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Incorporating gender and age in genetic algorithms to
solve the indexing problem

Diptesh Ghosh

Abstract

In this paper we propose new genetic algorithms for the tool indexing problem. Genetic
algorithms are said to be nature-inspired, in that they are modeled after the natural process of
genetic evolution. The evolution process that they model is asexual in which individuals can
potentially live forever. In this paper, we propose a genetic algorithm in which solutions are of
two genders, reproduction happens by a combination of solutions with different genders, and
each solution has a finite life. We compare our genetic algorithms with the best known genetic
algorithm for the tool indexing problem and report our computational experience.
Keywords: Genetic algorithm, permutation problem, crossover, mutation

1 Introduction

The tool indexing problem is an important problem in automated manufacturing. In this kind of
manufacturing, a computer numerically controlled (CNC) machine processes a job by performing
several operations on it using a number of tools. Since the actual times for performing the operations
times are fixed, the processing time of the job can be reduced by reducing the tool change time.

In a CNC machine, toola are changed as follows. The machine has a tool changer that picks up a
tool from a specific position called the index position and attaches it to the tool holding mechanism
of the machine to perform an operation on a job. Once the operation is complete, the tool changer
replaces the tool at the index position. The index position is itself a position in a tool magazine.
This tool magazine can be thought of as a disk with slots at equal intervals along its circumference.
These slots are either empty or can contain tools. In this paper, we assume that only one copy of
each tool can be present in the tool magazine. The tool magazine brings a tool to the index position
by rotating either clockwise or anti-clockwise so that the slot with the desired tool is positioned at
the index position. The tool changing time can be measured in terms of the total amount of rotation
that the tool magazine has to perform to supply the tool changer with all the tools it requires. This
rotation is measured in units of “operations”, the amount of rotation required to move one slot to
the position occupied by its adjacent slot in any direction. The total number of operations required
to complete the processing of a job given a tool arrangement is called the cost of the arrangement,
and the indexing problem is one of finding an assignment of tools to slots so that the total tool
changing time, and hence the total processing time for processing a given job is minimized.

The tool indexing problem is one that has been widely studied in the literature, and the reader
is referred to Ghosh (2016a) for a review of the literature. The tool indexing problem, being a
computationally hard problem, has often been solved through metaheuristics. In particular genetic
algorithms have often been used to solve this problem. Dereli et al. (1998) and Dereli and Filiz
(2000) proposed the first genetic algorithm to solve the indexing problem. Their genetic algorithm
was non-standard, and recently a standard permutation based genetic algorithm proposed in Ghosh
(2016c) has been seen to outperform this algorith. The algorithm in Ghosh (2016c) is a standard
genetic algorithm. In this paper, we propose to other genetic algorithms incorporating concepts of
gender and age of solutions to develop a better genetic algorithm for the indexing problem.
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The remainder of the paper is organized as follows. In the next section we present a description
of two genetic algorithms that we propose in this paper. We present the results of our computational
experiments with these algorithms in Section 3, and summarize our paper in Section 4.

2 Modifications to Genetic Algorithms

The genetic algorithm proposed in Ghosh (2016c) was a distinct improvement on the genetic algo-
rithm proposed in Dereli et al. (1998) and Dereli and Filiz (2000). It was a conventional genetic algo-
rithm in which a new generation was created from an old generation using reproduction, crossover,
and mutation operators. The crossover and mutation operators used in OURGA were the alternat-
ing edge (AEX) crossover operator and the inversion mutation operator (see e.g., Grefenstette et al.
1985, Larranaga et al. 1999). OURGA is a hybrid genetic algorithm since it periodically exposed
solutions to an exchange neighborhood based local search.

In OURGA as in most standard implementations of genetic algorithms, an individual can poten-
tially crossover with any other individual. This genetic algorithm therefore represents a population
whose individuals are hermaphrodites. In most higher biological organisms, the population is di-
vided into genders (strictly speaking, into sexes, since sex is a biological construct while gender is
a social construct), and crossover of genetic material occurs among individuals of opposite genders.
Genetically also, males and females are different from each other in that the number of mutations
in the genetic material of males is much more than in females (see e.g., Haldane 1947, Conrad et
al. 2011). We model this in the first genetic algorithm that we propose. In this algorithm, called
GEN-GA, each generation is divided into two populations, one comprising males, and the other
comprising females. Each individual in either population maintains two strings of genetic material,
X and mateX. The X string defines the individual and does not change over generations. We use
this string to compute the cost of the solution represented by the individual. The mateX string is
the one that the individual offers to the crossover process. This string starts off by being identical
to the X string for the individual, but changes from one generation to the next through mutation.
Thus, in our algorithm, the string coding the individual solution is different from the solution that
the individual offers for crossover.

The best, i.e., least cost males and females in one generation are directly copied to the next in
GEN-GA using the usual reproduction operator. Crossovers occurs between individuals from the
male population and ones from the female population. The individuals to be crossed over are chosen
through tournament selection using their costs (as computed from their X strings). Once they
are chosen, they submit their mateX strings to be crossed over to generate new solution strings.
These strings then form the X strings of two individuals (the children resulting from the crossover).
One of the two children is added to the male population at random, and the other to the female
population. The mateX strings in these individuals are copies of their X strings. Once a new
generation is formed, the mateX string of each individual in the new generation is subjected to
inversion mutation with a probability that depends on the individual’s gender. Based on findings
from the literature in biology, we maintain the mutation rate in the male population at a value higher
than that in the female population. A pseudocode of the GEN-GA algorithm is given below. In the
pseudocode GA-Iter refers to the current iteration of the genetic algorithm, Gen-Size refers to size of
the population of each gender in a generation, Max-Gen refers to the maximum number of iterations
allowed, Mutate-Prob-Male and Mutate-Prob-Female refer to the mutation probabilities in male and
female solutions, and Nr-Reproduce refers to the number of solutions of each gender copied from the
current generation to the next generation using the reproduction operation. CURRENTGENMALE
and CURRENTGENFEMALE refer to the collections of male and female individuals in the current
generation, MATEPOOLMALE and MATEPOOLFEMALE refer to the male and female individuals
chosen to mate and produce the next generation, and NEXTGENMALE and NEXTGENFEMALE
refer to the collections of male and female individuals in the next generation.
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Algorithm GEN-GA

1. begin

2. set Best-Sol to ∞;

3. set CURRENTGENMALE to a set of Gen-size individuals;

4. set CURRENTGENFEMALE to a set of Gen-size individuals;
(each individual has a X string and a mateX string; these are identical for each
individual)

5. for (GA-Iter from 1 to Max-Gen) begin

6. if (least cost solution coded in any X string in CURRENTGENMALE is better
than Best-Sol)

7. set Best-Sol ←−least cost solution coded in the X string;

8. if (least cost solution coded in any X string in CURRENTGENFEMALE is better
than Best-Sol)

9. set Best-Sol ←−least cost solution coded in the X string;

10. copy the best Nr-Reproduce solutions in CURRENTGENMALE
to NEXTGENMALE;

11. copy the best Nr-Reproduce solutions in CURRENTGENFEMALE
to NEXTGENFEMALE;

12. set MATEPOOLMALE and MATEPOOLFEMALE to ∅;
13. for (Count from 1 to (Gen-Size−Nr-Reproduce)) begin

14. obtain solution P1 using tournament selection from CURRENTGENMALE;

15. obtain solution P2 using tournament selection from
CURRENTGENFEMALE;

16. add P1 to MATEPOOLMALE and P2 to MATEPOOLFEMALE;

17. end;

18. while (MATEPOOLMALE 6= ∅) do begin

19. remove a solution P1 from MATEPOOLMALE
and solution P2 from MATEPOOLFEMALE;

20. apply the AEX crossover on the mateX strings in P1 and P2 to obtain
two child strings. Create two solutions C1 and C2. Copy one of the strings
to both the X and mateX strings of C1 and the other string to both the
X and mateX strings of C2.

21. add C1 to NEXTGENMALE and C2 to NEXTGENFEMALE;

22. end;

23. for (each solution P in NEXTGENMALE) apply inversion operation to the
mateX string in P with probability Mutate-Prob-Male;

24. for (each solution P in NEXTGENFEMALE) apply inversion operation to the
mateX string in P with probability Mutate-Prob-Female;

25. set CURRENTGENMALE and CURRENTGENFEMALE to ∅;
26. copy all solutions from NEXTGENMALE to CURRENTGENMALE

and from NEXTGENFEMALE to CURRENTGENFEMALE;

27. end;

28. output Best-Sol;

29. end.

In a genetic algorithm, each individual is potentially immortal, in the sense that if a solution
is good (though not optimal), it can be copied using the reproduction operator until the genetic
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algorithm terminates. Such immortality is sometimes detrimental to the performance of the genetic
algorithm, since it can reduce the diversity in the population (see e.g., Ghosh 2012, for more details
on this apect.). This possibility is present, both in OURGA and GEN-GA. In our second genetic
algorithm, called AGE-GEN-GA we restrict each individual to be active for a limited period only. We
do this by maintaining a lifespan for each individual created. The lifespan is the maximum number
of genetic algorithm iterations that an individual will be active in. This lifespan is a randomly
generated number within a range. Each time a genetic algorithm iteration is complete, the lifespan
of each solution in both the male and the female populations decrease by one. If the lifespan becomes
zero, then the individual has lasted long enough, and is not copied into the next generation. The
pseudocode for the AGE-GEN-GA algorithm is given below. The variables and collections used in
this algorithm are the same as was used in EN-GA. The only addition is the lifespan variable for
each individual that stores the remaining lifespan of the individual.

Algorithm AGE-GEN-GA

1. begin

2. set Best-Sol to ∞;

3. set CURRENTGENMALE to a set of Gen-size individuals;

4. set CURRENTGENFEMALE to a set of Gen-size individuals;
(each individual has a X string and a mateX string; these are identical for each
individual. Each also has an lifespan, assigned randomly to it.)

5. for (GA-Iter from 1 to Max-Gen) begin

6. if (least cost solution coded in any X string in CURRENTGENMALE is better
than Best-Sol)

7. set Best-Sol ←−least cost solution coded in the X string;

8. if (least cost solution coded in any X string in CURRENTGENFEMALE is better
than Best-Sol)

9. set Best-Sol ←−least cost solution coded in the X string;

10. copy the solutions in CURRENTGENMALE to NEXTGENMALE;

11. copy the solutions in CURRENTGENFEMALE to NEXTGENFEMALE;

12. set MATEPOOLMALE and MATEPOOLFEMALE to ∅;
13. for (Count from 1 to Gen-Size) begin

14. obtain solution P1 using tournament selection from CURRENTGENMALE;

15. obtain solution P2 using tournament selection from
CURRENTGENFEMALE;

16. add P1 to MATEPOOLMALE and P2 to MATEPOOLFEMALE;

17. end;

18. while (MATEPOOLMALE 6= ∅) do begin

19. remove a solution P1 from MATEPOOLMALE
and solution P2 from MATEPOOLFEMALE;

20. apply the AEX crossover on the mateX strings in P1 and P2 to obtain
two child strings. Create two solutions C1 and C2. Copy one of the strings
to both the X and mateX strings of C1 and the other string to both the
X and mateX strings of C2.

21. add C1 to NEXTGENMALE and C2 to NEXTGENFEMALE;

22. end;

23. sort the solutions in NEXTGENMALE and NEXTGENFEMALE in non-decreasing
order of the costs of the solutions obtained using the X string;

24. Discard all solutions in NEXTGENMALE except the first Gen-Size solutions
with a positive lifespan;
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25. Discard all solutions in NEXTGENFEMALE except the first Gen-Size solutions
with a positive lifespan;

26. for (each solution P in NEXTGENMALE) apply inversion operation to the
mateX string in P with probability Mutate-Prob-Male;

27. for (each solution P in NEXTGENFEMALE) apply inversion operation to the
mateX string in P with probability Mutate-Prob-Female;

28. set CURRENTGENMALE and CURRENTGENFEMALE to ∅;
29. copy all solutions from NEXTGENMALE to CURRENTGENMALE

and from NEXTGENFEMALE to CURRENTGENFEMALE;

30. reduce the lifespan values of all solutions in CURRENTGENMALE and
CURRENTGENFEMALE by 1;

31. end;

32. output Best-Sol;

33. end.

In the next section we describe our computational experience with the three algorithms mentioned
in this section.

3 Computational Experiments

We coded OURGA, the genetic algorithm of Ghosh (2016c), GEN-GA and AGE-GEN-GA in C, and
performed our experiments on them on a machine with Intel i-5-2500 64-bit processor at 3.30 GHz
with 4GB RAM. OURGA was coded without the local search component in order to obtain a fair
comparison of the genetic algorithms. All the algorithms were implemented in a multi-start manner,
with each algorithm being allowed 20 starts, and each start was allowed to run for 500 generations.
The results that we propose are the best results obtained over all 20 starts, and the times reported
are the total times required to run all 20 starts.

The size of each generation in OURGA (Ghosh 2016c) was taken to be 100. Of these 20 were
directly copied from the previous generation using the reproduction operator, and the other 80 were
obtained by the AEX crossover operation. The probability of mutation was taken as 0.22 (same
as in Ghosh (2016c)). We used a generation size of 100 for our genetic algorithms too. In GEN-
GA, 20 of the 100 were copied from the previous generation by the reproduction operator, and the
remaining 80 were obtained through crossover. In AGE-GEN-GA, the generation size was 100, the
intermediate generation size was 200, of which 100 were the solutions in the last generation, and
another 100 were obtained through crossover.

We performed some initial experiments to obtain the best mutation probabilities for the two
genders. To do this, we used 25 randomly generated instances. These instances were in five sets
with five instances in each set. The numbers of tools and slots in the five sets are given below.

Set Tools Slots

Set 1 30 45
Set 2 45 60
Set 3 60 75
Set 4 75 90
Set 5 90 120
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We used different combinations of mutation probabilities in male and female solutions to solve these
sets. The mutation probabilities in female solutions were varied from 0.05 to 0.30 in steps of 0.05,
while the mutation probabilities in male solutions were varied from 0.1 to 0.5 in steps of 0.1. The
mutation probabilities in male solutions were kept higher than that in females. The results from our
preliminary experiments with GEN-GA and AGE-GEN-GA are given in Tables 1 and 2 respectively.
Solution times are not reported in these tables because the execution times required by GEN-GA
and AGE-GEN-GA were found to be linear functions only of the number of slots in the instance.
The solution costs reported for each set in these tables are averages of solution costs for all five
instances in the set. We have italicized the best mutation rate combination for each set.

From the results we see that there is no set of mutation parameters that performs well for all
the sets, nor is there any clear trend visible in the results. Thus, to find out a “best” pair of
mutation parameters for each genetic algorithm, we found out the percentage suboptimality of each
mutation parameter pair for each set. We then averaged the suboptimality values over the five sets,
and chose that pair of mutation values for which this average suboptimality was the least. Using
this method, we found out that the performance of GEN-GA was best when the male and female
mutation probabilities were 0.5 and 0.1 respectively, and the performance of AGE-GEN-GA was
best when the male and female mutation probabilities were 0.5 and 0.05 respectively. We used these
values in our main experiments.

Our main experiments used data from benchmark instances. These benchmark instances are
known in the literature as Anjos instances and sko instances, and have been used to computationally
compare the performance of algorithms for the single row plant layout problem. Each benchmark
instance contains a symmetrical matrix of frequency values. We use these frequencies to denote the
number of times a tool change operation exchanged the particular pair of tools during the processing
of a job. The dimension of the matrix is taken as the number of tools used to process the job, and
the number of slots is decided by us. The Anjos instances (Anjos et al. 2005) comprise four sets
with 5 instances in each set. The number of tools in instances of each of these five sets are 60, 70,
75, and 80 respectively. We have defined the number of slots for these instances to be 100 for each
instance. The sko instances (Anjos and Yen 2009) have seven instances. These instances have 42,
49, 56, 64, 72, 81, and 100 tools respectively. There are 60 slots in the first three instances and 100
slots in the other four.

Table 3 reports the costs of the best solutions obtained by the three genetic algorithms in each
of the benchmark instance. The first column indicates the name of the instance, and the next three
columns report the costs of the best solutions obtained by the specific algorithm for the instance.
We have indicated the best among the three costs using italics in the table. We see that apart
from three instances, GEN-GA outputs the best solutions for these instances. It also takes the least
amount of execution times among the three, and AGE-GEN-GA takes the longest execution times
among the three. Thus, from these experiments, it is clear that GEN-GA is the best among the
three genetic algorithms, so that we can conclude that coding solutions as individuals with different
genders, which have different mutation rates improves the performance of genetic algorithms on the
tool indexing problem. Interestingly, the effect of adding a lifespan to individuals does not have a
positive effect on the quality of solutions obtained by the genetic algorithm.

4 Summary

In this paper we propose two genetic algorithms to solve the tool indexing problem. These algorithms
are modifications of the standard genetic algorithm in that they segregate the individuals in a
population into two genders and ensure that crossover happens between individuals of opposite
gender. This simulates reproduction in most advanced species. Also, based on observations from
the biological world, the mutation probabilities in the individuals depend on their gender. In one
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of the genetic algorithms, each solution is given a randomly assigned lifespan, corresponding to the
lifespans of individuals in the biological world.

We perform experiments comparing the quality of solutions obtained by regular genetic algo-
rithms and the proposed algorithms on benchmark instances. We see that the segregation of solu-
tions into male and female genders produce better solutions than the standard genetic algorithms.
However, from our experiments, we are unable to see any advantage in assigning lifespans to solu-
tions.
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Table 3: Costs of best solutions for benchmark instances

Instance OURGA GEN-GA AGE-GEN-GA

Anjos instances

Anjos-60-01 74414 69668 73845
Anjos-60-02 43553 39851 43961
Anjos-60-03 33518 33118 34002
Anjos-60-04 18852 17150 19314
Anjos-60-05 22535 21805 23342

Anjos-70-01 58953 58481 57055
Anjos-70-02 69724 67602 68443
Anjos-70-03 56166 55105 56929
Anjos-70-04 37766 36687 37475
Anjos-70-05 174908 170699 175273

Anjos-75-01 84547 83337 85790
Anjos-75-02 143041 139421 142622
Anjos-75-03 51092 49077 51078
Anjos-75-04 132191 131220 134305
Anjos-75-05 59480 58961 60329

Anjos-80-01 71279 69884 70943
Anjos-80-02 66472 65760 66764
Anjos-80-03 115416 115410 117817
Anjos-80-04 122301 120539 124216
Anjos-80-05 45995 45449 45953

sko instances

sko-42 30311 30274 30871
sko-49 43372 42908 43086
sko-56 60476 60644 60608
sko-64 119499 114162 121644
sko-72 161859 157073 162586
sko-81 215063 212681 215197
sko-100 325670 327348 326019
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