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Abstract

in this paper we present a Lagrahgian relaxation =approach for
solving the capaditated plant locaﬁian problem with side
constraints. The side constraints are upper b&und zconstraints on
disjoint subsets ;f the (0-1) variables. We also provide an
application Qhere this procedure can be used to s3alve 2
rarticular Vehicie Routing Problem. Computational results are
pravided for some problems both on the main frame compuuter as

well as the personal computer,



A Lagrangian Heuristic for the Capacitated Plant Location Problem
with side constraints

Introduction

The location of pilants, such as factories or warehouses, is an
important strategic decision for organi;étions. Transportation
costs which often form é major portion of the <cost of goods
suppllied are a fupction of the location of plants. The fixed
costs of opening and operating a plant may also vary from one
Iocation‘ to anaother. Such problems have been widely studied 1iIn
the iiterature under the names of plant, warehouse, or faciiity
location problems. When each potential location has a capacity,
that is, an upper bound on the demand it can service, the problem
is known as the Capacitated Plant Location Problem (CPLP).
Cornuejols, Sridharan and Thizyl, Magnanti and Hong2, WDngS,
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Salkin , and Francis and Goldstein , pravide excellent

bibliographies on CPLP.

in this paper we present a Lagrangian relaxation approach for
salving ‘the capacitated plant location problem with gide
constraints. The side constraints are upper bound constraints on

disjoint subsets of the (0-1) variables.

This extention can be used to solve the following "Capacitated
Plant Location Problem®”. Suppose we have a number of choices on
the size of the plant that can be considered at a given locatioﬁ.
Then we can consider this as a CPLP with'number of "potential
locations™ computed as follow;. Each choice of the size of a

plant at a given location is considered as a potential locatiaon.



That 1ig, it there are three choices of plant sizes at a given

location, then the number of potential locations is equal to

three. But, we can not open more than one plant at a given
location. Therefore, for each location we can have an uppef

bound constraint that restricts the number of plants that can be
opened there to one.  Then the soclution to this.éPLP with the
side constraints will gilve the solution to the CPLP where we'make
the choice of the size of the plant to be opened at any location.
The CPLP with side constraints as described above has not. been
studied 1in the literature. In this paper we present an
appllication for this extension and a solution method for this
problem based on the Lagrangian relaxation approach. This
golution procedure is an extension aof the aééroach used - by

&6
Christofides and Beasley for the CPLP.

This paper 1s organized as follows. In section 2, we glve an
application where this extension of CPLP can be used. In section
3, we give a mathematical formulation of the problem. In sectian
4, we define a Lagrangian relaxation of the praoblem. We describe
the procedure to obtain the upper bound in section 5. Then, in
section 6 we provide a problem reduction procedure. In section 7
we describe the subgradient approach involved in the lagrangian
proacedure. Finally, in section 8, we provide same computational

results and concluding remarks.
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An Application

The motivation for including zide constraints arises from the
application of CPLP to the following variation of the Vehicle

Routing Problem (VRP). VRP involves a cholice of vehicles that

will be agsigned to serve a glven set of customer locations.”
There are different vehicle types that can be used. All thege
vehicles start from a central depot to serve the custdmers. - The

objective of the VRP iz to minimize the cost of operating the
veh}cles and serving.cugtomers. The demands of all the customers
must be met and the c;pacities'of the vehicles being use& can not
be exceeded. An application of CPLP to solvg VRP can be

considered as follows.

We were Introduced to this problem when we wvisited DIAGMA, a
consulting firm in Paris. At DIAGMA, they have a heuristic
proceddre to solve this probiem. We will describe a part of the
gsclution procedure here. Their-solution rrocedure sztarta with a
greedy type heuristie that assigns customers to vehicles. Then

an interchange procedure is used to {mprove the solution. From

their experilence, they found that the interchange procedure

works wvery well whenever ail the capacities aof the vehicles are
equal. When the capacities of the vehicles are not all equal
thelr ‘interchange procedure dces not perform well. This.

motivated ws to conider an improvement procedure that wusez the

CPLP foarmulation as described bhelow.

Suppose we start with a heuristic solution that provides the



subset of the vehicles to be used and the corresponding tours,
Then, Qe can view the probiem of optimizing these tours as a CPLP.
with "plants" being the combination of tours and vehicles. That
is, each tour-vehicle cambination is considered ag a patential
location for a plant. The number of potential locations is then
equal to the product of number of vehicles and the number -of
tours, Let us use the subscript { for customers, j for véhicles
‘and k for tours. Then the subscript' jk. refera a pcteﬁtial
location, 1.e., a tour-vehicle combinatian. The "™transportation
cost", c is the insertion cost of customer 1 to, "location®
Jk. The lfisertion cost can be computed as a function of the
marginal increase in the length of the tour due to the addition
of customer i, The fixed cost, f l2 the cost of wusing

ik
"locatian™ jk.

Let the demand of customer i bhe d and the capacity of vehicle i

i
be s . The capacity of location jk is computed as follows.  For
3
each tour k, we compute the total demand D of all the customers
k
in that tour. When a vehicle j is considered in combination with

tour K, we can compute the capacity of location jk, s , as § -

: ik b
D . If s < 0, then we set f = o0 as it is infeasible to assign
k jk Tk
vehicle j to tour k. During the solution procedure, whenever a

customer {g reassinged from one tour to another we need to update

the corresponding capacities of the locations and the 1inhsertian

costs,

The wvariables x represent the amount of demand of customer i
ijk —

satisfied by lacation jk. The variables y wili have a value {

jk



i1t a particular tour-vehicle combination 1s chosen and wil! have
a wvalue O otherwise. It is obvious that a vehicle can not be
assigned to more than one tour. Thisz, in turn, leads +to the
restriction in the number of "plants"® that ean be opened at a
glven ﬁlocation" resulting 1In the above ment ianed gide
constraints fqr the CPLP. Then, the sclution to this "CPLP" with

gide constraints gives a solution to the VRP.

Problem Formulation
The capacitated plant location problem with side constraints ean

be formulated as a mixed-integer program as follows.

m
Z = min J éi c X + Z;f y (1)
LS B d 1 :

(2)
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) £1, far every i, 3i; (4)

y = 0,1 (5}
J
F <= ZJy <= P (6)
L i U
y <=M, NN =@,
TEN J k k !
k Kol = 8, oo, K. (T
where P is a lower limit on the number of ocpen plants, P is an
L U
upper limit on the number of open plants, M is an upper bound an
k
the number of plants that can be opened in the set N S; J, and
k .
all the other parameters have the usual interpretation assocliated

with the capacitated plant location problem.

Constraint 6 1is a surrogate constraint that strengtheng the
formuiation of CPLP. This constraint {mproves the hounds

5



obtained far the problem in the solution procedure. We also

improve the bounds P and P during the solution procedure to
_ L U
provide tighter limlts on the open plants,

Lower Bounds

The lower hbhound for (1) is obhtained by solving a Lagrangian

relaxation of the problem. Let v, I = 1, sy M, be " the
i
Lagrange multipliers associated with the demand constraints (2).

Then the Lagrangian dual program is obtained as
Z = max Z (u)

D u D
where, .

Z (u) = min ZL‘ESU: - u Ix + Z;f vt z;u (8)
D e B i 13 J 3 i
subject to (3), (4), (5), (6) and (7).

For a  given u, the Lagrangian dual program can be solved very

easily. This preblem Z (u) without the constraints (6) and (7)
D

for a given u, breaks up into cantinuous knapsack problems for

each }. We can then wrlte,

Z (u) = Z (u: i)
D D
where,
Z (uif) = min D (e -u dx  + f (9)
D Loy o1 1 3
| ; cd x {= s (10)
U B b
® >= 0. (11)
1]
*
Let the objective of Z (u;ji) be f ' and let x be the solution
. D j 19
to (9) ta (1t). The value f * can be thought of as a "penalty
]

cost" of keeping plant J open.



We can now include the constraints (8) and (7) to obtain a (0, 1)

problem on the y wvariables. This problem KP 13

] 2
KP =min 2.t 'y + S,y : (12)
2 Ny T Loy
subject to
(5), (8) and (7
The problem KP {3 solved as. follows:
2 .
Step 1: Sort f * in ascending order.
]
Step 2: Set y to one for the first P plants in the list taking
h| L
into conszideratian the side constraints (7).
Step 3: If P =P, go to step 5.
L U
Step 4: Keep setting y to one with due consideration to .
3
constraints (7) until either (a) P plants have been opened or
U
{b) the f * values have become >= 0,
3
»
Step 5 Let the set of values Y chosen as above be Y . The
-, i b
»*
Y that are not set at agne are set at zero.
3
*
The optimal solutian to the Lagrangian dual program {s y , and
b
»
X found in (9) to (11) and KP  is equal to
ij ‘ 2
*
KP = 3. ¢ ' y v Fu . (13)
2 3 3 Loy

A lower bound for (1) is given by the objective value of KP . We
: 2
compute an upper bound for (1) by selving a transportatian

problem which wusgses the open plants as given by KP ., The
_ : 2
determination of the initial and subsequent . upper bounds g

described in the next section.
7



Upper Bounds

The solution +to the lagrangian problem .does not provide, a
feasible solution in general.. However, we can easily find a
fe#sible solution to (1) by solving a transportation problem with

*

the set of apen plants given by v ", The advantage of finding an
improved feasible solution neeg not be over-emphasised. An
improved feasiblie solution accelierates the chances of termiﬁating
ihe Lagranglan heﬁristic, and also in a branch and bound
procedure it ﬁelps to prune the tree. We now give the procedure

for finding the initial feasible solution and the improved

feasible sciutions.

The initial feasible solution is found by simplx_picking up the
P plants with due consideration to constralnts (7). The initial
v;!ue of P 1is faund by taking the first (subject to satisfying
(7)) P plahts with largest capacities such that the sum of their
capaci%ies Just exceeds the total demand of all the customers.
Then, with this set of plants beinglset ’open} we =sglve the
trangportation problem to give a feasible solution to (1). Tﬁe
objecfive of (1), the Inittal upper Sound, s found by simply
adding the transportation cost found above and the fixed costs of
the P plants.
L

The improved feasible solutions are found by solving the

transportation problem with the set of open plants being given by
*

¥ = 1 in the Lagrangian procedure. The objective of this
3
feagsible solution {s found by adding the transportation cost and
. - . ‘* —_
the fixed costs of plants with y = 1. Then, the upper bound
3



uUB *

Z is updated if necessary. If the set y has already been
: J

found in an earlier Lagrangian iteration, then {t will be a waste

of effort to compute the upper bound again. In order to

eliminate such repetitions, we have a procedure that stores - upto
® ’

five different sets of vy for which we have found a feasiblé
y ]
*
golution already and {f the newly found y {s unique (compared

] .
to the five sets), then we resort to the upper bound procedure.
»®

The set i{s now updated with the newly found y by eliminating

3
the oldest from the existing list. We have found that this

procedure has significantly sayéd the total computation time.

A Reduction Test

In this section, we give a reduction test to close the gap
between P and P . This test is given in Christofides and
L U
6
Beasley . We can see that closing the gap between P and.P will
L u

strenghthen the lower bound. The dual zo0lution value ocbtained
when we enforce the condi*i{ian that there he exactly K open plants

in the optimal solution, is given by

J:,u + the K smallest £, 3 J. (14)
L i
: UB
If the value of (14) exceeds the upper bound Z , when K = P (K
. - L
= P ), we can increase P (decrease P ) by one without affecting
u L U

the optimal solution to the original problem.



The Subgradient Procedure
The subgradient procedure for solving the probiem (1) is

described below.

Step 1: Solve the transportation problem with P open plants, (as
L
found in the sectiaon on upper bounds), and m1] the customers,

Adding their fixed costs tg the transportation cost, we get the
UB
initial value of the upper bound 2 . Initialize the Lagrange

multipliers v = min ¢ . Go to step 2.
i I 1]

Step 2: Solve the continuous knapsack Z (u;j) for a given u for
‘ D
each J, and compute f ', Then, solve the knapsack problem KP to
3 2
abtain the set of plants to be openad to meet all " the demand.

The objective of KP glves us a lower bound 2 . Update the
2 LB .
lower bound if necessary. Go to step 3.

Step 3: If needed, solve the transportation problem with the s=et

of open plants f{dentified in step 2. This along with the fixed

costs of the open plants, gives us an upper bound ZUB. Update
the wupper bound if necessary. I'f ZUB = Z stop; we have an
optimal! solution. [t the iteration count izaexceeded, stop. 1f
therlower bound convergés to a particular value, stop. Else, g0

to step 4,

Step 4: Update the Lagrange multipliers u using the subgradient
i .
approach. If all subgradients are zero, stop. Else, go to step 2.

The subgradients for u are computed as follows. Let X and
| _ 1]
» - :
Yy be the optimal solutions to the Lagrangian _probiem. Then the
3 -
subgradients NU({) for u are
i
10



NUCIY = 2. x -1
J 1j

where j Eelongs to the set of open plants.’

We then update the Lagrange multipliers as follows
k+1 k '
u = u 4+t NUCD)
: i i k
where
UB
t = - (Z - Z )/Norm.
k LB
We start with an initial value of‘O.G and halve the value every
twelve ~ iterations. We terminate the procedure after 200
iterations. The transportation probleﬁs are zolved by using the
. . 7
code developed by Srinivasan and Thempsan . Some computational

results for thls approach are provided Iin the next_section.

Results

The procedure was coded in FORTRAN?? and run on a DEC2060 time;
sharing system at C-MU. We tested this procedure an two
different problem gets. The first prbblem set containea test
problemé described in Kim and Guigﬁarde with somé additional
slde constraints. The second problem set consisted of randomly
generated problems.- The paraﬁeters for the randomly generated
praoblems were fixed as féllows. The demands were generatea from
a wuniform distrigution in the interval [5, as». The capacities
were génerated from a uniform distribution in the interval (10,
160). The fixed costs were generated using

f = U0, 90) + U100, 110) s
where ¢ 1s_thi fixed cost of plant j, s fs the capacity of

1 , 3
11



. plant 1, and Ula, b) stands for a value from the uniform

distribution picked from the interval [a, b). The transportation

costs were computed by generating puints in a wunit square,

computing the Euciidean distance between them and multiplying

them by 10. The way we compute the traﬁspo;taticn costs ensgsures

that we are solviﬁg geometric problems and therefore the duality

gaps we compute as given in this section are not subject to the

well known écaiing effects, The tightness of the capacity

constraints was such that %fs = 2 x Zid .- In addition to
. 3 i

those basic parameters, we alsa included some side constraints

representing (7).

We provide a summary of results that we obtained on those problem
sets. In Table 1 we present the results for prablem set t. In
Table 2 we present the results for the randomly gensrated

problems which were solved on the DEC 2060 system at C-MU,

The duality gap referred to in the following tables was computed
described below.
: UB UB
Duality gap = (2 - Z 7 2 * 100,
LB
As we see from Tables { and Z this Lagrangian heuristic for the
problem is very good. In problem set 1, none of the problems had
a duality gap of more than 1%. We found O% duality gaps in three
‘of the geven problems. Also, as we had shown using a branch and

bound algorithm for the CPLP, the upper bounds found 1in thesge

problems are infact optimal. The optimality of problem one,

12
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which' has a different optimal value compared +to CPLP, was
;erified by hand computation. We have a duality gap of less than
i% in all but one problem in the problem set that contained

‘randomly generated problems.

Results on PC/AT

AA code hasg been written in Microsoft FORTRAN to run on the _PC.
Table 3 prq?ides the result for some randomly generaﬁfd p;oblems
that were sqlved oﬁ an [IBM PC/AT with a 80286 coprocessor at the
Iindian Institute of Managemént, Ahmedabad. We see that even with
a 80286 coproceasar the computatibn timeg are very small.: These
times can ;ery easily be improved upon bf using some of the

latest coprocessors which are much faster.

Conclusioﬁ

We conclude this paper by observing that we have a very efficient
heuristic_based on a Lagrangian relaxation for solving CPLP with
gide constraints. Beasleyg also shows that Lagrangian heuristics
are efficient for different types of location problems. As we
pointed out eariier in this paper, this extension af CPLP 1is
useful in sclving Vehicle Routing Prcblems, and also in solving a

decision problem that involves the choice of picking a plant of a

particular size, from a given set of alternatives, at a lacation.

13



-._.__-._——-._.______..___.....__..._..._.__...--———...-_.—...—....._..__.__‘._—-__-._.__.._____.-_

Size cust.X plts 4x5 6x5 8x5 10x10 10x10 15x10 35x20
Optimal solution 434 2622 47800 108 a4ss 8137 soami
Lower bound 431 2611 47600 a108 sazs G121 s0i6
Duality gap (%) 0.69 0.42 0.00 0.00 0.00 G. 10 d.OB

CPU time (secs) 0.342 0.706 0.053 0.319 0.379 2.773 7.314

Note All timez in Dec-2060 timesharing system at Carnegie-Melltn.

¢
Table 1: Results for problem set 1

__.-..___.__.—._—...__-_...._-._____________.-....__—-_—_.._..__-_-.-‘q___________.__

- Lower bound 7028 7482 7587 14741 14515 14461
Upper bound = . 7129 7501 7632 14794 14625 14538
Duality gap (%) 1.42 0.25 0.59 0.36 0.68 0.52

CPU time (secs) . 24.80 22.68 21.51 96.07 94.09 096.65

Note:All times in DEC-2080 timesharing syatem at Carnegie-Mellon.

Table 2: Results for Random Problems

i4



T s e e e e Y AL = R o e TR T e = MR e o am o = . —

Probiem No 1 2 3 5 5

N e e e e e e e E e e e e e e e e e e R = —

Size: 25 X B '
Lower bound - 5345 4528 5741 5658 5410
Upper bound 85390 4584 6064 5967 5589
Duality gap 3.52 1.22 5.33 5.18 3.20

(%) :
CPU time 94 a2 92 489 98

(seconds)

T T T T T e e e e e e e e A i A = e R e e o e - - ——

Size: 25 X 16

* Lower bound 6550 6645 7598 86270 6549
‘Upper bound 5688 G681 7874 6363 5608
Duaiity gap -~ 2.06 0.54 3.51 1,46 Q.89
CPU time - 177 169 170 173 173

Size: 25 X 25
Lower bound 7847 7291 7258 773Q 7426
Upper bhound 7934 7367 7310 . 76856 7579
Duallity gap 1.10 1.03 Q.74 1.60 2.02
CPU time 253 . . 260 248 261 260 -

Size: 50 X 18 -

Lower bound 9649 8388 8994 10121 -~ 9403
Upper bound 89822 9621 8053 10236 9679
Duality gap 1.76 2.42 0.65 1.12 2.85
CPU time 337 330 323 332 334

Size: 50 X 33 . .
lL.ower mound 11534 11730 11446 11382 12682
Upper bound 11897 11860 1160t 11571 - 12724
Dualtty gap 1,39 1.10 1,34 1.63 0.33
CPY time 670 682 678 679 689

Size: 5O X 50O
Lowear hbound 14117 14078 16355 14643 13924
Upper bound 14301 15278 16938 15115 14035
Puality gap 1.29 7.86 3.44 1.14 0.79
CPU time 1024 1011 1011 1026 10314

Note: All times are in seconds on an [BM PC/AT with processing
done with a 80286 coprocessor.e

""Table 3: Results for randomly generated problems.
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