC2 formulations eliminate a lot of variables by probing procedure. Despite
the constraints being equivalent, probing reduction using CAC1 formulation is not straightforward. It
will be obvious from the results provided in the later section, where we will observe that there is little
advantage at the presolve stage with the CAC1 formulation. In the following subsection, we present
the advantage provided by CAC2 in a branch-and-bound procedure.

4.2 Advantage at Branch-and-Bound step

In a branch-and-bound procedure, the given MIP is relaxed and the linear relaxation is solved at the
root node. Further branching is done by setting the integer variables to its bounds that have taken a
fractional value in the optimal solution to the relaxed problem. In our problem, branching is done by
setting zk variables to zero and one. When a zk variable is set to one, some Xijkm variables are set to
zero because of the CAC2 formulation. These variables can be eliminated from the model to reduce
the model size. Alternatively, when zk is set to zero some Xijkm variables are eliminated because of
constraint (6) which again reduces the model size. This is elaborated in the example below:

Consider a hub interdiction problem with N = 5, p = 3 and r = 1. Let the located hubs be
1,2 and 3. For a given s - d pair (0, 4) of the problem we have the following distance matrix:
d0411 “ 373.8127, d0412 “ 1006.071, d0413 “ 2642.653, d0421 “ 1527.739, d0422 “ 1375.603, d0423 “
1696.158, d0431 “ 2266.804, d0432 “ 1745.126, d0433 “ 1696.158

Now writing constraint 6, and CAC2 constraint for the path 0411 we have:

X0411 `X0412 `X0413 `X0421 `X0431 ă“ z1

X0412 `X0413 `X0421 `X0422 `X0423 `X0431 `X0432 `X0433 ă“ 2´ 2z1
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As discussed above, in the branch-and-cut tree two branches are created with z1 “ 1 and z1 “ 0.
For the branch with z1 “ 0, The variables X0411, X0412, X0413, X0421, X0431 are set to zero.
For the branch with z1 “ 1, The variables X0412, X0413, X0421, X0422, X0423, X0431, X0432, X0433 are set
to zero. Thus CAC2 and rCAC2 formulations reduce the size of the problem further for each sub
problem in the branch-and-cut tree. This advantage of CAC2 and rCAC2 further results in improved
performance while solving the hub interdiction problem.

5 Computational Results

In the previous section, we studied the relative merits of different CACs in solving the hub interdiction
problem. In this section, we present the results of our computational experiments to highlight the
degree of computational advantage gained through the use of one CAC vis-a-vis others. For our
experiments, we use instances derived from the Civil Aeronautics Board (CAB) dataset containing
|N | “ 25 nodes, and Australian Post (AP) dataset containing |N | “ 200 nodes. The hub locations
used for each of these instances are the optimal hub locations obtained by solving a corresponding
uncapacitated p-hub median problem (Ebery et al., 2000). All the computational experiments are
performed on a workstation with a 2.60GHz Intel Xeon - e5 processor and 24GB memory, and all the
instances are solved using Cplex 12.6.

In Table 1, we present the results of the experiments for CAB dataset with |N | “ 25 nodes and
p P t7, 10u hubs. The discount factors for collection (α) and distribution (χ) are set at 1.0 in the CAB
dataset, while the discount factor for transhipment (δ) is varied in the experiments. For N “ 25 and
p “ 7 hubs, HIP with CAC1 or CAC2 or CAC3 contains 35,626 constraints and 30,633 variables.
Similarly, N “ 25 and p “ 10 hubs, the number of constraints and variables are 69,376 and 62,511,
respectively, which are reported under the column “Original size”. The number of constraints and
variables remaining in the model after the presolve operation and the CPU time to solve the model are
reported under the columns “Cons.”, “Vars.” and “CPU”, respectively for the different CACs. These
results clearly show the computational inferiority of CAC3 compared to the other CACs, as highlighted
by its relatively high CPU times. This is mainly due to a weak LP relaxation of the resulting single-
level MIP model, besides relatively very few variables and constraints getting eliminated at the presolve
stage. Between CAC1 and CAC2, the former speeds up the computations by a factor of 2 to 4 for
p “ 7 and by a factor of 2 to almost 7 for p “ 10, as highlighted by their relative CPU times. This gain
comes largely from the elimination of a substantially larger proportions of the variables and constraints
in the model using CAC2 compared to CAC1. With the reduced version of CAC1, namely rCAC1,
the presolve operation is further able to eliminate a significant proportion of the variables remaining in
the model with CAC1, leading to further savings in CPU times. rCAC2, on the other hand, is able to
further eliminate only constraints but not variables remaining in the model with CAC2. Still, use of
rCAC2 results in savings in CPU time by a factor of 2 to 4 compared to rCAC1, which itself provides
savings in CPU time by a factor of 1.5 to 2 compared to CAC1. However, compared to CAC2, its
reduced version, namely rCAC2, gives only marginal savings in CPU times since post presolve, CAC2
and rCAC2 have almost the same problem size.

In Table 2, we present additional results from our computational experiments with the best two
CACs, namely CAC2 and rCAC2, for larger instances of the problem derived using the data related
to the first 100, and all 200 nodes in the AP dataset. The observations based on the comparison
between the computational performance of CAC2 and rCAC2 largely carry through from Table 1.
However, for many of the AP dataset instances reported in Table 2, Cplex runs out of memory.
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Table 1: Computational performance of HIP with different CACs using CAB dataset with |N | “ 25.

Parameters Original size CAC1 CAC2 CAC3 rCAC1 rCAC2

p r δ Cons. Vars. Cons. Vars. CPU Cons. Vars. CPU Cons. Vars. CPU Cons. Vars. CPU Cons. Vars. CPU

7 1 0.9 35626 30633 9911 8619 4 1329 845 2 34986 30058 30 6611 8619 3 1329 845 2
2 27593 23775 15 10383 4655 5 35094 30058 47 18377 23479 8 10365 4655 4
3 27593 23775 17 10383 4655 6 35094 30058 53 18377 23479 12 10365 4655 5
4 27593 23775 22 10383 4655 5 35094 30058 65 18377 23479 16 10365 4655 5
5 27593 23775 13 10383 4655 3 35094 30058 155 18377 23479 10 10365 4655 2
1 0.5 19519 17015 7 3713 2405 3 34964 30058 45 12815 17015 5 3713 2405 3
2 29809 25835 18 11220 6567 7 35094 30058 48 19645 25529 12 10904 6567 6
3 29809 25835 30 11220 6567 7 35094 30058 51 19645 25529 19 10904 6567 8
4 29809 25835 28 11220 6567 11 35094 30058 80 19645 25529 19 10904 6567 8
5 29809 25835 9 11220 6567 3 35094 30058 88 19645 25529 6 7817 4922 3
1 0.1 26581 23197 11 6303 4143 3 34996 30058 47 17061 23197 7 6303 4143 3
2 31579 27481 28 13176 8669 12 35094 30058 52 20280 27167 16 12956 8669 9
3 31579 27481 43 13176 8669 10 35094 30058 70 20280 27167 25 12956 8669 10
4 31579 27481 36 13176 8669 10 35094 30058 73 20280 27167 20 12956 8669 11
5 31579 27481 8 13176 8669 3 35094 30058 38 20280 27167 5 12956 8669 3

10 1 0.9 69376 62511 28475 25786 14 1743 1102 7 68135 61285 90 17441 25786 9 1743 1102 7
2 58805 53083 48 14045 6741 12 68241 61285 163 35957 52397 25 14027 6741 11
3 58805 53083 61 14045 6741 13 68241 61285 393 35957 52397 34 14027 6741 12
4 58805 53083 74 14045 6741 16 68241 61285 425 35957 52397 45 14027 6741 13
5 58805 53083 67 14045 6741 15 68241 61285 520 35957 52397 40 14027 6741 13
6 58805 53083 82 14045 6741 12 68241 61285 659 35957 52397 44 14027 6741 12
7 58805 53083 96 14045 6741 14 68241 61285 2504 35957 52397 33 14027 6741 11
8 58805 53083 49 14045 6741 8 68241 61285 914 35957 52397 40 14027 6741 7
1 0.5 45559 41340 22 5301 3430 8 68099 61285 83 27655 41340 14 5301 3430 7
2 62389 56487 64 17091 9895 18 68099 61285 150 37917 55765 33 16807 9895 17
3 62389 56487 84 17091 9895 22 68241 61285 288 37917 55765 52 16807 9895 19
4 62389 56487 115 17091 9895 25 68241 61285 325 37917 55765 58 16807 9895 23
5 62389 56487 104 17091 9895 21 68241 61285 572 37917 55765 64 16807 9895 20
6 62389 56487 109 17091 9895 19 68241 61285 526 37917 55765 59 16807 9895 20
7 62389 56487 115 17091 9895 18 68241 61285 738 37917 55765 60 16807 9895 18
8 62389 56487 47 17091 9895 9 68241 61285 1198 37917 55765 28 16807 9895 8
1 0.1 56371 51118 36 9639 6468 9 68203 61283 96 34049 51118 20 9639 6468 8
2 64741 58721 62 21443 14681 25 68241 61285 137 39119 57964 41 21055 14681 21
3 64741 58721 83 21443 14681 26 68241 61285 250 39119 57964 53 21055 14681 27
4 64741 58721 178 21443 14681 37 68241 61285 358 39119 57964 93 21055 14681 35
5 64741 58721 152 21443 14681 45 68241 61285 526 39119 57964 66 21055 14681 45
6 64741 58721 127 21443 14681 39 68241 61285 518 39119 57964 71 21055 14681 39
7 64741 58721 99 21443 14681 31 68241 61285 468 39119 57964 53 21055 14681 30
8 64741 58721 31 21443 14681 11 68241 61285 299 39119 57964 19 21055 14681 10
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Hence, in the following section, we further exploit the structure of the resulting single-level model
with CAC2/rCAC2 by solving it using Benders decomposition. This is also motivated by the fact
that Benders decomposition has been successfully applied to solve large instances of hub location
problems (de Camargo et al., 2009, 2008).

6 Benders Decomposition

In this section, we present the Benders decomposition algorithm for the single level MIP model for the
hub interdiction problem, obtained through the use of CAC2/rCAC2. Using the usual trick used in
Benders decomposition of separating the MIP model into a master problem consisting of constraints
only involving integer variables, and a sub-problem consisting of rest of the constraints leads to the
following master problem:

max θ (19)

s.t.
ÿ

kPH

zk “ p´ r (20)

zk P t0, 1u (21)

Solving the master problem provides the values of the z variables, say sz, and an upper bound to the
original problem. For values of z fixed at sz by the master problem, the sub-problem for the hub
interdiction problem with rCAC2 can be written as:

max
ÿ

iPN

ÿ

jPN

ÿ

kPH

ÿ

mPH

WijdijkmXijkm (22)

s.t.
ÿ

iPN

ÿ

jPN

Xijkm “ 1 @ k,m P H (23)

ÿ

mPH

Xijkm `
ÿ

mPH{k

Xijmk ď szk @ i, j P N, k P H (24)

ÿ

qsPE1
ijkm

Xijqs ď 2´ szk ´ szm @ i, j P N, k,m P H (25)

Xijkm ě 0 @ i, j P N, k,m P H (26)

Associating φij , λijk and βijkm as the dual variables with the constraints (23),(24) and (25), respec-
tively, we get the following dual of the sub-problem:

min
ÿ

iPN

ÿ

jPN

φij `
ÿ

iPN

ÿ

jPN

ÿ

kPH

λijkszk `
ÿ

iPN

ÿ

jPN

ÿ

pk,měkqPB1
ijkm

βijkmp2´ szk ´ szmq (27)

s.t
ÿ

pq,sqPB2
ijkm

βijqs ` λijk ` φij ěWijdijkm @ i, j P N, k,m P H, k “ m (28)

ÿ

pq,sqPB2
ijkm

βijqs ` λijk ` λijm ` φij ěWijdijkm @ i, j P N, k,m P H, k ‰ m (29)

βijkm ě 0 @ i, j P N, pk,m ě kq P B1
ijkm (30)

φij , λijk ě 0 @ i, j P N, k P H (31)
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where, B1
ijkm “ tpk,mq|dijkm ď dijmk or pm, kq|dijmk ă dijkmu.

B2
ijkm “ tpq, sq|dijqs ď dijsq and dijkm ą dijqs or ps, qq|dijsq ă dijqs and dijkm ą dijqs @q, s ě qu.

The dual for the primal sub-problem with CAC2 added instead of rCAC2 can be similarly written
as:

min
ÿ

iPN

ÿ

jPN

φij `
ÿ

iPN

ÿ

jPN

ÿ

kPH

λijkzk `
ÿ

iPN

ÿ

jPN

ÿ

kPH

ÿ

mPH

βijkmp2´ zk ´ zmq (32)

s.t
ÿ

qs|dijqsădijkm

βijqs ` λijk ` φij ěWijdijkm @ i, j P N, k,m P H, k “ m (33)

ÿ

qs|dijqsădijkm

βijqs ` λijk ` λijm ` φij ěWijdijkm @ i, j P N, k,m P H (34)

βijkm, φij , λijk ě 0 @ i, j P N, k,m P H. (35)

In Benders decomposition, the master and the sub problems are solved iteratively, with (optimality
and feasibility) cuts derived from the dual of the subproblem at a given iteration added to the master
problem in the subsequent iteration. With sφij , sλijk and sβijkm as the optimal duals associated with
the constraints (26), (27) and (28) at a given iteration, we get the following optimality cut:

θ ď
ÿ

iPN

ÿ

jPN

sφij `
ÿ

iPN

ÿ

jPN

ÿ

kPH

sλijkzk `
ÿ

iPN

ÿ

jPN

ÿ

pk,mqPB1
ijkm

sβijkmp2´ zk ´ zmq. (36)

(36) is the optimality cut when the bi-level hub interdiction model is reduced to a single level model
using rCAC2. If instead, CAC2 is used, then the optimality cut added to the master problem is of
the following form:

θ ď
ÿ

iPN

ÿ

jPN

sφij `
ÿ

iPN

ÿ

jPN

ÿ

kPH

sλijkzk `
ÿ

iPN

ÿ

jPN

ÿ

kPH

ÿ

mPH

sβijkmp2´ zk ´ zmq. (37)

Solving the master problem with the addition of Benders cut gives the upper bound, while the sub-
problem gives a lower bound to the original problem. The algorithm terminates when the difference
between upper and and the best lower bound falls within a pre-specified tolerance for ε optimality
gap.

Remark: As discussed in the previous section, rCAC2 does not enjoy much computational ad-
vantage over CAC2 when solving the resulting single-level MIP directly using Cplex since both of
them result in almost the same model size (exactly the same number of variables and almost the same
number of constraints) post-presolve, as evident from Table 1. However, when the MIP is decomposed
into a master problem consisting of only the binary variables (zk) and a subproblem consisting of only
the continuous variables (Xijkm), presolve loses its effect. Nonetheless, with Benders decomposition,
the dual subproblem (27)-(31) resulting from the use of rCAC2 has fewer variables (βijkm) compared
to the dual subproblem (32)-(35) resulting from the use of CAC2. With |N | nodes and p hubs, the
use of rCAC2 and CAC2 give |N |2pp2 ` pq{2 and |N |2p2 βijkm variables, respectively. For example,
a problem instance with |N | “ 200 and p “ 10 results in 2,200,000 βijkm variables with the use of
rCAC2, which is otherwise 4,000,000 with the use of CAC2. Thus, rCAC2 results in a reduction in
the size of the dual subproblem by a factor of 0.5 ` p0.5{pq, which tends to 0.50 as p becomes large.
We expect Benders decomposition to exploit this reduction in the size of the dual subproblem with
rCAC2 to provide a computational advantage over CAC2.
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6.1 Computational results

In this section, we present our computational results for larger instances using CAC2 and rCAC2.
For each of the instances, we impose a CPU time limit of 36000 seconds (10 hours), and report the
optimality gap for instances that are not solved to optimality within the prescribed time limit. Table 2
gives a comparison of the computation performances between Cplex and Benders decomposition with
CAC2 and rCAC2. The results clearly highlight that for the instances that Cplex could solve within
the prescribed 10 hour time limit, Benders decomposition is computationally faster than Cplex by a
factor of 5´11 and 5´14 with the use of CAC2 and rCAC2, respectively. Of the remaining 7 instances
that Cplex could not handle owing to memory restriction, Benders decomposition with CAC2 could
solve only 2 of them to optimality within the prescribed time limit, while the Benders decomposition
with rCAC2 could solve all of them. Further, for the 2 instances that Benders decomposition with
CAC2 could solve to optimality within the prescribed time limit, Benders decomposition with rCAC2
is computationally faster by a factor of 7´ 8. This observation is consistent with the remark we made
in the previous section regarding the computational advantage enjoyed by Benders decomposition with
rCAC2.

Table 2: Computational performance of HIP with CAC2 & rCAC2, with and
without Benders decomposition

Parameters CPLEX Benders Decomposition
CAC2 rCAC2 CAC2 rCAC2

|N | p r α, χ, δ Gap CPU Gap CPU Gap CPU Gap CPU

100 10 5 3,0.75,2 0 8881 0 8315 0 1212 0 1100
100 10 6 3,0.75,2 0 6039 0 5070 0 1290 0 1034
100 10 7 3,0.75,2 0 4299 0 3996 0 562 0 444
100 10 8 3,0.75,2 0 3395 0 3255 0 310 0 233
100 15 5 3,0.75,2 * * * * 87% 36000 0 21080
100 15 6 3,0.75,2 * * * * 86% 36000 0 24091
100 15 7 3,0.75,2 * * * * 94% 36000 0 20606
100 15 8 3,0.75,2 * * * * 85% 36000 0 14956
200 10 5 3,0.75,2 * * * * 42% 36000 0 5779
200 10 6 3,0.75,2 * * * * 26% 36000 0 3328
200 10 7 3,0.75,2 * * * * 0 18572 0 2274
200 10 8 3,0.75,2 * * * * 0 8109 0 1180

* indicates out of memory status

7 Extension to Protection problem

A natural extension of the HIP is the hub protection problem (HPP), wherein the defender has an
option to fortify/protect only a subset of q hubs (due to its limited protection resources like budget,
etc.) against interdiction. Figure 1 gives a schematic representation of the tri-level Hub protection
problem. While protection problems have been widely studied in the context of facility location
(Church and Scaparra, 2007b; Scaparra and Church, 2008a,b, 2012; Aksen et al., 2010; Aksen and
Aras, 2012; Aksen et al., 2013), the same has not received much attention in the context of hub
location. To the best of our knowledge, Lei (2013) is the only paper on hub protection. The author

W.P. No. 2014-03-01 Page No. 18



Constrained
optimization
problem

Constrained
optimization
problem

Objective: Minimize routing cost after interdiction

Objective: Maximize the defender’s routing cost

Decision: Which r hubs to interdict out of the remaining p−q unprotected hubs?

Decision: How to route the flow through the remaining hubs?

Variable type: Binary

Objective: Minimize the attacker’s interdiction cost

Variable type: Continuous

Level 2: Attacker’s problem (Hub interdiction)

Decision: Which q hubs to protect? 

Variable type: Binary

Level 1: Defender’s problem (Hub protection)

Level 3: Defender’s problem (Routing problem)

Figure 1: Hub protection problem as a tri-level MIP

presents a tri-level MIP formulation for HPP, which is reduced to a bi-level MIP using CAC1 (see
Section 3.2.2). However, the author does not present any computational results in absence of any
proposed solution method. In this section, we also present a tri-level MIP formulation for HPP.
However, we reduce the tri-level MIP to bi-level MIP using rCAC2, which has been shown to perform
the best among the different versions of CACs discussed in Section 3.2.2. This allows us to solve
large instances of HPP using an efficient algorithm (Implicit enumeration + Benders decomposition)
as described in the following subsection.

To model HPP, we define a new set of binary variables yk which is 1, if the hub k is protected, 0
otherwise. With these new variables, the HPP can be modeled as a tri-level MIP.

7.1 Model Formulation

rHPP3Ls : min
yk

Z1 (38)

s.t.
ÿ

kPH

yk “ q (39)

yk P t0, 1u (40)

Z1 “ max
zk

Z2 (41)

s.t.
ÿ

kPH

zk “ p´ r (42)

yk ď zk @ k P H (43)

zk P t0, 1u @ k P H (44)

Z2 “ min
Xijkm

ÿ

iPN

ÿ

jPN

ÿ

kPH

ÿ

mPH

WijdijkmXijkm (45)

s.t.
ÿ

kPH

ÿ

mPH

Xijkm “ 1 @ i, j P N (46)
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ÿ

mPH

Xijkm `
ÿ

mPH{pkq

Xijmk ď zk @ i, j P N ; k P H (47)

Xijkm ě 0 @ i, j P N ; k,m P H (48)

In this HPP3L, the defender makes the first move, protecting q hubs from a set of p hubs (39), followed
by the attacker who attacks r hubs out of the remaining p´ q unprotected hubs (42). For feasibility,
q ` r ď p. In the above model, the defender in the upper level problem minimizes the attacker’s
second level objective of maximizing the interdiction cost. The lower two levels form the bi-level HIP,
as described in Section 3.1.1, with the additional constraint (43), which ensures that a protected hub
cannot be attacked. As discussed in Section 3.2.2, the lower bi-level HIP can be reduced to a single
level HIP using the CACs. Using the most efficient CAC, namely rCAC2, HPP can be restated as
the following bi-level program:

rHPP2Ls : min
yk

Z1 (49)

s.t.
ÿ

kPH

yk “ q (50)

yk P t0, 1u (51)

Z1 “ max
zk,Xijkm

ÿ

iPN

ÿ

jPN

ÿ

kPH

ÿ

mPH

WijdijkmXijkm (52)

s.t.
ÿ

kPH

ÿ

mPH

Xijkm “ 1 @ i, j P N (53)

ÿ

kPH

zk “ p´ r (54)

ÿ

mPH

Xijkm `
ÿ

mPH{pkq

Xijmk ď zk @ i, j P N ; k P H (55)

ÿ

qsPE1
ijkm

Xijqs ď 2´ zk ´ zm @ i, j P N ; k,m ě k P H (56)

yk ď zk @ k P H (57)

zk P t0, 1u, Xijkm ě 0 @ i, j P N ; k,m P H (58)

7.2 Solution method

We present a solution method for HPP, which is inspired by the implicit enumeration algorithm for
r-IMF (Scaparra and Church, 2008a). The algorithm is based on the proposition that the optimal
solution to r-IMF will necessarily contain atleast one of the facilities interdicted in r-IMP since any
other combination of protected facilities will not prevent the worst scenario for the defender.

Implicit enumeration procedure for HPP is described as follows: At the root of the search tree, the
algorithm solves an HIP, giving r interdicted hubs. The root node is then branched into r children
nodes, each corresponding to protection of a hub k (by setting yk “ 1) out of the r interdicted hubs.
At each of these r nodes, it solves a conditional hub interdiction problem (CHIP), which is an HIP
with the restriction that the protected hub k cannot be interdicted (imposed using constraint set (57)).
The solution to each of these CHIPs gives r interdicted hubs. Each of these nodes is in turn branched
into r children nodes, each corresponding to protection of a hub k (by setting yk “ 1) out of the r
interdicted hubs, in addition to the hubs protected at its parent node. This procedure is repeated
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till the number of protected hubs on the path starting from the root to the current node is q. Any
node at which q hubs are protected is called a leaf node. When each of the paths from the root node
terminates in a leaf node, then the node with the lowest objective function value to its corresponding
CHIP provides the solution to HPP. At each node in the search tree, HIP/CHIP is reduced to a single
level MIP using rCAC2, which is solved using Benders decomposition.

To summarize the above procedure, we use :y and :z to denote the optimal solution vector to the
protection and interdiction variables, respectively. Further, :θ denotes the optimal objective function
value to HPP. Let r denote the root node of the search tree, and S denote the set of nodes in the tree
to be visited. We define the following two sets associated with each node n:

Cn : set of candidate hubs to be protected in the subsequent nodes on the subpath starting from
node n.

Fn : set of hubs protected on the path from root to node n.

We use CHIP(Fn) to denote CHIP with the additional restriction that the hubs in Fn cannot be
interdicted. Using the above notation, the above procedure has been described in Algorithm 1.

Algorithm 1 Implicit enumeration

1: procedure Implicit enumeration
2: Fr Ð φ
3: :yk Ð 0 @k P H.
4: Solve CHIP(Fr). ẑ Ð tk| zk “ 0u; θ̂ Ð objective function value of CHIP(Fr)
5: :θ Ð θ̂; Cr = tk| ẑk “ 0u; S = tru
6: while S ‰ φ do
7: select n P S
8: while Cn ‰ φ do
9: Select k P Cn

10: Cn Ð Cnztku
11: Generate node n1 with Fn1 = Fn Y tku
12: solve CHIP(Fn1). ẑ Ð tk| zk “ 0u; θ̂ Ð objective function value of CHIP(Fn)
13: if |Fn1 | “ q then
14: if θ̂ ă :θ then
15: :z Ð ẑ; :θ Ð θ̂
16: for k P H do
17: if k P Fn1 then
18: :yk = 1
19: else :yk = 0
20: end if
21: end for
22: end if
23: else Cn1 “ tk| ẑk “ 0u; S “ S Y tn1u
24: end if
25: end while
26: end while
27: return :θ, :y, :z
28: end procedure
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The above Implicit enumeration procedure solves r0 ` r1 ` r2 ` ....` rq “ prpq`1q ´ 1q{pr´ 1q ´ 1
HIP/CHIPs, as opposed

`

p
q

˘

CHIPs in complete enumeration of the set of q protected hubs.

7.2.1 Results for the protection problem

Table 3 provides a comparison of the computational performance of the Implicit enumeration algorithm
versus complete enumeration for different instances derived from AP dataset. Computational results
show that Implicit enumeration provides a computational saving of 6% - 50% compared to complete
enumeration.

Table 3: Computational results of the protection problem, (time in seconds).

Parameters Complete Enumeration Implicit Enumeration

|N | p r q α, χ, δ CPU CPU

50 10 5 1 3,0.75,2 845 425
50 10 5 2 3,0.75,2 2922 1656
50 10 6 1 3,0.75,2 656 394
50 10 6 2 3,0.75,2 2039 1617
50 10 7 1 3,0.75,2 413 289
50 10 7 2 3,0.75,2 1320 1198

100 10 5 1 3,0.75,2 3820 1918
100 10 5 2 3,0.75,2 13176 8059
100 10 6 1 3,0.75,2 3103 1862
100 10 6 2 3,0.75,2 8908 7207
100 10 7 1 3,0.75,2 1956 1369
100 10 7 2 3,0.75,2 5356 5059

8 Conclusion and future research directions

In this paper, we studied hub interdiction problem (HIP) and hub protection problem (HPP), which
are formulated as bi-level and tri-level MIPs. For the bi-level HIP, we explored two alternate ways to
reduce it to a single level problem. The first approach used the well-known KKT conditions for the
lower level problem, while the second approach exploited the structure of the solution to the lower
level problem to replace it using closest assignment constraints (CACs). We further studied alternate
forms of CACs and their relative computational performances. Our results indicated that the best
among our proposed CAC provided a computational advantage (in terms of reduced CPU times) by
a factor of 7 times compared to the CAC proposed in the literature. We further provided reduced
versions of the alternate CACs, one of which in conjunction with Benders decomposition helped solve
large instances of HIP 7-8 times faster than its parent CAC. The computational advantage gained for
HIP with the use of CAC and Benders decomposition allowed us to further solve large instances of an
otherwise intractable HPP.

The current work opens up a number of exciting possibilities for future research. In this paper, we
studied protection of hubs as one approach used by the decision maker to safeguard against interdiction.
Yet another approach against interdiction is to consider interdiction possibility at the design of the hub
network itself. This, however, will be a much more challenging problem to solve than HPP. Another
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interesting extension of HIP and HPP is to incorporate uncertainties in the problem parameters (like
demand, etc.), leading to their robust counterparts (Bertsimas and Sim, 2004; Ben-Tal and Nemirovski,
1999). All these problems can further be extended to their capacitated versions, wherein the hubs
have limited capacities.
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