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O THE BSTIMATION OF ELASTICITY IN ECONOMICS

ADSTRACT

For the measurement of elasticity, given two observations

of a bivariate relationship, the arc elasticity formula

has been traditionally used by economists and statisticians.
However, no proper statistical justification for this
procedure exists in the literature. In this paper measures
of elasticity on an arc are derived using widely accepted
statistical criteria such as the minimum absolute deviation
criterion and the least squares criterion. It is shown

that in the linear bivariate case the minimum absolute
deviation elasticity is the arc elasticity. However, the
formulae according to the least squares criterion and other
criteria differ from arc elasticity even in the linear case.
A numerical comparision of formulae is also provided and
these are assessed on the basis of a'goodness of £it!

statistic developed for this purpose,

Presented at the 23rd Conference of the Indian FEconometric
Society, Hyderabad, January 1985,



1. Introduction

The conecept of elasticity isg widely used in
economics for qumntifving the degrese of responsiveness
in different contexts. Two albernative mesuigures have
usually been employed for this purpose, namely, point
elagticity and arc elasticity. Doint slasticity, B0p),
at point (p,q} in twc dimensional space is defined in

context to a function

g =£(-p,...) (1.1)

as follows:

o - B - B e

where the partial derivative is used instead of the total
derivative because the function (1.1) may involve several
other variableg begides p. The funetion {1.1) may be
interpreted as demand fun.tion when g stands for demand

p stands for price. It may in fact represent any other
function depending upon the meaning assigned to g and p

in proper context. Arc elasticity, B ig defined over

A’
an interval say _[(f,,q,), (py>q¢)] in two dimensional
spaces for two obsgervation points as follows:

YT % Pyt By (1.3)
A T Pym Py Ut 9
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‘mplicitly thig measure of eclasticity is supposed to
1014 good for any functional form between g and p. This
ls the only interpretation that can ne made in the presence
»yf complete siiemce in the literature relating to the
shape of the curve betwsen iz points (Py,q4) and (p1,q1).
Thus _“ara elaétiéity,'EA,_may be sﬁpposad to he defined
for an interval corresponding to function (1.1).

It ig well known that the elasticity coefficient E(p),
as in (1.2), remains invariant when the function (1.1)
is of double log form. It changes for each point of the
function for any other functional form. Therefore, if
the functional form of (1.1) is not a double log one,
the point elasticity,B(p), will wry for each point within:
the interval [(pg,dg) s (p1,q1f} and we have a set of point
elagticities like (1.2). The question that arises ig
what criterion of estimation is satisfied impliciftly
when we use are elasgticity in such a case. In fact, the
problem is a more general one. Cne may like to find a
proper cgtimate of elasticity cocfficients in such a

situgtion.

This question is attempted to be answered in this
paper. We develop estimators of elasticity over an arc
in accordance with a number of possible statistical
approaches. Section 11 contains derivation of such
egtimators along with their special cases. BSection III
provides illustrative examples of nunerical comparisons.

Phe last section contains concluding remarks.



2 Alternative Bgtimators of Blasticity

The followinz criteria, all o7 which are to be
digcussed in this section, =re widely used in statigtles
in the degign of estimators:

a) The least squares (13) criterion.

b) The minimum absolute daviation (1AD) criterion.

c) The minimum maximum deviation (1viX) criterion.

d) The Average (AV) criterion,

Furthermore, we compare these estimatoRs with

e) the arc elasgticity estimator; and

f) the constantelasticity estimator.

We assume throughout that B(p) is contimuous.

Qe The least-squares elagticity estimator (B-)
and The average elasticity estimabor -

The least squares elasticity estimator is found
by solving the following problem (it i< assumed without

logs of generality that py 1s greater than po):

. Py
min B - 2112 3 5.4
By p{) (B(p) - )" dp (2.1)

(2.1) may be expanded %o get the followihg expresgion:

mnopon(p)®ap +f BT ap - [ 2E(P)Eg dp)
L Po Ro 2o

(2.2)



If we denote the first intesgral in (2.2) by A

(noting that it is independent of EI) we get
J

B

. 1
mn by e s % (p-p) - 28, S 3(p)ap]

L b N P4

(2.3)

Differentiation of the expression in square brackets
and getting it equal to zero, we get

Py
J

g%jg—%)—2p B(p)dp =0 (2.4)

0

he solution of (2.4) gives us the least squares estimator
of By gince the second order eipression 2(p1—po) is
positive.

- We thus have the following result.

Theorem 1

by
1
B = B(p)d
L (5¥T§Oy Pg (p)dp

Proof: 3ee above.

Thus the least squares estimator is seen to be the average
glasticity esgtimator.

We now congider three important special cases of
the function £(p,.) and compute the elagticity estimators

in these three cases.



(i) The linear case: g = a+bp; a#d; DbLO; (2.5)

(ii) The semi-log

case: 1n g = a+bp; af0; DbEO; (2.6)

(1ii) The double-log case: In 5 = a+b In p; a£0; bLO

(2.7)

The average elasticities in these cages are given

in the fblloWing theorem.

Theorem 2

Given p, > py; a0 and b£O and two observations

of a function [(po,

(1) 1, -

linear case,

i

(ii) B,

semi-log case.

(iiij B, =

double-log case.

Proof (i) If q =

now EL =

-

qO)’ (P1!Q__1)]$

doP1 ~ 4Po

R CrA TGy

1in (q1/q0) in the

in (Q1/QO)(P1+PO) / 2(P1'P0) in the

b= 1n (Q1/qo) / 1n (P-I/po) in the

a+bp then E(p) = dq | % P _ 4. .3

dp ~ atbp a+bp

A

— [ ®(p) dp
P47Po p,

1

— [ (1 - 2=)dp
D4=Py Pq a+bp

1 a

- -2 - 1 hen

= (p,~p) - 5{In qp - In q ) vhe

wve have uged a+bpi = g4



- p = Pha
Now since b = —l—jg and a = 130 - 01 )
P1“PO p1"‘90
o P199 ~ Poy
(> b‘t E == / .
we ge L ! (a,-20) (P4=Pg) 1n (a4/qp)

(ii) If 1n g = a+bp, then B(p) = bp.

P (

1 A4~ an) (P1¥Dn)

EL = 10 . D f pdp - ; qo_ ! 0 .
P4™Po P, (p4=2g)

il

(1ii) If 1In q a + b 1ln p, then B(p) = b, for all p.

\Q(Pl*go) o

L P47Po

e

Thus B

*

It

golving for b from 1In q, a + b ln P4

and 1In g5 =2 + b 1n py,

_ . In (q,/9)
we get By = In (54/P0) o
b. Minimum Absolute Deviation Flagvicity
Tstimators (EML
The MAD elastimators, Em, gsolve the following
problem.
in Py ,
i
5 1E(p) - Bylap (2.8)

By Dy
Tn general, (2.8) is difficult to solve and thus we restrict
sttention to monotonic B(p)'. This is formalized in

Assumption T

*

A1l special cases considered have this property.
Furthermore, if q = f(p) is twice differentiable monotonici ty
obtains if the following expression does not change sign’

; 2o ;

B v 1 - 3(p)



Assumption 13

E(p) is monotonic in p on [pj,poj.

Kow if B(p) is monotonic then we can restrict attention
to estimators in the interval [E(pj), E(pOX}, since,
clearly, EM will lie within this interval. Further, given

the continuity of B(p), thers exists = :

i(EM) for B, € [B(p ), BE(p )] such that EB(p) = Eye

Thus we can rewrite (2.8) as follows.

min b | p1
- J (E(p)*B)dp + [ (B, -E(p))d (2.9)
By, v, P)=iy + 5 M P

for | E(p) monotonically decreasing and

: P P4
%;? J (B =(pyap + [ (B(p) - By)dp (2.10)
po 5 .

*
for B(p) monotically increasing.

We now state the main result of this section and

prove it.

* Since Eg B(p) when the latter is constant, to
minimize (2.8) we need not discuss the constant ease.

VIKRAM SAKABrial L:igesakY
WDIAN INSTITUTE OF siamAGBEMENT
VASTRAPUR, AHMEDAEBAD 3%y 01+



Theorem 3

i - Dy+ D
Under assumption 1, Ey = B(p) for D = 12 O,

Proof

We prove the theorem for monotonically decreasing

B(p) only, since the proof in both cases is similar.

~
Iet By = B(D).
Now suppose that (2.9) is minimized at By = B(p").
‘Case I, p* > fJ\

The expression in square brackets in (2.9) may be

ﬁritten as -
Py Pq - 3
ot - - P b
S B(p)ap - 2 BE(p)dp + B(P)(P,+py~26) for B = p and
Po p
*
Py Py P " N
J m(p)ap -2 [ Ep)ap + 2 [ B(plp + B(R )(py+pg- 2p)
Po 1% b
-
for T = p'. Substracting the latter from the former we get
* .

N * *
-2 J E(p)ap + E(P)(py+p,~2P) ~ E(p")(py+pg- 2p)  (2.11)
s .

waich ig positive if the latter is a minimum.

Now, since B(p) is monotonically decreasing,
* ®

P P % .
-2 [ B(p)ap < <2 B(p*yap = 2 B(p")(p"-f ).
P B
Thus, -2B(p")(p"-P) - B(p")(py+pg~2p") > O

P4+Pg

(The second term drops out since =7 o



: *
That is -B(p ){p,+py=2p) > ©
Since the left hand side is zero this is 5 contradiction.
Thus p*g D .

*
Cage I1T. P < P .

Following a similar procedure asg before we conclude
N

p .
* *
2 L Ep)p - E(p )(py+pg-20) > O,
P |

® . * * *
or 2B(p )(B~p ) - B(p )(pq+pg=2p) > O .
which is again a contradiction.

Thus (2.9) is minimized at B(P) = Eye

Once again we lock at the special cases of (2.5) to (2.7).

The results are summarised in the next theorem,

Theorem 4

(i) 1In the linear case By B,. (See(1.3)).

(11) 1In the semi-log case EM‘= EL

(iif) In the double-log case Ey = In(ay/q4)/ 1n(p,/py)

/
B

Proef: Trivial, n
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Minimax Blasticity Bstimstorsg Lqu'

We now restrict attention, once azzin, to monotonic

(but not necessarily continuous) functions.

Now, if E(p) is monotonic, it is clear, first of all,
that [B(py), B(py)] will contain Tye Secondly, it is
also clear that the maximum deviation will cccur at
B(py) or E(p,)when By is an interior point. Thus the
minimax estimator will satisfy:

B(py) = By) = (By - B(pq) (2.12)

Thus we have

_ E(p4) + B(pp)

Theorem 5 By s if Assumption 1 is

satisfied,

The special cages fall out immediately.

Theorem 6
(q4~95) (pyay + Ppay)
2 q495(p4=Dp)

(1) In the linear case B, =
X

(ii) In the semi-log casge By = By ln(q1/q0)
(1ii) In the double-log case By = TR 5,75y

Proof Upon direct substitution, the results follow. @
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d. Other Blasticity Bcotimators and Reiationghips
Between Blagbicity Bstinntors

By application of Jensen's imcousiivy for concave

and convex functions, the folloing resviis lc immadiate.
Theorem 7 Under Assumption (1)
(i) By = By = By for linear 2{2) on Lpo,p1].

(i1) By > By > By for strictly concave Elp) on[py,pq
Cand(iii) By < By < B for strictly convex w(p) on [po,p{

Since the least squares estimator is found to be the average

elasticity, we may as well formallize this.

Theorem 8

The least squares estimator 1s the Average

Elasticity on EPO’p1]' (See Theorem 1).

Also, the constant elasticity estimator, that is
- the elasticity estimator when the elasticity is assumed
to be constant(and gq=f(p) has the d ouble log form)

has been found previously.

Theorem 9 If B(p) is assumed constant on [po,p1], then
B(p) = 1n(qy/qy) / 1n (p4/2p)-

Proof By direct substitution, )
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Finally, from Thecorsm 4, B,

L= EF in the linear

case., The extremely special nature of the arc elasticity
estimator ié thus revealed.

We now address an additional justification for
the average-elasticity egtimator wnich precvides further
evidence of its posgsible degirapility.

On the interval [po,p1] we may write B(p) = E +Up,
where Up is the deviation of E(p) from its average value E
(or EL). In the absence of any knowledge of the nature
of the E(p) function, Up may be thought of as a random
vériable with mean zero. This is,'of course, a random
walk model. The sample werage, as is well known, is
the best unbiaged estimator of § under 1 wide variety
of distributions of Up. This argument provides a powerful
2dditional Jjustification for the use of the average

elagticity concept.

e, A '"Goodness of fit' atatistic

We use the statistic described below to d erive
Pigoodness of fit' results for the three special functions
discussed above., The statistic is motivated as follows.
In any practical application, the true functional form
is not known. Thus, the elgsticity estimator used should,

ag far as possible, give results that are 'close' to the



true elagticity values on the interval defined by the

observationg, regardless of the true funectional form. To
2 , .

measure 'clogeness', the R statistic is 2 naitural

2

choice. The analog of the R® statistic, in our case, is

given by the following formula.

P, ,
S (B(p) ~X)° ap
PO :
Gy = 1 - 5 (2.13)
So(a(p))? ap
Py

where B(p) is the elasticity corresponding to ome of the
speeial<ases (2.5) = (2.7) and X is any elasticity
estimator. We may then usé the average value of G over
the 3 functional forms to chooge an estimator.

There are 5 elasticity estimators and three
functions. The 15 formulae corresponding to these are
presented in Table 1*. Instead of analytical comparisons
of the Gs, we provide numerical results.

Note that GX can, in fact, be negative. To gee

this, rewrite GX ag

X (2 f B(p)dp - X(py=pg)) / [(B(p))* dp.

. > 2. <
Thus if X< 0 Gy $0 as = S B(p)ap s X,
and if X >0 Gy 20 as —=— [ B(p)dp 2 X .

That is, if X is absolutely greater than twice the
Aabsolute average value of B(p), then GX will be negative.
Obviously, in this case, X will not be a very good

egtimator of B(p).

.*The least squares egtimator has the lowest G-statistic

in at least one case. However, the average G- need not be
~lowest aeross functional forms.
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3. Mumerical Comparigons

Below we present some numerical comparigong of
the performance of the fTive elasticity formulae in
theorems 2, 4 and 6. We consider © caées each of linear,
semilog and d ouble log functions where the & cases have
been so chosen » that elasticities are

(2) positive and elastic, unitary elastic and

inelastic (approximately in the unitary case).
and (b) negative and elastic, unitary elastic and

inelastic (again, approximatély in the

unitary case).
Furthermore, & confine our attention to positive values
of p and gq only, The data set uged along with the
functions used to generate the data are presented in
Table 2. 1In Table 3 the computed elasticity values* are
presented.,” Finally, in Table 4, GX statigtics are
presented.,

Tt ig of interest to note that the linear
minimax estimator performs the most poorly for all three

functions. Further, in two cases with the semi-log

function, the GX statistic ig negative in Table 4.

A pocket calculator was used.



- Tgble 2: Datz 3et for Computations
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Linear function {(q = a+bp)
-1 6 5 1.2 D.2 ~4,8 1
2 6 5 5.8 4,3 0.2 1
3 6 5 b6 - €5 &0 1.
4 6 5 0.5 1.5 6.5 -1
5 5 5 5 7 12 -1
6 6 5 59 60 65 -1
Semi-log function (1n g = a+bp)
T 6 5 1100 3 —28.4237 T5.,9044
8 | 6 5 40 20 - ~0.47 . 0.6931
9 6 5 4 3.8 1.0785 0.0513
10 6 5 18 1100 27.5665 -4,1127
11 3 5 12 16 4.2110 ~04 2877
12 6 5 3.8 4 . 1.6428 -0,0513
Double log function (In g = a+b In p)
13 6 5 20 8 ~6.0091 5.02%7
14 . 6 5 18.5 15.5 1.179 0.9703
15 6 5 9 8.5 1.6355 0.3137
16 6 5 8 20 11.0843  =5,0257
17 6 5 15 18 4,4998 -=0.9999
18 6 5 8.5 9 2.7018 =0.3137
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5: Computed Elasticity Values
Serlal L By By Bsz, Epr
Number
1 '9, 6004 7.8571  19.0000 9.8547 9, 8277
2 1.0378 1.0377 1.0381 1.0401 1,0377
3 0.0840 0.0840  0.0840 0.0840 0,0840
4 ~6.1410  -5.5000 -7.6666  —6.1346  ~6.050¢
5 -0.8498  -0.8462 -0.8571  -0.8608 -0.8458
6 =0.0925  -0.0924 -0.0925  -0.0924  -0,0921
7 30,5063 10,9402 917.1585 32,4745 32,3851
8 1.7726 3,6666  4,7500 3.8123 3.8015
9 0.2819 0.2821 0. 3000 0.2821 0.2814
10 -23,744  =10.6458 -182.7924 -22.6196 -22.5574
11 -1.5891 ~1.5714 1:6250 -1.5823"  ~1.5780
12 -0.2823  -0.2821  0.,2829  -0.2821  -0.2814
13 4.9706 4.7143 5.5500 5.0396 5.0257
14 1.0295 0.9706  0.9709 0.9731 0.9703
15 0.3141 0.3143  0.2876 0.3144 0.3137
16 -5.1086  -4.7143 -6,0000  =5.0396  =5,0257
17 -1.0055  -0.9999 ~1.0167  -1.0028  -0.9999
18 ~0.3146  -0,3143 -0.3574 ~0.3137

Notes: (1) ESL': Common Elasticity formula for semi~log function
(2) By : Common Elasticity formula for double log function
. DL

(3) The serial numbers correspond to table 2.
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Table 43 Computed Valueg of GX%
Serial By, Ty By Bqy, By,
Tifcar Gase . B
(R 0.8071 0.7305  0.5518 C. 3065 0. 8058
2 1.0000 1.G000 1. 0000 1.0002 1.000¢
3 0.9722  0.9722  C.9722  0.9722  Q.9Z22
4 C.8760 0.8864 0.8219 0.8760 0.8757
5 0.9901 0.9900  0.9900 0.9899 0. 9690
6 1.0000 0.9884  1.0000 0.9884 0.9767
AVERAGE VALUE 0.9409 0.9329 0.8893 0.9388 0.9332
Semi-log Cage
T 0.9936 0.5588 ~739.148 0.9373 0.9972
8 0.7118 0.9955 0.9370 0.9973 0.9972
9 .9973 0.9973 0.9935 0.9973 0.9972
10 0.9948 C.7178 =-49.01 0.9973% 0.9372
11 C.9973 0.997% 0.9966 0.9973 0.8973
12 0.9973% 0.9973 0.9873 0.9973 0.9972
AVERAGE VALUE 00,9487 0.8774 negative 0.9973 0.9972
Double log case
13 0.9999 0.9962 0. 9891 0.9999 1.0000
14 0.9963 1.0000 1.0000 0.9999 1.0000
15 1.0000 1.0000 0.9932 0.9999 1, 0000
16 0.9997 0,9962 0.9624 C. 9999 1.0000
17 1.0000 1.0000 0.9997 0.9999 1.0000
18 1.0000 1.0000 0.9807 0.9999 1.,0000
AVERAGE VATUR 0.9993 0.9987 00,9875 0,9999 1.0000
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in Table 4, the averuge GK valueg fcr each of the
three functiong and for each xﬁtiﬁatar are pregented,
1f we computg the grand mean for all three cases, ESL
"is seen to perform best followed by 3pp, and then EL.
EX.iS always the worst. Alternatively, it may be seen
that across functional forms, if we rank the average values
an¢ compute their average, the séme ran<ing of estimators.
is found as above. It is significant that the arc
elasticity has the second lowest rank in all three cases.
On the basis of these computations, therefore, it

appears that the formula ESL is the most robust,where .

_ (pq3pp) 1n(qy/qp)
Bs1 = 2(57-Pg)

Gonclusgions

In this paper, 5 alternative estimators of
elzaticities are derived from widely accepted statistical
¢riteria. Some numericgl comparigsons of these elasticity
estimators are carried out and the robustness of the
egtimators with respect to misgpecification is analysed.
Subject to further work, it is found that the estimator
Bgy, in (3.1) is the most robust. The arc elasticity
performs extremely poorly. These results are being
extended to elagticity estimators in the gtandard regression

model in on-going work by the authors.



