
 

 
  

 

INDIAN INSTITUTE OF MANAGEMENT 

AHMEDABAD   INDIA 
Research and Publications 

 

 

 

 

 

 

FRIW: Free Radicle Inspired Walk 

Capturing Social Bonds for a Realistic Human Mobility Model 

Kavitha Ranganathan 

 

W.P. No. 2016-03-11 

  March 2016 

 

 

 

 

 

 

 

 

INDIAN INSTITUTE OF MANAGEMENT 

AHMEDABAD-380 015 

INDIA 

The main objective of the working paper series of the IIMA is to help faculty members, research 

staff and doctoral students to speedily share their research findings with professional colleagues 

and test their research findings at the pre-publication stage. IIMA is committed to maintain 

academic freedom. The opinion(s), view(s) and conclusion(s) expressed in the working paper are 

those of the authors and not that of IIMA. 



 

 

 

  

 

 

 

 

  

IIMA    INDIA 

Research and Publications 

                

Page No. 2 W.P.  No.  2016-03-11 

 

FRIW: Free Radicle Inspired Walk 

Capturing Social Bonds for a Realistic Human Mobility Model 

Kavitha Ranganathan 

Indian Institute of Management, Ahmedabad 

Abstract 
 

Studies on mobile applications for ad-hoc networks predominantly rely on simulations to evaluate 

various distributed algorithms. This has given rise to the need for realistic mobility models that 

incorporate social characteristics of human mobility. Based on basic properties of user movements 

captured via GPS traces and user interviews, we propose FRIW (Free Radicle Inspired Walk). FRIW 

leverages the free radicle concept from chemistry and social network theory to model social ties and 

group mobility in a campus setting.  We find that FRIW is successful in generating realistic mobility 

patterns that can be used for modelling user movements in ad hoc network simulations. 

1. Introduction 
 

Mobile devices that can communicate directly with each other and also act as routers to connect two 

or more devices that are out of range have given rise to the idea of mobile ad-hoc networks. These 

networks have been studied in a variety of contexts including communication in hostile territory and 

disaster relief operations. In recent years, mobile ad-hoc networks are being explored as alternative 

means of connectivity and content-sharing among specific communities [1] [2], for example 

participants at a conference or inhabitants of a campus.  

Distributed algorithms that enable content sharing and communication in such networks are often 

designed to exploit structural properties of these networks. Examples include identifying stable routes 

for opportunistic forwarding or using the history of contact between nodes to predict future contact  

[3] [4] [5] [6] [7]. Simulation studies of ad-hoc networks fuelled by mobility patterns of nodes are 

typically used to evaluate the efficacy of such algorithms. However, the strength of these algorithms 

can only be tested if the mobility patterns used in the simulation are realistic. Mobility patterns on a 

typical university campus for example, are highly dependent on the movement of users carrying the 

devices. The movement of users in turn is not random but significantly influenced by their social 

bonds and commitments [8], [9]. However, to date there is very limited information on mobility 

patterns of human walks in a campus setting and the social relations that engineer this movement. The 

few available traces include varied scenarios like tourists in a theme park or attendees of a conference, 

and provide limited insights for a campus setting  [10]. In addition, almost all traces provide only 

partial insights in terms of either temporal [11]  or spatial [12] metrics, whereas capturing the inherent 

social dynamics of a campus community would require both temporal and spatial dimensions. 
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Given the above mentioned gaps in literature of campus-based human walks, our paper has two 

primary goals: first, to understand mobility patterns and social dynamics in a typical campus setting 

and second, use this understanding to design a realistic mobility model for campus users. To 

comprehend mobility patterns of users we capture detailed GPS traces over four days of fifteen 

mobile users in an academic campus.  The insights in user mobility gleaned from these traces is 

augmented with interviews of twenty-five randomly chosen people on the campus, with a bid to 

understand their schedules, mobility patterns and social interactions. To our knowledge, this is the 

first study that attempts to capture not only mobility patterns on a campus but also the social and 

group dynamics that lead to these mobility patterns. Analysis of the data collected reveals key patterns 

and structures in user mobility. Some interesting insights from our study point to specific group 

behaviour. We find that social ties that motivate users to come together as a group goes beyond a 

particular location to the same group traveling to multiple locations. We also find that these groups 

change according to the time of day and also notice distinct daily temporal patterns in social ties and 

group formations.  

While social ties are identified as a key parameter in the first part of our study on human mobility, 

most existing mobility models do not consider social relationships and often are limited to location-

based preferences instead  [13]. To this end, we propose a probabilistic mobility model that captures 

key properties of social ties along with temporal and spatial properties of user movement on an 

academic campus. Our model is inspired by the free radicle mechanism (borrowed from chemistry) to 

model social bonds, group formations and their transition and is thus called FRIW : Free Radicle 

Inspired Walk.  FRIW use simulations via which depending on specific rules, nodes probabilistically 

decide where to move at every time-stamp. The simulations use as input an evolving social network 

model (SNM), which defines the social obligations of every pair of nodes which also change as the 

simulation progresses. The mobility model mechanism is decoupled from the social network model so 

that mobility patterns for a range of scenarios can easily be generated.  The mobility traces generated 

by FRIW are evaluated by comparing their statistical features to other human mobility traces. We find 

that the inter-contact time and flight distributions of FRIW exhibit truncated power-law 

characteristics, much like what has been found in other human mobility traces [11] [14] [15]. 

Additionally, cluster analyses on the overall social network model that emerges after the simulations 

reveal well-formed groups among the nodes, indicating that FRIW produces realistic social mobility 

patterns. 

The rest of the paper is organized as follows: Section 2 details the process of capturing real-life 

mobility patterns and Section 3 covers related work in the area of human mobility traces. Section 4 

contains the details of FRIW and Section 5 elaborates on the evaluation of our proposed mobility 

model. We conclude in Section 6.   

2. Capturing Human Mobility Patterns 
 

We use two methods to understand how users move about on a campus and interact with each other: 

GPS traces from mobile phones of volunteers and personal interviews. Using a mobile app for 

Android phones (GPS logger), GPS traces of 15 student volunteers were captured.  The latitude and  
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longitude positions of the students were captured at an interval of every 2 seconds, starting  from 8:30 

am till 6:30 pm in the evening, over a span of four days. It should be noted here that all users in the 

study were only walking around campus and did not use any motorized/non-motorized modes of 

transport. We selected days in the middle of a regular term for the logging, so as to capture regular 

mobility patterns of students. These mobility trace files were then analysed using Google Earth and 

basic data-mining tools. 

We also conducted interviews with 25 people on campus , selecting a cross-section of candidates to 

interview – ranging from students across years to research associates and staff.  We asked them 

questions on their daily routine/schedule on campus:  locations they typically went to and with whom,  

how much time they spent at each location, and who else they typically interacted with during these 

times.  The following mobility patterns clearly emerged from our study of user movements and social 

interaction, which are discussed below under the heads of spatial , temporal, mobile and social 

properties : 

Spatial Properties: Analysis of the traces shows that users typically move on well-defined paths. 

Most users follow these paths and very rarely deviate away from them. Figure 1 depicts the path 

captured for one user as rendered by Google Earth.  

  

 

Figure 1: Mobility trace of one particular user on one day (depicted in green). 

  We also find that the busiest paths lead to locations where many users tend to congregate – places 

like the library, classrooms, dining hall, food joints, gymnasium, dorm etc.  We call these locations 

‘sinks’, as users tend to move to these locations and spend a relatively large amount of time in these 

places.  By superimposing the paths of multiple users over multiple days, the most popular paths and 

sinks are calculated, which are depicted in Figure 2.  Our findings are similar to the GPS mobility 

traces discussed by Rhee et. al. [12], which show users walking on a few well-defined paths.  Our 

findings also reinforce previous studies [16] that have highlighted that the popular random-way point 
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model  is an unrealistic mobility model for many scenarios of mobile- ad-hoc networks. 

 

Figure 2: The most popular paths and sinks on campus. 

Temporal Properties: Through the GPS traces, we observe students moving along the same paths and 

repeatedly visiting a limited number of locations. Additionally, the data from the interviews clearly 

reveal that the users have fairly predictable schedules.  A typical daily schedule of a student is from 

the dorm to the mess, and then classrooms, the mess again, then the library, the sports complex, the 

mess and back to the dorm.  These patterns repeat daily, thus lending weight to the argument of 

repeated temporal patterns in the mobility.  

Mobile  Properties: The GPS traces were also used to calculate the speed at which users were moving 

to get a sense of when they were static or dynamic. The patterns indicated that there were long periods 

(a few minutes to a couple of hours) when users were static at popular sinks (mess, library, dorm, 

classrooms, eating joints) interspersed with moderate bursts of mobility ( upto 15 minutes at a time) 

from one sink to another.  

Social Properties: Distinct social ties emerge when people were asked about their interactions with 

others on campus.  We find that participants tend to spend time within fixed groups, and often engage 

in different activities with the same set of friends. However, the group composition and size varies 

according to the activities in question. What is clear is that users tend to not only meet their groups at 

sinks but also move around the campus in groups.  For example, a large group of students who live in 

the same dorm may make their way to a common class and later break up into smaller study groups 

that go to different locations on campus. The interviews reinforce the perception of the strong 

influence social ties have on individual user movement. These social ties not only go beyond a 

particular location, but also change according to the time of day.  We noticed distinct daily temporal 

patterns in social ties and group formation.  

In summary, we find that nodes mostly travel on fixed paths and move to popular locations, where 

they are static for relatively long durations. Moreover, some nodes move in groups and congregate at 

popular locations and might disband after a while or move out as a group. Once a group has 

disbanded, nodes usually reorganize to form new groups at new locations.  In the next section, we 

discuss past work on human mobility traces and models, and their relevance to the scenario in 

question: users in a campus community. 
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3. Review of Human Mobility Traces and Models 
 

A significant amount of literature exists for human mobility models, which can broadly be categorised 

as trace-based versus synthetic models [13]. Trace-based models are based on actual traces of user 

mobility that have been collected at a particular event or in a particular environment. However, data-

sets consisting of actual traces are very limited owing to the difficulty in such an exercise. On the 

other hand, a wide range of synthetic models have been proposed, ranging from the simple yet 

popular random model (ref) to more sophisticated models based on temporal, spatial and social 

properties of human mobility. This paper is interested in capturing the properties that arise in mobility 

patterns as a result of group dynamics and social ties, and this is the lenses we use to examine related 

work in human mobility models.  

SWIM [17], a mobility model based primarily on location preferences for nodes, uses the concept of a 

home location for each node. Different locations have varying popularity, which along with the 

distance from the home of a node, determines how the next destination for a node is selected. The 

traces generated by SWIM exhibit a limited amount of group behaviour at fixed locations, but SWIM 

does-not use a social model as input for the traces and neither does it model group mobility behaviour 

(nodes travelling together as a group). Musolesi & Mascolo [18] propose a mobility model (CMM) 

where nodes are initially placed in particular locations in groups identified according to the social 

network model. Nodes then individually calculate their next destination, depending on which 

destination seems most attractive in terms of the ties in the social network model. However, the 

drawback to this model is that, if a caveman model [19] is assumed for the social network, which in 

many cases may not be inaccurate, and the initial groups are formed according to this model, later 

calculations for destinations will not lead to any differentiation – since nodes are already with others 

with whom they have social ties. All destinations will appear equally attractive/unattractive, leading 

this model to effectively select destinations randomly. HCMM [20] builds on the CMM model to 

incorporate user preferences to choose shorter distances to longer ones. While this assumption might 

work well when a user has to choose a grocery store for example, it doesn’t hold in a campus setting 

where distances are relatively small to begin with. In a typical campus, users choose their next 

location based on additional external constrains, for example: which block their next class is in or 

whether they need to go to the library for a study group session. Choosing shorter distances as an 

integral part of the mobility model is non-intuitive for our scenario. SLAW : self-similar least action 

walk [21], introduces a mobility model that creates synthetic traces of human walks for a small 

community like a company or campus. However, an integral assumption of SLAW is that people plan 

their movement in a gap-preserving manner, by visiting nearby places first and further ones later. 

However, as discussed above, this assumption will not hold for a student community in a campus, 

where predetermined class schedules and other group events will dictate the order in which students 

visit locations. Yang et.al. propose a mobility model called HWW [22], that considers heterogeneous 

human popularity as noticed in realistic social networks. They attempt to capture overlapping 

community structures at different parts of a day and hence come closest to our model of groups 

forming and disbanding over time. However, unlike FRIW, these groups form only at specific 

locations and group movement is not captured or modelled. GeSoMo [23], proposed by Fischer et. al, 

is a social mobility model that uses a social network model to guide the mobility patterns of humans. 

Though the paper claims that they model group mobility, nodes are primarily attracted to particular 
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locations (called anchors) based on who else is there at that location, and the pull exerted by the 

anchor itself. Group mobility in this scenario seems more incidental than planned. Moreover, the 

simulation parameters used in the study, a small area (500m x 500m) and limited transmission radius 

(15 meters for Bluetooth), do not seem to capture a realistic campus setting or the technology our 

application is based on (wi-fi with longer range of around 100 meters).  

None of the models described above incorporate the notion of popular paths that are followed by users 

and most do not use social ties to guide group movement, whereas FRIW incorporates both these 

features. Additionally FRIW captures the notion of evolving social ties which feed into groups 

forming and disbanding organically as in real-world situations. Table 1 summarizes the above 

discussion and classifies the various human mobility models along seven key dimensions. Some of the 

dimensions used in the table below are adapted from Karamshuk et. al. [13] while others emerged 

from our study discussed in the previous section. The first dimension captures the scale of the 

mobility model, as we are not interested in geographical regions larger than a typical campus. The 

next two dimensions represent spatial properties of paths taken and key destinations. Dimensions 3-5 

represent social properties of group meeting, group mobility, and whether an SNM is used as input for 

the mobility model. The last dimension looks at whether a specific map can be used as part of the 

mobility model.  

Table 1: Comparison of human mobility models across key dimensions. 

 

Model 

Scale : 

Campus 

View 

Spatial : 

Fixed 

Paths 

Spatial : 

Popular 

Locations 

Social : 

Group 

Meetings  

Social : 

Group 

Trips 

Social: 

Uses 

SNM 

Preferred 

Location 

Map 

CMM 
       

HCMM 
       

SWIM 
       

SLAW 
       

HHW        
GeSoMo 

       
FRIW 

       
 

In the next section, we provide details of the internals of FRIW and how it is designed to generate 

realistic human walk patterns. 

  

4. FRIW: Free Radicle Inspired Walk 
 

The primary objective of FRIW is to model real life social ties, group dynamics and the movement of 

users on a campus setting as dictated by these social ties. 

To simulate this behaviour, FRIW uses two concepts – one borrowed from social network theory, in 

terms of the social network model (SNM), and the other borrowed from chemistry – the free radicle 

concept. Both these concepts and how they are used by FRIW are explained shortly. 
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The network area is divided into a grid, with each cell in the grid of size 50 meters * 50 meters. Each 

cell in the grid is classified as a path, a sink (popular location) or a null cell.  Figure 3 shows an 

example of a campus grid, with paths and sinks. Nodes can only move on paths and can enter sinks.  

A node in the network is positioned inside a particular cell and at each time period, the node needs to 

decide which adjoining cell to move to, if it needs to move. This decision is based on a few different 

parameters including the status of the node, the social bond exerted by nodes in neighbouring cells 

and the type of neighbouring cells, as explained below.  

 

Figure 3: A snapshot of FRIWs visualization tool (campus layout). Green cells denote paths, grey denote sinks, and 
numbers denote node ids. 

Node State : A node could be in one of three different  social states : group member, individual or 

free-radicle. When a node is a group member, its current group commitments have not finished and 

hence it does not attract additional nodes. When a node is in individual state, its group commitments 

have finished and it is free to roam but is not looking to attract nodes or form a new group. When a 

node has free-radicle status, it is actively looking to attract new nodes around it to form a new group. 

In addition a node could be in one of two mobility states : walking or static. If a node is on a path, its 

state is walking, if its in a sink then it could be static, provided it has not yet spent the prescribed time 

in the sink yet.  

Social ties of nodes: The model assumes that nodes spend time with each other as described by a 

social network model (SNM) which is described by using an Interaction Matrix (IM). If there are n 

nodes in the network, then the Interaction Matrix is a matrix of size n x n (the lower triangular matrix 

is used), and each entry in the matrix describes the amount of interaction between 2 nodes, as known 

from the row and column number of that entry.  For example, the interaction time between node n1 

and node n2 can be obtained by the formula shown below: 

Interaction time n1,n2  = IM(max(n1,n2), min(n1,n2))                                        …….. equation 1 
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Figure * shows an example of an Interaction Matrix of 10 nodes, and the corresponding social 

network graph. Note that in this case, the social network graph is very close to a small-world network 

also called the caveman model [19] since the graph consists of seperate clusters.  

 

Figure 4: Social network model of 10 nodes as described by the corresponding Interaction Matrix and Graph. 

The interaction matrix in FRIW is not static, but changes over time leading to what we call an 

evolving social-obligation matrix.  This ensures that nodes form groups according to the current 

weight of their interactions in the interaction matrix and as these weights change over time, groups 

dynamically split up, and new groups are formed.  

In the beginning of the simulation run, an initial interaction matrix is used as input to start off nodes 

on their walks. If two nodes are in the same cell for that time unit, they are assumed to be neighbors 

and to have spent one time unit together. At each time unit of the simulation, the interaction matrix is 

updated, decrementing the corresponding weights by one. For example, if nodes p and q were 

neighbors for one time unit, the weight in the pth row and qth column is decreased by one. Thus at 

any point in time, the interaction matrix reflects how much interaction time is currently pending for 

each pair of nodes, or in other words how much social obligation is remaining between each pair of 

nodes.  

Note that each node individually decides its next move, by calculating cumulative social pulls  

(calculated by using the pending interaction time) from each of the four of its neighbouring cells and 

moves to the cell with the strongest pull. Ties are broken randomly. Social pull (SP) for a node n to a 

cell c is defined as: 

  (   )   ∑   (   (   )     (   ))             ( )                                                  ……equation 2 

Where Population(c) is the set of all nodes in cell c and IM(a,b) is the Interaction time for nodes a and 

b.  

If two nodes exceeded the time denoted in IM, then their entry in IM becomes negative. Thus it is 

possible that nodes are attracted to some nodes and are repelled from other nodes.  This helps in 

situations when two groups happen to converge onto the same path.  The negative values that get 

accumulated in the interaction matrix assures that both groups diverge at the first possible 
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opportunity. Similarly, when the group obligation time for a set of nodes has finished (and the 

corresponding values in the interaction matrix become negative), the nodes look for opportunities to 

break away from each other, and the group effectively disbands. 

Change of State 

Once a node has finished all its group obligations (all values for its interaction matrix with other 

nodes are zero or negative) , its state changes from group member to individual. The node then moves 

around on the paths on the campus quite randomly and could reach a sink. After a pre-determined 

time its state changes from individual to free-radicle. By this time, it has managed to distance itself 

from many or most of its original group members. If a node is in the free-radicle state and is 

additionally at a sink, it starts attracting neighbouring nodes (nodes in its own cell and neighbouring 

cells), to form a new group in its own cell. This implies that the interaction matrix entries for all pair-

wise combinations of these nodes be updated with a positive value say p (p denotes that amount of 

time the new group will stay together). The nodes status now changes from free-radicle to group 

member. After the prescribed time of staying in the sink, the new group moves out together and starts 

traveling on a path.  

Choosing the path 

As mentioned above, at each time period, a node calculates its next move. If it is on a Path (recall that 

cells are classified as paths, sinks or null cells), then it is dynamic, and cannot go back to the previous 

cell it came from or stay in the current cell. It has to choose its next location from the remaining 

neighbouring cells that are non null cells. For this set of permissible moves, the node calculates the 

social pull from each of the cells in the set. It then moves to the cell with the strongest social pull.  

Figure 5 provides an example scenario of node movement and cell choice. As shown, four nodes: N2, 

N3, N4 and N5 are at cell B2 at time t, and their Interaction Matrix at the end of time t is also shown 

in the figure. N3, N4 and N5 belong to the same group as suggested by the Interaction Matrix entries 

of ‘10’ and N2 is an individual node who happens to be on the same path for the last three time 

periods, as reflected by the ‘-3’ entries in the Interaction Matrix. Note that except for the four corner 

cells which are null cells, all the others are path cells in this scenario.   

At time  t+1, the nodes (sequentially) start calculating where to move next, from the three choices of 

B1, B3 and C2 (A2 is not considered as the nodes were there at time t-1 , and B2 is not a choice as it 

is the current location of the nodes ). N2 first decides and then N3, N4 and N5, in that order. The 

social pull (SP) for each choice is calculated according to equation 2. 

Hence SP(N2,B1) = SP(N2,B3) = SP(N2,C2) = 0. Since ties are broken randomly, N2, decides to 

move to C2. 

 For N3, SP(N3, B1) = SP(N3, B3) = 0, SP(N3,C2) = -3 . Hence N3 randomly chooses between B1 

and B3 and moves to B1.   

Next, for N4 :  SP(N4, B1) = 10, SP(N4, B3) = 0, SP(N4,C2) = -3. Hence N4 moves to B1. 

Similarly (not shown in Figure 5) , SP(N5,B1) = 20, SP(N5, B3) = 0, SP(N5, C2) = -3.  Hence N5 

also moves to B1.   
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This scenario illustrates how FRIW enables nodes that are in a group to stay and move together, and 

ensures that individual nodes quickly break away from the group.  

 

Figure 5: Scenario describing node movement as a group and corresponding interaction matrix 

Mimicking Realistic User Mobility  

The state changes, interaction matrix manipulations and path decisions described above help in 

mimicking realistic user movement on campus. Nodes start out in groups of various sizes and move to 

different locations as groups. After spending time in their group, nodes set out by themselves to other 

locations (or move out as a group and the group disintegrates on the path). Individual nodes or sub-

groups then converge at new locations to form new groups. These new groups may then move out as a 

group or individually to other new locations and so on.   

Without any central intervention, nodes individually mimic user movements and social behaviour in a 

community setting.  This behaviour  is also clearly evident when the node movements are observed 

using the visualization tool associated with the FRIW simulator, the details of which are provided in 

the next section.  

5. Evaluation of FRIW 

5.1 Simulation Model 
We have developed a simulation tool to model and evaluate FRIW, along with an accompanying 

visualization tool that accepts inputs and helps monitor node movement in real time.  Many 

parameters required for the simulation are not hard-coded but considered as inputs and can be 
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changed according to different scenarios. The ability to customize the simulations enables the 

modelling of a vast range of campus scenarios. This decoupling of scenario details from node 

behaviour ensures that the FRIW simulator can be used to generate mobility traces for different kinds 

of locations.  

In our prototypical scenario, the network area is divided into cells of size 60 meters * 60 meters. The 

simulation runs for 300 time units and at each time unit nodes move from one cell to another 

neighboring cell. Each time unit in the simulation is assumed to be 1 minute long.  Hence nodes move 

an average distance of 60 meters in 1 minute (1m/sec) which is considered a reasonable walking 

speed for humans.   

We assume a network size of 1200 meters * 1200 meters with 50 nodes participating in the data 

sharing application of the mobile ad-hoc network. Nodes spend a fixed amount of time units at each 

sink called the sleep time which is set to 15 time units in our experiments. Recall that once a node has 

finished all of its group obligations, it remains as an individual before actively forming a new group 

as a free-radicle. This amount of time is called the free time and is set to 20 time units.  When a new 

group is formed, the IM entries for all pair-wise members is updated to a value called the group bond 

time. Thus the group bond time is the amount of time the new group stays together and is set to 15 

time units. The simulation parameters used in this study are shown in Table 2 and correspond to the 

campus properties and mobility behaviour observed in our study. However network properties and 

mobility behaviour can differ significantly from scenario to scenario.  An undergraduate campus 

setting, an office park setting or a conference venue setting could all significantly differ in average 

group size, sleep times at sinks, location and number of sinks, layout of paths, free time versus group 

bond time etc.  FRIW comes with default values for these parameters but allows users to fine-tune 

these parameters for individual scenarios as well. Also instead of constant values, FRIW allows 

parameters like sleep time and group bond time to be values from a particular distribution if the 

scenario calls for it.  

Table 2: Parameters used in the simulations 

Simulation Parameters                Default Values 

Network Size                1200 m * 1200 m 

Number of nodes                50 

Speed of Nodes                1 m/sec 

Total Simulation Time                300 minutes 

Sleep Time                15 minutes 

Free Time                20 minutes    

Group Bond Time                15 minutes 

Initial Group Size                  5 

 

In addition to the parameters described above the FRIW simulator requires the following inputs from 

the user: 

1) A map of the campus, with sinks, paths and original node locations. These can be specified 

using the graphical user interface of FRIW’s visualization tool (see Figure 3 for a sample map 

used in the simulations).  
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2) The initial Interaction Matrix : This matrix denotes the original groups in which nodes are in 

when the simulation starts off. Typically, the social network graph for the initial Interaction 

Matrix would be close to a small-world network (tight clusters of nodes), as denoted earlier in 

Figure 4. Subsequent updates to the IM will be taken care of by the simulator.  The initial IM 

used in the simulations has groups of size 5 and group bond time of 15 time units. 

The output of the FRIW simulator is a time based trace of individual node movements. These traces 

can be obtained in a variety of formats that are compatible with popular network simulators like NS2, 

and GlomoSim. Hence this mobility trace file can be directly used as an input to a MANET simulator.  

5.2 Properties of Human Walks  
Studies on human mobility have reported distinct statistical features that captured traces have 

exhibited.  These traces include GPS recordings of human walks in different locations [12], 

interaction between mobile devices [11] and individual cell-phone tracking [15]. As reported by Lee 

et. al [21], the following metrics ( and their specific properties) can be used to characterize human 

walks : 

Inter-contact time (ICT) is defined as the time that elapses between two consecutive meetings of a 

pair of nodes. ICTs are of particular importance in communication and information sharing networks 

as they influence the speed of information sharing [23] . Past studies have shown that the distribution 

followed by ICTs  in human walks is similar to a truncated power-law distribution [11].    

Flight length is defined as the distance a node moves between two consecutive pause times. Human 

flights have been shown to follow a truncated power-law distribution [12] , [14].  

In addition, pause times and contact times of nodes also play an important role as described below. 

Contact Time is the time two nodes spend with each other before they part. Again, contact times are 

of particular interest to data-sharing networks as they impact the stability of a link and hence the 

reliability of a route. 

Pause Time, defined as the amount of time a node is static in-between dynamic phases, also has a 

role to play in how stable network links are, especially if they pause together in the same location. 

Since the FRIW model has pause times (sleep time at sinks) and contact times ( the Interaction 

Matrix) as inputs to the model, this study measures and reports the ICTs and flight lengths of the 

mobility traces generated by FRIW (see Figure 6). 

 As seen in Figure 6(a), the inter-contact time (ICT) distribution for FRIW is characterized by a power 

law/exponential decay characteristic (also called truncated power-law characteristic), a feature that 

has also been noticed in other human mobility traces, as we noted earlier. Figure 6(b) plots the flight 

time distributions and as nodes move around at constant speed in our simulations, the plot represents 

flight length distributions as well. As can be seen, the flight length distributions exhibit truncated 

power-law features as well, a characteristic shown by many human mobility traces  [12].   
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Figure 6:(a) Inter-contact time distributions and (b) Flight distributions for mobility model generated by FRIW exhibit 
truncated power-law characteristics 

5.3 Social Network Model 
In addition to the above evaluation, we also undertake a cluster analysis of the final social network 

model (snm) generated by FRIW, to find out how well our mobility model works in terms of 

modelling group behaviour and group formation. The snm is captured by recording how many 

minutes each pair of nodes have spent in each other’s vicinity (two nodes are assumed to be in 

vicinity of each other if they are in the same grid).  The final snm is a 50 by 50 matrix with each entry 

denoting the number of minutes a pair of nodes have been in contact with each other. The rationale 

behind examining the final snm is that if the snm exhibits a moderate degree of modularity and 

clusters can be detected, then it goes to show that FRIW is successful in generating group behaviour 

and social ties. 

Note that  the snm captures the sum total of all contact times between nodes and not individual 

interactions, hence the contact times can be expected to be bigger than the actual contact times 

(especially if nodes come in contact multiple times).  The same effect can be expected for group sizes 

but for a different reason. Nodes may be in the vicinity of other nodes for two major reasons, the first 

being their social tie which brings them together for some group activity and the second being the 

location, where they happen to be interacting among a smaller group, but are within range of many 

more people who also happen to be at that location. Hence, any community detection analysis on the 

final snm should bear these two facts in mind. 

We have used the ‘edge betweeness’ algorithm provided as part of the igraph module in R to detect 

communities in the final snm.  The input is a graph with nodes as vertices and edges as the total 

contact time between two notes. Note that all edges with weight less than 20 were removed from the 

graph as these would denote incidental contacts between nodes (as in our simulations 20 minutes is 

the minimum time any two nodes spend together in a group).   

 On an average across simulation runs 10 communities ranging from size 1 to 16 were detected.  The 

average network modularity was calculated as 0.20. At the very least, these results indicate that nodes 

directed by FRIW were not moving around randomly on their own, but spent time in well-defined 

groups that could be detected using the clustering algorithm.  
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6. Conclusions and Future Work 
 

Realistic mobility models are critical for the evaluation of distributed content sharing and 

communication algorithms in mobile ad-hoc networks. However, social dynamics and group mobility 

– critical elements to evaluate many of these algorithms – are missing from most mobility models, 

leading to the significance of our work. 

Our study has two phases: in the first part, we attempt to understand mobility walk patterns in a 

campus setting by using GPS enabled devices to track users across multiple days. We also conduct 

individual interviews with campus participants to understand group behaviour and social dynamics in 

this setting. The insights gained from these studies are used in the second part to develop a new social 

mobility model called FRIW (Free-Radicle Inspired Walk). FRIW uses concepts from social network 

theory and chemistry (free-radicle concept) to mimic realistic user movement and group 

formations/movements .  The simulator for FRIW enables modelling a wide variety of geographical 

scenarios and social network models, as these can be provided as inputs through a simple yet intuitive 

interface. We have also created an inbuilt visualization tool for FRIW which allows us to track 

dynamic group formations, movements and disbands. 

Our evaluation shows that the mobility traces generated by FRIW are realistic in terms of important 

characteristics like inter-contact time and flight duration distributions. We also find that common 

clustering algorithms are successful in detecting well-formed groups in the final social network model 

generated by FRIW, pointing to the presence of distinct group behaviour. 

As future work, we plan to use the mobility traces generated by FRIW as a basis for evaluating the 

performance of node-associativity based route selection and resource discovery algorithms.  
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