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Diptesh Ghosh

Abstract

The tool indexing problem is one of allocating tools to slots in a tool magazine so as to
minimize the tool change time in automated machining. Genetic algorithms have been suggested
in the literature to solve this problem, but the reasons behind the choice of operators for those
algorithms are unclear. In this paper we compare the performances of four common crossover
operators and four common mutation operators to find the one most suited for the problem.
Our experiments show that the choice of operators for the genetic algorithms presented in the
literature is suboptimal.
Keywords: Genetic algorithm, permutation problem, crossover, mutation

1 Introduction

The indexing problem is one of assigning tools to slots in a tool magazine in an optimal fashion with
the objective of minimizing the tool changing time, and hence the processing time for jobs requiring
multiple operations with multiple tools. Physically the process can be visualized as follows. A job
to be processed needs a series of operations, requiring one of m tools. These tools are fetched by a
tool changer that picks the appropriate tool from the index position of a tool magazine, and then
returns the tool to the same position. The tool magazine is a circular disk with n equidistant slots
n ≥ m, in which each tool occupies a slot. Tools are brought to the index position by rotating the
magazine, either clockwise or counter-clockwise. The indexing problem is one of allocating tools to
slots so that the total amount of rotation of the tool magazine is minimized.

The total amount of rotation of the magazine in units of “operations”. An operation is the
amount of rotation required to move a slot adjacent to the one currently at the index position to
the index position. So if two tools p and q occupy slots i and j in the magazine, then the number
of operations required to interchange them is dij = min{|j − i|, |i + n − j|}. Let the frequency of
interchange of tools p and q in the process be fpq. Denoting the assignment of tool r to slot k by a
binary variable yrk, the total amount of rotation for a process is given by

n−1∑
i=1

n∑
j=i+1

m∑
p=1

m∑
q=1
q 6=p

ypiyqjfpqdij

This expression is minimized subject to the conditions that each tool can occupy exactly one slot,
and that each slot can house at most one tool. Hence the indexing problem can be modeled as a
special form of the quadratic assignment problem.

The literature on solving this problem is one primarily using metaheuristic techniques to solve
the problem. For that purpose, a solution to the problem is seen as a permutation of 1 through n,
the number of slots available. The number at a particular position in the solution codes the tool that
occupies that position. Dereli et al. (1998) and Dereli and Filiz (2000) use a genetic algorithm (GA)
to solve the problem in addition to a simulated annealing algorithm. Ghosh (2016c) presents a GA
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that supercedes the GA presented in Dereli et al. (1998) and Dereli and Filiz (2000). Velmurugan
and Victor Raj (2013) use a particle swarm optimization algorithm. Ghosh (2016a) presents a
tabu search algorithm using an exchange neighborhood for the problem. Ghosh (2016b) presents a
neighborhood search and a tabu search algorithm using a Lin-Kernighan neighborhood structure.

In this paper we carry out a thorough analysis of the operators used in genetic algorithms to
solve the indexing problem. The choice of crossover and mutation operators in Dereli et al. (1998)
and Dereli and Filiz (2000) do not appear to be the result of a thorough examination of different
operators. Ghosh (2016c) chose the same operators as the previous studies in order to make a
fair comparison between their algorithm and the ones reported earlier. Several studies on genetic
algorithms for the traveling salesman problem (see e.g., Grefenstette et al. 1985, Starkweather et
al. 1991, Larranaga et al. 1999) report that operators different from the ones used for the indexing
problem perform better. Therefore, in this paper we carry out a comparison between four commonly
used crossover operators and four mutation operators to arrive at a competitive genetic algorithm
for the indexing problem.

We describe the crossover operators and mutation operators that we use in our study in Section 2.
We then describe the results of our computational experiments with GAs using these operators in
Section 3. Finally we summarize our findings in Section 4.

2 Operators for GAs for the Indexing Problem

In a genetic algorithm (GA) we start with a collection of solutions which we call a generation,
and iteratively improve the generation using reproduction, crossover, and mutation operators. The
generation with which we start an iteration is called the current generation, and the generation we
form out of it is called the next generation. At the end of the iteration, the current generation is
replaced by the next generation. Iterations continue until a stopping condition is reached. Stopping
conditions are typically based on the number of iterations performed, or the execution times required
by the GA. After the iterations are over, the GA outputs the best solution it has encountered in all
the generations it has processed as an approximation to an optimal solution.

In GAs, the reproduction operation is usually straightforward; a pre-specified number of the best
solutions in the current generation are copied directly into the next generation. A crossover operator
takes more than one solutions (usually two solutions) and combines them to form new solutions. A
mutation operator takes a solution and modifies it to form a new solution. A variety of crossover
and mutation operators are available though, and the performance of a genetic algorithm depends
critically on the choice of these operators.

A solution for the indexing problem with n slots is a permutation of the numbers from 1 through
n. If the k-th position in the permutation is occupied by the number p, and p ≤ m, the number of
tools used, then the k-th slot in the magazine is occupied by tool p. If p > m then the k-th slot
is empty. Thus the indexing problem is a permutation problem, in that a solution to an indexing
problem instance is a permutation of the slots available in the instance. There are specific crossover
and mutation operators available for permutation problems, which make sure that the solutions
obtained as a result of the operation are also permutations. Crossover operator alternatives are
the Order 1 crossover operator, the Alternating Edge crossover operator, the Edge Recombination
crossover operator, and the Partially Mapped crossover operator. Mutation operator alternatives are
the insert operator, the invert operator, the scramble operator, and the swap operator. A description
of these operators can be obtained from the literature, (see e.g., Larranaga et al. 1999). We will
describe them in the remainder of the section for the sake of completeness.
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2.1 Crossover operators

The crossover operators that we study here accepts two solutions as arguments and combines them
to form two more solutions as output. For permutation problem like the one we are addressing,
the solutions output must be permutations. The following are the four crossover operators that we
compare in this paper.

Order 1 crossover operator (O1X) The O1X crossover creates two solutions by copying parts
of one solution into the other, and completing the solutions by adding elements in a particular
order. The operator takes two solutions as argument. Suppose these are (π1, . . . , πi, . . . , πn) and
(ψ1, . . . , ψi, . . . , ψn). It randomly chooses two indices l and r, 1 ≤ l < r ≤ n. It then creates
two empty solutions to output. The positions from l to r of the first newly created solution are
populated by ψl through ψr maintaining the order. The same positions in the second one are
populated by πl through πr maintaining the order. The remaining positions in the first solution to
be output are filled starting from position r + 1 to position l − 1 (wrapping around after position
n) by elements πr+1, . . . , πn, π1, . . . , πr in that order, making sure that no element is duplicated in
the solution. The second solution to be output is completed in the same manner, using elements
ψr+1, . . . , ψn, ψ1, . . . , ψr in that order.

Consider for example that the two solutions that the O1X operator accepts as argument are (3,
9, 5, 2, 6, 4, 1, 7, 8) and (7, 8, 1, 9, 4, 3, 5, 6, 2). Let us also suppose that l and r are chosen
as 3 and 6 respectively. So the two solutions that will be output as a result of the crossover are
initialized as (*, *, 1, 9, 4, 3, *, *, *) and (*, *, 5, 2, 6, 4, *, *, *) respectively. The first solution will
be filled starting from the seventh position by elements in the order 1, 7, 8, 3, 9, 5, 2, 6, 4 in that
order without duplication. Hence it will be (2, 6, 1, 9, 4, 3, 7, 8, 5). Following a similar logic the
other solution to be output will be (9, 3, 5, 2, 6, 4, 7, 8, 1).

Alternating Edge crossover operator (AEX) The AEX crossover creates solutions by con-
sidering each solution in its argument as a collection of directed arcs, and then choosing arcs al-
ternately from the two solutions. Suppose that the solutions the operator takes as arguments are
(π1, . . . , πi, . . . , πn) and (ψ1, . . . , ψi, . . . , ψn). From these two solutions, it creates two collections of
“arcs”: S1 = {(π1, π2), (π2, π3), . . . , (πn−1, πn), (πn, π1)}, and S2 = {(ψ1, ψ2), (ψ2, ψ3), . . . , (ψn−1,
ψn), (ψn, ψ1)}. We start building the first solution with π1, and choose the arc (π1, π2) from S1.
The first two elements in the first solution are π1 and π2. For the third element in the solution,
we choose that arc (ψk, ψk+1) from S2 where ψk = π2. The third element in the solution is ψk+1.
For the fourth element, we look at S1 and try to find arc (πl, πl+1) ∈ S1 for which πl = ψk+1 and
πl+1 is not already in the solution. We continue in this way, alternating between S1 and S2 until
the solution is complete, or until we cannot add any more elements to the solution. In the latter
case, we choose an element at random from those which are not already in the solution, and start
the process again. We continue this until the solution is complete. For the second solution, we start
with ψ1 in the first position, and alternate between S1 and S2, starting with S2.

For example consider the situation in which the two solutions that the AEX operator ac-
cepts as argument are (3, 9, 5, 2, 6, 4, 1, 7, 8) and (7, 8, 1, 9, 4, 3, 5, 6, 2). So S1 =
{(3, 9), (9, 5), (5, 2), . . . , (7, 8), (8, 3)} and S2 = {(7, 8), (8, 1), (1, 9), . . . , (6, 2), (2, 7)}. The first so-
lution starts with 3 and 9 in the first two positions. Then we look at S2 and choose (9,4). So the
third position is occupied by 4. Looking at S1, we see that the arc with 4 as its tail is (4,1). The
next arc to choose is (1,9) from S2 but 9 already is in the solution. So we choose an element at
random which is not part of the solution already, say, 2. Now looking at S1, we add 2, then 6 and
have to start off again. Finally the solution that we get is (3, 9, 4, 1, 2, 6, 5, 7, 8). Working in a
similar manner but starting with arc (7,8) in S2, we get the other solution to be output as (7, 8, 3,
5, 2, 1, 4, 6, 9).
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Edge Recombination crossover operator (ERX) The ERX crossover operator creates solu-
tions by considering each solution in its argument as a collection of undirected edges, and trying
to keep as many of the edges that occur with higher frequencies as possible. Consider once again,
solutions (π1, . . . , πi, . . . , πn) and (ψ1, . . . , ψi, . . . , ψn) as arguments to the ERX operator. For every
element, the operator first creates a set of elements that are its neighbors. For example, if πj = ψk,
then the neighbor of πj (and ψk will be {πj−1, πj+1, ψk−1, ψk+1}. Of course some of these neighbors
can be identical, and the cardinality of the set of neighbors of an element can be smaller than 4.
Now for the first solution, we start by choosing the element π1 in the first position. We remove it
from all the sets of neighbors of elements of which it is a part. We then look at the set of neighbors
of the chosen element, and find the member of this set that has the lowest number of neighbors.
Ties are broken arbitrarily. This element is added in the next position of the solution and is defined
as the chosen neighbor. The chosen neighbor is also removed from all the sets of neighbors of the
elements. This process of adding neighbors continue until the solution is complete, or we choose an
element whose set of neighbors is empty. We then choose an element at random from among the
elements not already part of the solution, and repeat the process. The second solution is obtained
in the same way, but starting from ψ1.

For example consider the situation in which the two solutions that the ERX operator accepts as
argument are (3, 9, 5, 2, 6, 4, 1, 7, 8) and (7, 8, 1, 9, 4, 3, 5, 6, 2). The sets of neighbors for elements
are

1: {4, 7, 8, 9} 4: {6, 1, 9, 3} 7: {1, 8, 2}
2: {5, 6, 7} 5: {9, 2, 3, 6} 8: {3, 7, 1}
3: {9, 8, 4, 5} 6: {2, 4, 5} 9: {3, 5, 1, 4}

Choosing 3 as the first element, we first remove 3 from all the sets. Next we must consider 9, 8, 4,
and 5 for the next position. Among these, 8 has the smallest number of neighbors, so 8 is the next
element in the solution. After adding 3 and 8 as the first two elements, and removing 8 from the
sets of neighbors, we have the sets of neighbors as

1: {4, 7, 9} 4: {6, 1, 9} 7: {1, 2}
2: {5, 6, 7} 5: {9, 2, 6} 8: {7, 1}
3: {9, 4, 5} 6: {2, 4, 5} 9: {5, 1, 4}

Among the neighbors of 8, 7 has two neighbors and 1 has three, so the third element in the solution
is 7. Carrying on in this manner, the first solution is obtained as (3, 8, 7, 1, 9, 4, 6, 2, 5). Starting
with the first element of the second solution, i.e., 7, the other solution that is output is (7, 2, 6, 5,
3, 8, 1, 4, 9).

According to Grefenstette et al. (1985), Starkweather et al. (1991), and Larranaga et al. (1999)
the ERX crossover operator is the favored operator for GAs to solve the traveling salesman problem.

Partially Mapped crossover operator (PMX) The PMX operator creates solutions by copy-
ing parts of one solution into another, and then completing the solutions using a partial mapping
generated from the parts of the solution copied into one another. Suppose it takes (π1, . . . , πi, . . . , πn)
and (ψ1, . . . , ψi, . . . , ψn) as input. It randomly chooses two indices l and r, 1 ≤ l < r ≤ n. It then
creates two empty solutions to output. The positions from l to r of the first newly created solution
are populated by ψl through ψr maintaining the order. The same positions in the second one are
populated by πl through πr maintaining the order. The remaining positions in the solutions to
be output are filled as follows. Two partial maps are created, map1 : (πl, . . . , πr) → (ψl, . . . , ψr)
with map1(πk) = ψk if ψk /∈ {πl, . . . , πr} and map1(πk) = map1(ψk) otherwise, for k = l, . . . , r;
and map2 : (ψl, . . . , ψr) → (πl, . . . , πr) with map1(ψk) = πk if πk /∈ {ψl, . . . , ψr} and map1(ψk) =
map1(πk) otherwise, for k = l, . . . , r. The elements in positions from 1 through l − 1 and r + 1
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through n in the first solution are filled with π1 through πl−1 and πr+1 through πn respectively,
if the element π is not a member of the domain of map2. Otherwise it is filled with the element
map2(π). Similarly the elements in positions from 1 through l−1 and r+ 1 through n in the second
solution are filled with ψ1 through ψl−1 and ψr+1 through ψn respectively, if the element ψ is not a
member of the domain of map1. Otherwise it is filled with the element map1(ψ).

Consider the situation in which the two solutions that the PMX operator accepts as argument
are (3, 9, 5, 2, 6, 4, 1, 7, 8) and (7, 8, 1, 9, 4, 3, 5, 6, 2). Let l = 4 and r = 8. Then map1(2)
= 9, map1(6) = map1(4) = 3, map1(1) = 5, and map1(7) - map1(6) = 3. Similarly, map2(9) = 2,
map2(4) = map2(6) = 7, map2(3) = map2(4) = 7, map2(5) = 1. After copying the relevant part of
the second solution into the first solution to be output, we have the first solution as (*, *, *, 9, 4, 3,
5, 6, *) which when filled by elements in the first input solution and map2(·) ends up as (4, 2, 1, 9,
4, 3, 5, 6, 8). In a similar way, using the relevant part of the first solution and map1(·), the second
solution to be output is (6, 8, 5, 2, 6, 4, 1, 7, 9).

2.2 Mutation operators

A mutation operator takes a solution as an input and changes it to generate another solution. Since
the problems that we are addressing are permutation problems, the mutation operators output
permutations of the problem elements. The following are four mutation operators are compared in
this paper.

Insert mutation operator This operator removes one element of the solution from its position in
the solution and inserts it at some other place in the solution. For example, let the solution it takes as
argument be (π1, . . . , πi, . . . , πn). It randomly chooses two indices j and k, 1 ≤ j/neqk ≤ n, removes
πj and adds it back after πk to yield the solution (π1, . . . , πj−1, πj+1, . . . , πk, πj , πk+1, . . . , πn).

For example, if the solution it take in is (3, 1, 5, 2, 4, 9, 6, 8, 7) and the positions chosen are
j = 5, and k = 2, then the result after the inversion operation is (3, 1, 4, 5, 2, 9, 6, 8, 7), with the
italics marking the element with changed position.

Invert mutation operator This operator reverses the sequence of some of the elements in the
permutation denoting the solution it takes as argument. Suppose the solution it takes as argument
is (π1, . . . , πi, . . . , πn). It randomly chooses two indices l and r, 1 ≤ l < r ≤ n and reverses the
portion from πl to πr to output the permutation (π1, . . . , πl−1, πr, πr−1 . . . , πl+1, πl, πr+1, . . . , πn).

For example, if the solution it take in is (3, 1, 5, 2, 4, 9, 6, 8, 7) and the positions chosen are
l = 2, and r = 5, then the result after the inversion operation is (3, 4, 2, 5, 1, 9, 6, 8, 7), with the
italics marking the elements with changed positions.

Scramble mutation operator This operator jumbles the sequence of some of the elements in the
permutation denoting the solution it takes as argument. Suppose the solution it takes as argument
is (π1, . . . , πi, . . . , πn). It randomly chooses two indices l and r, 1 ≤ l < r ≤ n and jumbles the
elements in the portion from πl to πr to generate its output.

For example, if the solution it take in is (3, 1, 5, 2, 4, 9, 6, 8, 7) and the positions chosen are
l = 2, and r = 5, then the result after the inversion operation can be (3, 5, 1, 4, 2, 9, 6, 8, 7), with
the italics marking the elements with changed positions.

Swap mutation operator This operator picks two elements in the permutation denoting the solu-
tion it takes as argument and interchanges their positions. Suppose the solution it takes as argument
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is (π1, . . . , πi, . . . , πn). It randomly chooses two indices l and r, 1 ≤ l < r ≤ n and interchanges the
elements πl and πr to output the permutation (π1, . . . , πl−1, πr, πl+1 . . . , πr−1, πl, πr+1, . . . , πn).

For example, if the solution it take in is (3, 1, 5, 2, 4, 9, 6, 8, 7) and the positions chosen are
l = 2, and r = 5, then the result after the inversion operation is (3, 4, 5, 2, 1, 9, 6, 8, 7), with the
italics marking the elements with changed positions.

3 Computational Experiments

In the previous section, we described four crossover operators and four mutation operators. Using
these, we coded 16 GAs for the indexing problem, one for each crossover-mutation pair. Each of
these GAs employed a population size of 100, and copied the best 20 solutions of each generation
directly to the next generation. Hence the size of the mating pool was set to 80. The probability of
mutation for each solution was chosen as 0.22 based on the preliminary computational experiments
described in Ghosh (2016c).

Each of the sixteen GAs was used to solve 25 randomly generated problem instances. These
consisted of five sets of five instances each. The number of tools and the number of slots in the five
sets were 30 and 45, 45 and 60, 60 and 75, 75 and 90, and 90 and 120 respectively. The GAs were
implemented in a multi-start format with 20 starts for each instance and GA combination. The
solution reported by a GA for an instance is the best among the solutions output by the 20 starts
of the GA on the instance. The time reported was the total time required for the 20 starts.

The results obtained by the GAs on the problem instances are depicted in Tables 1 and 2. In
these tables, instead of reporting the results obtained by the GAs on each of the five instances in a
set, we have reported the average of the values. For example, the costs and times required by the
GA using O1X crossover and insert mutation on the five instances of size 30 are 112708 and 1.328s,
108269 and 1.328s, 109141 and 1.296s, 109260 and 1.281s, and 107544 and 1.312s respectively.We
report the average of these cost figures, i.e., 109384.4 at the appropriate place in Table 1 and the
average of the time values, i.e., 1.309s at the appropriate place in Table 2.

From Table 1 we see that for each of the problem sizes for each of the mutation operators used,
the AEX crossover function produces better (i.e., lower cost) solutions than the other three crossover
functions. This is highlighted using italics in the table. From Table 2 we see that the times required
by AEX, although not the fastest among the four crossover operators is not very slow. In fact,
three of the operators require execution times that are quite close to each other, while the slowest
crossover operator, ERX, requires significantly more execution times. Based on this, we feel that
the AEX operator is the best crossover operator for the indexing problem.

Interestingly, this observation goes against observations on the performance of the crossover
operators for the traveling salesman problem and the vehicle routing problem (see e.g., Grefenstette
et al. 1985, Starkweather et al. 1991, Larranaga et al. 1999). For these problems, the ERX operator
has been observed to output the best solutions.

We next find the best mutation operator for GAs using the AEX crossover operator. To do so,
we re-arrange the cost and time data for GAs using AEX crossover various mutation operators. The
rearranged data are shown in Tables 3 and 4. We see from Table 3 that the invert mutation operator
combined with the AEX crossover operator outputs the best solutions for the test problems except
for problem with 45 tools. The execution times for the four GAs with AEX crossover and various
mutation operators are not very different from each other.

Hence, based on our experiments we feel that for the indexing problem, the best GA is one using
the AEX crossover operator and the invert mutation operator.
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Table 1: Average solution costs for the GAs on the randomly generated problem instances

Mutation

Size Crossover insert invert scramble swap

30 O1X 109384.4 110288.6 110280.2 109762.8
AEX 106370.4 105746.8 106441.2 106433.8
ERX 110791.4 112082.2 111452.6 111277.4
PMX 109357.0 111670.4 111730.4 110126.4

45 O1X 352806.2 354281.6 356572.8 354253.0
AEX 348447.8 347093.2 347380.8 345626.4
ERX 356603.2 355786.6 356892.8 354591.8
PMX 353199.4 354797.8 356247.2 352747.2

60 O1X 808434.6 809841.4 811969.0 807744.0
AEX 797436.2 794315.0 797572.6 800118.0
ERX 811929.4 811957.8 810994.4 811102.8
PMX 808155.8 807571.6 811590.0 805757.2

75 O1X 1523535.8 1530373.6 1528976.4 1524928.8
AEX 1515964.2 1509860.0 1515687.8 1517165.4
ERX 1531476.0 1531019.0 1530130.8 1528222.2
PMX 1524429.0 1526049.8 1531321.8 1525623.6

90 O1X 2940200.4 2953611.4 2941261.6 2931455.0
AEX 2882414.0 2854692.0 2856393.6 2878378.0
ERX 2949736.4 2949742.0 2949014.0 2953132.8
PMX 2938760.4 2950915.8 2944408.0 2935055.0

We experimented with our choice of operators on benchmark instances that we have used in other
work. For this, we modified the OURGA algorithm described in Ghosh (2016c) which is currently
the best GA in the literature. The OURGA algorithm is a GA using a PMX crossover operator
and a invert mutation operator, which periodically applies an exchange based local search on some
of the best solutions in a generation, and on completion of the GA iterations, on all the solutions
in the final generation. We created two main variations of this algorithm, one in which we did not
use the local search operation, and the other in which we used it. In both variations, we created
two variants, OURGA-PMX with PMX crossover operator, and OURGA-AEX in which we replaced
the PMX operator with the AEX operator. (Hence the OURGA algorithm in Ghosh (2016c) is the
OURGA-PMX variant of the second variation, i.e., the one using local search.)

We tested the two algorithms on two sets of benchmark instances. The first set was the set of
Anjos instances, adapted from instances used in Anjos et al. (2005) for the single row facility layout
problem (SRFLP). There are four subsets of five instances in this set, in which the number of tools
used were 60, 70, 75, and 80 respectively. The number of slots was fixed at 100 for instances in
this set. The second set was a set of sko instances, used in Anjos and Yen (2009) for computational
experiments for the SRFLP. There are seven instances in this set. The number of tools in the
instances were 42, 49, 56, 64, 72, 81, and 100. We used a tool magazine with 60 slots for the first
three instances, and a tool magazine with 100 slots for the others.

The results of our experiments are presented in Table 5.

In the variation not using local search, the costs of the solutions output by OURGA-AEX were
lower than the costs output by OURGA-PMX for 26 of the 27 instances in out test sets. The
execution times taken by OURGA-AEX were marginally higher than those by OURGA-PMX. This
validates our earlier findings about the superiority of the AEX crossover operation.
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Table 2: Average execution times (cpu seconds) for the GAs on the randomly generated problem
instances

Mutation

Size Crossover insert invert scramble swap

30 O1X 1.309 1.309 1.356 1.306
AEX 1.768 1.787 1.787 1.753
ERX 6.834 6.821 6.875 6.818
PMX 1.284 1.287 1.290 1.272

45 O1X 2.134 2.147 2.237 2.109
AEX 2.918 2.953 2.968 2.909
ERX 10.774 10.800 10.834 10.709
PMX 2.096 2.090 2.100 2.068

60 O1X 3.162 3.215 3.259 3.175
AEX 4.369 4.450 4.453 4.340
ERX 15.796 15.927 15.862 15.831
PMX 3.144 3.122 3.131 3.103

75 O1X 4.372 4.425 4.503 4.375
AEX 6.090 6.227 6.240 6.099
ERX 21.425 21.528 21.506 21.525
PMX 4.372 4.331 4.375 4.300

90 O1X 7.655 7.518 7.603 7.428
AEX 10.512 10.659 10.728 10.428
ERX 36.100 35.405 35.893 35.671
PMX 7.468 7.400 7.453 7.350

Table 3: Average solution costs for the GAs using AEX crossover operator

Mutation

Size insert invert scramble swap

30 106370.4 105746.8 106441.2 106433.8
45 348447.8 347093.2 347380.8 345626.4
60 797436.2 794315.0 797572.6 800118.0
75 1515964.2 1509860.0 1515687.8 1517165.4
90 2882414.0 2854692.0 2856393.6 2878378.0

In the variation using local search, the dominance of the AEX operator is not clear. The local
search operation in both variants nullify most of the advantages that the AEX operator offers over
PMX. We see that among the 27 instances for which results are shown in the table, OURGA-AEX
outperformed OURGA-PMX in 10 instances. The costs output by OURGA-AEX for these instances
have been highlighted in the table using italics. However, for several other instances OURGA-PMX
performed better. The execution times required by OURGA-AEX were marginally higher than those
required by OURGA-PMX, although the differences were never significant.

Based on these observations we conclude that the Alternate Edge crossover operator (AEX) and
insert mutation operator form a pair of GA operators that is preferred over other pairs of crossover
and mutation operators. However, the benefits of AEX are often masked if the GA is hybridized
with a local search algorithm.
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Table 4: Average execution times (cpu seconds) for the GAs using AEX crossover operator

Mutation

Size insert invert scramble swap

30 1.768 1.787 1.787 1.753
45 2.918 2.953 2.968 2.909
60 4.369 4.450 4.453 4.340
75 6.090 6.227 6.240 6.099
90 10.512 10.659 10.728 10.428

4 Summary

In this paper, we have studied various crossover and mutation operators for genetic algorithms to
solve the indexing problem. These operators are the order 1, alternating edge, edge recombination,
and partial mapping crossover operators and the insert, invert, scramble, and swap mutation opera-
tors. They have been described in Section 2 of the paper. In Section 3 we have presented our results
from two computational experiments. In the first experiment, we have compared the performance of
the sixteen crossover-mutation operators pairs on randomly generated indexing problem instances
with the number of tools varying between 30 and 90, and the number of slots varying between 45
and 120. Based on the results from this experiment, we come to the conclusion that the combination
of the alternating edge crossover operator and the invert mutation operator output the best results
for this problem. This is interesting, since it goes against the use of the popular partially mapped
crossover operator used earlier for the indexing problem, and the literature on the traveling salesman
problem which suggests the used of the edge recombination crossover. In the second experiment,
we used the alternating edge crossover and invert mutation operator in genetic algorithms and com-
pared the performance of this algorithm with the best genetic algorithm from the literature. We
based our experiments on benchmark instances available in the literature. From this experiment we
concluded that our choice of operators is indeed better than the ones reported in the literature for
genetic algorithms. However if the genetic algorithm also used a neighborhood search within itself,
then the improvement using our operators is not completely obvious, although we did find better
solutions than the best known for 10 of the 27 benchmark instances that we studied.

In summary, the main contribution of this paper is to suggest the use of the alternating edge
crossover and invert mutation for competitive genetic algorithms for the indexing problem.
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