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Abstract

In this paper, we study the single allocation hub location problem with capacity
selection in the presence of congestion at hubs. Accounting for congestion at hubs leads
to a non-linear mixed integer program, for which we propose 18 alternate mixed inte-
ger second order conic program (MISOCP) reformulations. Based on our computational
studies, we identify the best MISOCP-based reformulation, which turns out to be 20−60
times faster than the state-of-the-art. Using the best MISOCP-based reformulation, we
are able to exactly solve instances up to 50 nodes in less than half-an-hour. We also
theoretically examine the dimensionality of the second order cones associated with dif-
ferent formulations, based on which their computational performances can be predicted.
Our computational results corroborate our theoretical findings. Such insights can be
helpful in the generation of efficient MISOCPs for similar classes of problems.
Keywords: Hub-and-Spoke Network; Congestion; Capacity Selection; Stochastic De-
mand; Single Allocation; Second Order Conic Programming

1 Introduction

Hub-and-spoke is a widely studied network structure, which finds applications in supply
chain networks, airline networks, telecommunications, postal deliveries, etc. The key idea
behind a hub-and-spoke network is to route all flows through intermediate facilities, called
hubs, where they are aggregated before being sent to their respective destinations. Hubs
serve as centres to collect, sort, break-bulk or switch modes of travel while transferring flows.
The main cost advantage in a hub-and-spoke network comes from the economies of scale in
inter-hub transfers achieved due to aggregation of flows. Since hubs perform activities like
sorting and breaking bulk for large volumes of goods, any variation in the demand or service
rate adversely affects the service quality at the hubs due to congestion. One of the ways
often sought to alleviate congestion at hubs is capacity expansion. Considering capacity
expansion post network design is often expensive or may even be infeasible in some cases.
Therefore, considering capacity selection in anticipation of congestion due to uncertainties
at the design phase itself may result in a very different network design, which might be a
better alternative (1).
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In this paper, we study a hub location problem with capacity selection in the presence
of congestion due to demand uncertainty. The problem is relevant for a network designer,
who plans to transport goods among multiple origins and destinations at a minimum cost.
The designer needs to identify locations, called hubs, through which she will route all the
flows and benefit from the economies of scale due to large volumes flowing through fewer
links. In light of the expected congestion due to variation in the arrival rates of incoming
demand and service rates of hubs, the designer also needs to decide on the trade-off between
installing a higher service capacity at the hub, hence minimizing the effect of congestion,
or installing a lower capacity, and bearing the high cost due to congestion.

We model the hub-and-spoke network as spatially distributed M/G/1 queues, whose
locations and capacities need to be selected in order to minimize the total cost. The total
cost consists of the capacity installation cost, the transportation cost, and the congestion
cost. The congestion term introduces non-linearity in the objective function, which makes
the resulting hub location problem with capacity selection under congestion a non-linear
mixed integer program (NLMIP). Hub location problems, even without capacity selection
decision and congestion, is known to be NP-hard (2). Capacity selection decision along with
the non-linearity introduced due to congestion makes the problem even more challenging.
The objective of this paper is to solve the resulting problem efficiently. To this end, we
present several alternate MISOCP-based reformulations of the problem, which are solved
directly using the state-of-the-art solvers, and compare their computational performances
against the Mixed Integer Linear Programming (MILP) based reformulations, obtained
using Outer-Approximations (OA).

Through this paper, we make the following contributions to the literature on hub loca-
tion problems. First, we propose two new NLMIP-based formulations for the hub location
problem with capacity selection under congestion. Our new formulations are built on the
basic model (without capacity selection and congestion) proposed by (3). We refer to
these models as EK-based models. We compare our proposed formulations with two other
NLMIP-based formulations from the literature (4; 1), which are based on the well-known
model proposed by (5). We refer to these models as SK-based models. We subsequently
show, through computational experiments, that the models proposed by us significantly
outperform the latter two formulations. Second, we present nine different MISOCP-based
reformulations for each of the SK-based and EK-based NLMIPs. From our extensive com-
putational experiments using two of the well-known datasets, namely the Civil Aeronautics
Board (CAB) dataset and the Australian Post (AP) dataset, we suggest the overall best for-
mulation of the problem. The best reformulation, which is one of the EK-based MISOCPs,
solves the problem 20-60 times faster as compared to the existing formulation/method in
the literature. We further provide insights about the reformulations based on the computa-
tional results and the properties of the second order cones. These insights should be useful
as a general guideline for the selection of a given MISOCP from among several alternatives.

The rest of the paper is organized as follows. In Section 2, we present a review of the
literature on the hub location problem and its variants. The problem description, followed
by its different NLMIP-based formulations are presented in Section 3. In Section 4, we
present our alternate MISOCP-based reformulations of the problem, followed by extensive
computational results in Section 5. Finally, the conclusions and directions for future research
are presented in Section 6.
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2 Literature Review

In the literature review, we first discuss the basic hub location models and their variants,
followed by their capacitated versions. We then review the literature on hub location models
with multiple capacity levels, wherein the capacity level choice is also a part of the decision.
We finally discuss models with congestion at hubs.

2.1 Hub Location Models and Basics

Hub location problems have been broadly categorized as p-hub median, hub location with
fixed costs, p-hub center and p-hub covering problems. Another classification is based on
capacity restrictions. Both uncapacitated and capacitated versions are further classified
based on allocation decisions of non hub nodes to hub nodes. Hence, there is- Uncapaci-
tated Hub Location Problem with Single Allocation (UHLPSA), Uncapacitated Hub Location
Problem with Multiple Allocation (UHLPMA), Capacitated Hub Location Problem with Sin-
gle Allocation (CHLPSA) and Capacitated Hub Location Problem with Multiple Allocation
(CHLPMA). Some extensions to the model have also been made by relaxing the assumption
of constant discount factor during inter-hub transfer. (6), (7), (8), (9) modelled inter-hub
discount as a function of flow between the hubs. Also, unlike most models that considered
discount only between hubs, (10), (11), (12), considered the advantage of economies of scale
on all links.

The first UHLPSA formulation proposed by (13) was hard as it was quadratic with
integer variables. A linearized reformulation of this model was proposed by (14), which was
later strengthened by (5). (5) used four-subscripted path based variable defined as xijkm
for flows going from i to j through hubs k and m. (15) proposed a different formulation
while observing a hub-and-spoke model for the Australian Post services. They defined a
three-subscripted flow based variable xikm for flows originating from i and flowing through
hubs k and m. Their model had lesser number of variables as well as it performed well in the
execution time, and is therefore known to be the best formulation in terms of computational
time for UHLPSA. Several heuristics were also developed by (16),(17), (18), (19), (20), where
the Lagrangian based heuristic proposed by (19) is found to be computationally the most
efficient. Similar advancements were seen in the literature related to uncapacitated multiple
allocation p-hub median problems UHLPMA, when the first formulation was proposed
by (21). Contributions were made in finding exact solutions using explicit enumeration
algorithm (22) and Benders decomposition (23), or, heuristics solutions (24; 25; 26). Some
contributions were also made by studying the polyhedral properties and tightening the lower
bounds by adding valid inequalities (27). For detailed review of hub location problems, one
can see the review papers by (28), (29), (30), (31).

2.2 Capacitated Hub Location Models

By its very own design, hubs face huge influx of demand, which often results into an unbal-
anced distribution of flows with few hubs getting very large volumes while others remaining
less utilized. The capacitated version was studied as one of the measures to deal with this
issue for both single allocation (32; 33; 15; 34; 35; 14; 36) and multiple allocation models
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(25; 27; 26; 37; 38). While most of the studies (14; 37; 25) allowed capacity restrictions
only on incoming flows from non hubs to hubs, (11) also considered capacity restrictions
on flows on the inter-hub links. Some other models, for example, the arc based formulation
proposed by (38), and the modular link capacity based formulation by (39), considered ca-
pacity restrictions on both incoming flows as well as flows on inter-hub links. Capacitated
versions mostly imposed capacity constraints on hubs alone, but studies by (39) and (40)
proposed new formulations and considered capacity restrictions on both hubs as well as
inter-hub arcs. (38), and (26) modelled capacity restrictions on hubs as well as on other
arcs in general. Another measure to balance the flow in the network was studied by (34),
who relaxed the capacity constraints and included a processing time/service time criteria
in their objective function.

2.3 Hub Location Models with Multiple Capacity Levels

The above literature on capacitated hub location models considered capacity as given. (41)
formulated the capacitated single allocation hub location problem with multiple capacity
levels (CSAHLPM), which allowed hubs to choose from different capacity levels that could
be procured at different costs. They compared and proposed several valid inequalities and
refinements for the multiple capacity level model for each of the CHLPSA formulations
proposed by (14), (5) and (15). (42) later imposed an additional balancing requirement
constraints to balance the number of assignment of non hub nodes to hubs. In both the
studies, they proposed two different formulations, which differed in terms of decision vari-
ables. One of the formulations used two-subscripted variables for assignment of non hub
nodes to hub nodes and assignment of capacity levels to hubs. The other formulation used a
three-subscripted variable for both non hub and capacity level assignment. They found that
although the three-subscripted model had a tighter LP relaxation, the two-subscripted for-
mulation performed better computationally. In the multiple capacity level literature, (43)
studied the splittable multi-capacity hub location problem (MCHLP) and the non-splittable
multi-capacity hub location problem (NMCHLP), depending on whether or not commodi-
ties are allowed to be split over multiple paths. They used the formulation proposed by
(44) for UHLPMA, and solved it using Bender’s decomposition. Another variant of the
hub location problem with multiple capacity levels was studied by (45) in a multi-period
setting. They proposed a deterministic model, which in addition to the hub location and
flow routing decisions, also decided on the initial and incremental capacity levels based on
the time periods. They extended the model to a two-stage stochastic setting, where hub
location and initial capacity related decisions are made at the first stage, and the non hub
node allocation, flow routing and incremental capacity decisions are made at the second
stage.

2.4 Hub Location Model with Congestion

Despite offering a balanced flow in the network, CHLPSA does not account for the exponen-
tial increase of service delay at the hubs when incoming flows reach its capacity, specially
due to variable demand (4). (46) were the first to address the issue of service delays by
assuming peak hour arrivals and departure at airport hubs leading to M/D/c queues. They
imposed a probabilistic constraint on the number of planes waiting for landing, and used
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Tabu search heuristic as a solution method. (47) proposed an extension to the above model
by considering heterogeneity among customers, thereby imposing different service level con-
straint for each customer class. (48) were the first to incorporate congestion in the objective
by modelling congestion as a power law function. They used path based formulation with
single allocation as proposed by (5), and through piece-wise linearization of the congestion
function along with Lagrangian heuristic based on (19), solved the problem exactly. (49)
solved the above problem for multiple allocation by using the formulation proposed by (44)
along with congestion function modelled as a power law function. They solved the problem
using generalized Benders decomposition. Both (48) and (49) assumed capacities at hubs
high enough to be treated as uncapacitated. By modelling congestion at hubs in the objec-
tive function using a power law function, the model mostly tries to evenly distribute flows
among the hubs. However, (4) argue that congestion at a hub arises due to the relative
demand compared to its capacity. Therefore, they used a capacitated model, with capac-
ity level to install at hubs as additional decision variables, and incorporated congestion
by modelling each potential hub as an M/M/1 queue. The problem was solved using an
OA-based reformulation and Lagrangian heuristics. (50) used both power law function and
M/M/1 queue approximation to model congestion, and proposed a hybrid algorithm using
OA and Benders decomposition to solve the resulting problem. (51) modelled congestion
from both user perspective and network owner perspective for a UHLPSA, and solved the
problem using generalized Benders decomposition. (52) used the power law model proposed
by (48), and solved it using second order conic program formulations, strengthened with
perspective cuts. They were the first to use the flow based formulation proposed by (15) for
hub location with congestion. (1) and (53) are the two more recent works that use queuing
based hub location models. (1) use M/G/1 queue to model congestion at the hubs, and use
the path based formulation, as proposed by (5), to model HLP with multiple capacity levels
and congestion. They propose an exact OA-based and a genetic algorithm based method to
solve the resulting model. (53) models congestion using M/M/x queues, where the number
of servers is also a decision variable (to capture multiple capacity levels), and solve the re-
sulting problem using a hybrid of particle swarm optimization and genetic algorithm. They
also use the path based formulation for HLP with congestion.

3 Model Formulation

Consider a complete graph G = (N,A), where N = {1, . . . , |N |} represents the set of nodes
corresponding to origins/destinations for some traffic/flow Wij between each pair of origin
i ∈ N and destination j ∈ N . It is required that flows must be transported at minimum
cost. Since a direct link between each Origin-Destination (O-D) pair increases the cost in
the network, a subset of nodes H ∈ N is chosen as hubs through which all the flows are
routed. We assume that all the flows originating at a given node always traverses through
the same first hub, irrespective of its final destination, which makes it a single allocation
problem. Single allocation hub location problems are relevant to situations in which sorting
at the source is not possible (or too costly), so that all shipments are transported from the
origin as a whole to the allocated hub, as is typically done in postal or parcel networks (54).

To encourage flows between hubs, a discount, due to economies of scale, is offered for
inter-hub transfers, which helps reduce the overall cost. However, high flows and variability
in demand and service rates result in congestion at hubs, which affects its service quality.
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Poor service quality is modelled as increase in cost for every extra unit of flow entering the
hub. One way to address this issue is to install higher capacities that can accommodate
larger flows and reduce congestion. Since there is a fixed cost for every capacity level, a
trade-off exists between the congestion cost and the capacity installation cost. Therefore,
while locating hubs, a decision on capacity level also needs to be considered with an overall
objective to minimize the sum total of the flow costs, the hub setup costs, and the conges-
tion costs. We refer to the resulting problem as single allocation hub location problem with
multiple capacity levels and congestion (SHLPCC).
We use the following standard modelling assumptions: (i) distances follow triangle inequal-
ity; (ii) discount is offered only on inter-hub flows; (iii) inter-hub discount is the same for
every pair of hubs; (iv) inter-hub discount is constant, independent of the volume of flows;
(v) arcs do not have any capacity restrictions, and do not require any set up cost; (vi)
demands originate at the nodes according to a Poisson process, and service times at the
hubs follow a general distribution. Assumption of Poisson arrivals and general distribution
of service times result in the following expression, using the Pollaczek-Khintchine formula,
for the expected number of units of flow (E[Nk]) at hub k. Note that the incoming flow at a
hub also follows a Poisson distribution (due to the superposition of Poisson distributions).

E[Nk] =

(
1 + c2k

2

)
λ2k

µk(µk − λk)
+
λk
µk
⇐⇒ 1/2

{(
1 + c2k

) λk(
µk − λk

) +
(

1− c2k
)λk
µk

}
, (1)

where λk is the mean of the incoming Poisson flows, µk is the mean service rate, and ck is
the coefficient of variation of service times.

Sets and Indices
i : Index for origin nodes, i ∈ N ;
j : Index for destination nodes, j ∈ N ;
k,m : Index for potential hubs, k,m ∈ N ;
l : Index for capacity levels, l ∈ L;
Parameters
p : Number of hubs to be opened;
Wij : Mean demand rate from origin i to destination j;
dij : Distance from origin i to destination j where dij = dik + dkm + dmj ;
χ : Collection cost - cost per unit flow per unit distance from non hub node to

hub node;
δ : Distribution cost - cost per unit flow per unit distance from hub node to non

hub node;
α : Transfer cost/Discount - cost per unit flow per unit distance between two

hubs. 0 ≤ α ≤ 1, α < χ, α < δ;
γlk : Capacity (service rate) at hub k with capacity level l;
ckl : Coefficient of variation of service times of a hub k with capacity levels l;
Qlk : Fixed cost for installing hub at node k with capacity level l;
Oi =

∑
jWij : Total flow originating at i;

Di =
∑

jWji : Total flow reaching i;

θ : Congestion cost per unit user at hub k;
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We use two different ways to assign capacity levels to hubs, similar to (42), for (15) base
model. In the first scheme, we use one set of binary variables for assignment of non hub
nodes to hubs, and another set for assignment of capacity levels to hubs. We refer to this
scheme as two-subscripted capacity allocation variable scheme using which the complete
NLMIP formulation is presented in Section 3.1. In the second scheme, we use a single
set of three-subscripted variables for assignment of non hub nodes to hubs, along with the
selection of capacity levels. We refer to this scheme as three-subscripted capacity allocation
variable scheme using which the complete NLMIP formulation is described in Section 3.2.

3.1 SHLPCC model based on two-subscripted capacity allocation vari-
able

For SHLPCC with two-subscripted capacity allocation variable for EK-based models, we
define the following decision variables.

xikm = Amount of flow originating at i and flowing through hubs k and m, in that order.

zik =

{
1, if node i is assigned to hub k

0, otherwise.

ykl =

{
1, if hub k is assigned capacity level l

0, otherwise.

Note, zkk assigns a hub k to itself, thus eliminating the use of a separate variable for locating
hubs. A hub can have only one capacity level hence

∑
l ykl = 1. Therefore, the service rate

(µk) and the coefficient of variation of service times (ck), which depend on capacity level,
are related to ykl as follows

µk =
∑
l

γlkykl, c2k =
∑
l

c2klykl ∀k ∈ N.

The mean flow at hub k is given by

λk =
∑
i

∑
m

xikm =
∑
i

Oizik ∀k ∈ N.

Note that λk in the above expression captures only the flows directly entering hub k from
the origin nodes, but not the flows entering hub k via some other hub. This is appropriate
in situations where the flows require processing (e.g., collecting, sorting, batching, etc.)
only at the first hub in their path from their origin to their destination, but do not require
further processing at the second hub (25; 47). However, in situations where the flows need
further processing before distribution, the mean flow at a hub k is given by

λk =
∑
i

∑
m

xikm +
∑
i

∑
m 6=k

ximk.

Here, the first term includes the flows for which node k is the first hub, while the second
term includes the flows that are routed through some other hub m before entering hub k
(37; 49).
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Substituting λk, µk and ck in equation (1) with the appropriate decision variables zik and
ykl, the congestion term modifies to:

E[Nk(y, z)] = 1/2

{(
1+
∑
l

c2klykl

) ∑
i

∑
jWijzik(∑

l γ
l
kykl −

∑
i

∑
jWijzik

)+
(

1−
∑
l

c2klykl

)∑
i

∑
jWijzik∑
l γ

l
kykl

}

The SHLPCC formulation with two-subscripted capacity allocation variables is given as:

min
∑
i

∑
k

dik(χOi + δDi)zik +
∑
i

∑
k

∑
m

αdkmxikm

+
∑
k

∑
l

Qlkykl +
∑
k

θE[Nk(y, z)] (2)

s.t.
∑
k

zik = 1 ∀i ∈ N (3)

zik ≤ zkk ∀i ∈ N, k ∈ N (4)∑
k

zkk = p (5)∑
m

xikm −
∑
m

ximk = Oizik −
∑
j

Wijzjk ∀i ∈ N, k ∈ N (6)

∑
m

xikm ≤ Oizik ∀i ∈ N, k ∈ N (7)∑
i

∑
j

Wijzik ≤
∑
l

γlkykl ∀k ∈ N (8)

∑
l

ykl = zkk ∀k ∈ N (9)

ykl ∈ 0, 1 ∀k ∈ N, l ∈ L (10)

xikm ≥ 0 ∀i ∈ N, k ∈ N,m ∈ N (11)

zik ∈ 0, 1 ∀i ∈ N, k ∈ N (12)

The first component of the objective function (2) includes the cost of transferring flows from
non hub nodes to hub nodes. The second component is the cost of inter-hub transfer, and
the third component is the cost of locating hubs at certain capacity levels. Constraint set(3)
ensures single-allocation of non hub nodes to hubs. Constraint set (4) prevents assignment
of a node to another node unless that latter is a hub. Constraint (5) is to enforce the
selection of only p-hubs, and constraint set (6) represents the flow balance constraints.
Constraint set (7) prevents any traffic originating at node i from flowing via hub k unless
the node i is allocated to hub k. Constraint set (8) ensures that the total flow at hub k
does not exceed its installed capacity, which is required for the stability of the queueing
system at the open hubs. Note that the queue stability constraint ideally requires a strict
inequality in the constraint set (8). However, we exploit the knowledge that the constraint
set (8) can never be binding at optimality (since that will make the congestion term in the
objective function tend to infinity, which can never be optimal), and retain the ≤ sign in
constraint set (8). Constraint set (9) ensures that a hub k, given by variable zkk, can have
only one capacity allocation.

W.P. No. 2018-12-04 Page No. 9



IIMA • INDIA

Research and Publications

3.1.1 Partial Linearization

(2)-(12) is an NLMIP, which is challenging to solve. Next, we suggest its partial linearization
to convert it into a form with a linear objective function and one set of non-linear constraints,
which can be further reformulated using outer-approximation and MISOCPs. To this end,
we introduce ρk and sk as additional sets of variables, which are defined using the following
relations:

ρk =
λk
µk

=

∑
i

∑
jWijzik∑
l γ

l
kykl

∀k ∈ N

sk =

∑
i

∑
jWijzik(∑

l γ
l
kykl −

∑
i

∑
jWijzik

) ∀k ∈ N (13)

0 ≤ ρk ≤ 1, sk ≥ 0 ∀k ∈ N. (14)

Using the newly defined variables, E[Nk(y, z)] in (2) can be rewritten as:

E[Nk(y)] = 1/2

{(
1+
∑
l

c2klykl

)
sk+

(
1−
∑
l

c2klykl

)
ρk

}
= 1/2

{
sk+ρk+

∑
l

c2klykl
(
sk−ρk

)}
.

Introducing auxiliary variables Lkl and Vkl ∀k, l, and defined as Lkl = ρkykl and Vkl =
skykl, E[Nk(y)] can be further restated as:

E[Nk] = 1/2

{
sk + ρk +

∑
l

c2kl
(
Vkl − Lkl

)}
,

where Lkl and Vkl are non-linear, for which we use the following standard linearization:∑
l

Vkl = sk ∀k ∈ N (15)

Vkl ≤Mykl ∀k ∈ N, l ∈ L (16)

Vkl ≥ 0 ∀k ∈ N, l ∈ L (17)∑
l

Lkl = ρk ∀k ∈ N (18)

Lkl ≤ ykl ∀k ∈ N, l ∈ L (19)

0 ≤ Lkl ≤ 1 ∀k ∈ N, l ∈ L. (20)

Since ρk =λk
µk

=
∑
i

∑
jWijzik∑
l γ
l
kykl

, we have:∑
i

∑
j

Wijzik = ρk
∑
l

γlkykl =
∑
l

γlkyklρk =
∑
l

γlkLkl ∀k ∈ N. (21)

Using the above transformations, (2)-(12) can be written as follows:

[EK-2s] min
∑
i

∑
k

dik(χOi + δDi)zik +
∑
i

∑
k

∑
m

αdkmxikm

+
∑
k

∑
l

Qlkykl + θ/2
∑
k

sk + ρk +
∑
l

c2kl
(
Vkl − Lkl

)
s.t. (3)− (21).
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The only non-linearity in EK-2s appears in (13), which can be handled using the well-known
OA-based method, as detailed in Appendix B.1. We refer to this OA-based method for the
two-subscripted capacity allocation based variable as EK-OA-2s. In Section 4.1, we propose
five alternate MISOCP-based reformulations of EK-2s.

3.2 SHLPCC model based on three-subscripted capacity allocation vari-
able

For SHLPCC with three-subscripted capacity allocation variable for the EK-based model,
we define the following decision variables.

xikm = Amount of flow with origin at i that goes through hubs k and m

tlik =

{
1, if node i is assigned to hub k which has capacity level l.

0, otherwise.

The new variable tlik is related to the previous variables ykl and zik as follows:

zik =
∑
l

tlik ∀i, k. ykl = tlkk ∀k, l zkk =
∑
l

tlkk (22)

Since we do not have variable ykl, as in the case with two-subscripted capacity based al-
location scheme, we do not encounter complexities arising from γlkykl. Therefore, we work
with the following two forms of the expected number of users, E[Nk(t)].

E[Nk(t)] =
(1 + c2kl)(

∑
i

∑
jWijt

l
ik)

2

2(γlk)(γ
l
k −

∑
i

∑
jWijtlik)

+

∑
i

∑
jWijt

l
ik

γlk
(23)

E[Nk(t)] = 1/2

{(
1 + c2kl

) ∑
i

∑
jWijt

l
ik(

γlk −
∑

i

∑
jWijtlik

) +
(

1− c2kl
)∑

i

∑
jWijt

l
ik

γlk

}
(24)

W.P. No. 2018-12-04 Page No. 11



IIMA • INDIA

Research and Publications

The SHLPCC formulation with three-subscripted capacity allocation variable is given as:

[EK-3s]

min
∑
i

∑
k

dik(χOi + δDi)
∑
l

tlik +
∑
i

∑
k

∑
m

αdkmxikm

+
∑
k

∑
l

Qlkt
l
kk +

∑
k

∑
l

θE[Nk(t)] (25)

s.t.
∑
k

∑
l

tlik = 1 ∀i, j ∈ N (26)

tlik ≤ tlkk ∀i, k ∈ N, l ∈ L (27)∑
k

∑
l

tlkk = p (28)∑
m

xikm −
∑
m

ximk = Oi
∑
l

tlik −
∑
j

Wij

∑
l

tljk ∀i, k ∈ N (29)

∑
m

xikm ≤ Oi
∑
l

tlik ∀i, k ∈ N (30)∑
i

∑
j

Wijt
l
ik ≤ γlk ∀k ∈ N, l ∈ L (31)

∑
l

tlkk ≤ 1 ∀k ∈ N (32)

xikm ≥ 0 ∀i, k,m ∈ N (33)

tikl, t
i
kk ∈ 0, 1 ∀i, k ∈ N, l ∈ L (34)

Constraints (26) - (34) are straightforward conversions of constraints (3) - (12) by using
the relationships shown in (22). Note that constraint (27) is a disaggregated version of
constraint (4), as zik ≤ zkk ⇐⇒

∑
l t
l
ik ≤

∑
l t
l
kk, which can be disaggregated ∀ l ∈ L.

For the non-linear terms,
(
∑
i

∑
jWijt

l
ik)

2

γlk−
∑
i

∑
jWijtlik

and
∑
i

∑
jWijt

l
ik

γlk−
∑
i

∑
jWijtlik

in (23) and (24), we propose

MISOCP-based reformulations in Section 4.2. The OA-based method for EK-3s, which we
refer to as EK-OA-3s, is discussed in Appendix B.2.

We do a similar study on SHLPCC with the two-subscripted and the three-subscripted
capacity allocation variables for the SK-based model, and propose MISOCP-based reformu-
lations in Appendix A. In the following sections, we discuss our MISOCP-based reformula-
tions and analysis for EK-2s and EK-3s models.

4 MISOCP-based Reformulations

In this section, we briefly describe second order conic programs. In Section 4.1, we propose
MISOCP-based reformulations for EK-2s, followed by MISOCP-based reformulations for
EK-3s in Section 4.2.

A Second Order Conic Program is a convex optimization problem of the following form:

min
x∈Rn

fTx

s.t.
∥∥Aix+ bi

∥∥ ≤ cTi x+ di, ∀i = 1 . . . N (35)
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Each of the constraints in (35) is a second-order cone constraint of dimension ni. Here,
f ∈ Rn, Ai ∈ R(ni−1)n, bi ∈ Rni−1, ci ∈ Rn, di ∈ R. Note that when Ai = 0,∀i = 1, . . . , N ,
the above SOCP reduces to an LP, while ci = 0,∀i = 1, . . . N reduces it to a Quadratically
Constrained Quadratic Programming (QCQP).

For any positive-semi definite matrix Q (Q < 0), i.e. when xTQx ≥ 0 for all x, CPLEX
accepts second order conic constraints in the following two forms:

xTQx ≤ y2 y ≥ 0 (Form-1)

xTQx ≤ yz y, z ≥ 0 (Form-2)

Form-2 constraint, also called hyperbolic constraint, can be written as SOCs by the following
two transformations:

2xTQx+ y2 + z2 ≤ (y + z)2 y, z ≥ 0 (Form-2.1)

4xTQx+ (y − z)2 ≤ (y + z)2 y, z ≥ 0 (Form-2.2)

From our initial experiments, and as also illustrated by (55), constraints of the (Form-2.1)
perform the best. We have, therefore, represented all the constraint of Form-2 as (Form-2.1)
in this paper.

4.1 MISOCP-based Reformulations for EK-2s

In the model EK-2s (based on two-subscripted capacity allocation variables), the non-linear
term (13) includes two decision variables ykl and zik. In this section, we propose MISOCP-
based reformulations based on both the variables. The first SOC is based on zik variables,
the next three SOCs are based on ykl variables, while the fifth SOC is based on the rela-
tionship between the traffic intensity ρk and sk.

EK-MISOCP1: For our first reformulation, since sk ≥
∑
i

∑
jWijzik∑

l γ
l
kykl−

∑
i

∑
jWijzik

, and zik is

binary, we have
∑

i

(∑
jWij

)
z2ik ≤ sk(

∑
l γ

l
kykl −

∑
i

∑
jWijzik). We introduce variable tk

such that (
∑

l γ
l
kykl −

∑
i

∑
jWijzik) ≥ tk. The constraint holds with inequality for the

minimization problem. On substituting, we get the following set of constraints,∑
i

∑
j

Wijz
2
ik ≤ sktk ∀k ∈ N, (36)

∑
l

γlkykl −
∑
i

∑
j

Wijzik ≥ tk ∀k ∈ N, (37)

tk ≥ 0 ∀k ∈ N. (38)

Note that (37) dominates (8), hence (8) is eliminated. Since (36) are hyperbolic constraint,
it is transformed to (Form-2.1) as:

2
∑
i

∑
j

Wijz
2
ik + s2k + t2k+ ≤ (sk + tk)

2 ∀k ∈ N. (39)
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Our first EK-MISOCP-based reformulation is then given as follows:

[EK-MISOCP1] min
∑
i

∑
k

dik(χOi + δDi)zik +
∑
i

∑
k

∑
m

αdkmxikm

+
∑
k

∑
l

Qlkykl + θ/2
∑
k

sk + ρk +
∑
l

c2kl
(
Vkl − Lkl

)
s.t. (3)− (7), (9)− (12), (14)− (21), (37)− (39).

EK-MISOCP1 has 2N additional constraints and N additional variables, out of which N
constraints are SOCs, each of dimension N + 3.
EK-MISOCP2: We next propose SOC constraints based on ykl variables. Similar to the
previous formulation, we have variable sk such that,∑

i

∑
jWijzik∑

l γ
l
kykl −

∑
i

∑
jWijzik

≤ sk ⇐⇒
∑
i

∑
j

Wijzik ≤ sk(
∑
l

γlkykl −
∑
i

∑
j

Wijzik).

Adding (
∑

l γ
l
kykl −

∑
i

∑
jWijzik) on both sides we get

∑
l γ

l
kykl ≤ (1 + sk)(

∑
l γ

l
kykl −∑

i

∑
jWijzik). We introduce auxiliary variables tk and τk such that (

∑
l γ

l
kykl−

∑
i

∑
jWijzik) ≥

tk and τk = 1 + sk. Also, using the fact that ykl is binary, we have the following constraints∑
l

γlky
2
kl ≤ τktk ∀k ∈ N, (40)∑

l

γlkykl −
∑
i

∑
j

Wijzik ≥ tk ∀k ∈ N, (41)

τk = 1 + sk ∀k ∈ N, (42)

tk, τk ≥ 0 ∀k ∈ N. (43)

Hyperbolic constraint (40) are transformed to

2
∑
l

γlky
2
kl + τ2k + t2k ≤ (τk + tk)

2 ∀k ∈ N. (44)

The second EK-MISOCP-based reformulation is, therefore:

[EK-MISOCP2] min
∑
i

∑
k

dik(χOi + δDi)zik +
∑
i

∑
k

∑
m

αdkmxikm

+
∑
k

∑
l

Qlkykl + θ/2
∑
k

sk + ρk +
∑
l

c2kl
(
Vkl − Lkl

)
s.t. (3)− (7), (9)− (12), (14)− (21), (41)− (44).

EK-MISOCP2 has 3N additional constraints and 2N additional variables, including N
SOCs, each of dimension L+3.
EK-MISOCP3: Disaggregating (40) results in higher number of SOCs of smaller dimen-
sions, which gives us a new set of constraints as follows:

γlky
2
kl ≤ τktk ∀k ∈ N, l ∈ L. (45)

Transforming to (Form-2.1), we have

2γlky
2
kl + τ2k + t2k ≤ (τk + tk)

2 ∀k ∈ N, l ∈ L. (46)
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Our third EK-MISOCP-based reformulation is, therefore,

[EK-MISOCP3] min
∑
i

∑
k

dik(χOi + δDi)zik +
∑
i

∑
k

∑
m

αdkmxikm

+
∑
k

∑
l

Qlkykl + θ/2
∑
k

sk + ρk +
∑
l

c2kl
(
Vkl − Lkl

)
s.t. (3)− (7), (9)− (12), (14)− (21), (41)− (43), (46).

EK-MISOCP3 has N+NL additional constraints and 2N additional variables, out of which
NL constraints are SOCs, each of dimension 4.
EK-MISOCP4: Another slight variation results in SOCs of smaller dimension as com-
pared to (40). We define pk, such that,

p2k =
∑
l

γlky
2
kl ⇐⇒ pk =

∑
l

√
γlkykl ∀k ∈ N. (47)

Substituting in (40) we get,

p2k ≤ τktk ∀k ∈ N, (48)

pk ≥ 0 ∀k ∈ N. (49)

Transformation to (Form-2.1) results in the following constraint

2p2k + τ2k + t2k ≤ (τk + tk)
2 ∀k ∈ N. (50)

Our fourth EK-MISOCP-based reformulation is as follows:

[EK-MISOCP4] min
∑
i

∑
k

dik(χOi + δDi)zik +
∑
i

∑
k

∑
m

αdkmxikm

+
∑
k

∑
l

Qlkykl + θ/2
∑
k

sk + ρk +
∑
l

c2kl
(
Vkl − Lkl

)
s.t. (3)− (7), (9)− (12), (14)− (21), (41)− (43), (47), (49), (50).

EK-MISOCP4 has 4N additional constraints and 3N additional variables, respectively, out
of which there are N SOCs, each of dimension 4.
EK-MISOCP5: From the definition of sk and ρk, as used earlier, we can write ρk

1−ρk ≤
sk ⇐⇒ ρk ≤ sk(1− ρk). Adding (1− ρk) on both the sides we get the following hyperbolic
constraint

1 ≤ (1 + sk)(1− ρk) ∀k ∈ N. (51)

As stated in Section 4, CPLEX does not accept the above constraints directly unless both
expressions (1+sk) and (1−ρk) are explicitly stated non-negative. Therefore, we substitute

τk = 1 + sk ∀k ∈ N, (52)

ψk = 1− ρk ∀k ∈ N, (53)

τk, ψk ≥ 0 ∀k ∈ N, (54)

which results in the following hyperbolic constraint

1 ≤ τkψk ∀k ∈ N. (55)
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The above hyperbolic constraint is converted to (Form-2.1) as

2 + τ2k + ψ2
k ≤ (τk + ψk)

2 ∀k ∈ N. (56)

This is given to the solver directly. Our fifth EK-MISOCP-based reformulation is, therefore,

[EK-MISOCP5] min
∑
i

∑
k

dik(χOi + δDi)zik +
∑
i

∑
k

∑
m

αdkmxikm

+
∑
k

∑
l

Qlkykl + θ/2
∑
k

sk + ρk +
∑
l

c2kl
(
Vkl − Lkl

)
s.t. (3)− (12), (52)− (54), (56).

EK-MISOCP5 has 3N additional constraints and 2N additional variables with N SOC con-
straints, each of dimension 3.

4.2 MISOCP-based Reformulations for EK-3s

In the model EK-3s (based on three-subscripted capacity allocation variables), the non-
linear term in the objective function can expressed in two alternate forms, given by (23)
and (24), using which we obtain alternate MISOCP-based reformulations.

EK-MISOCP6: From (23), we have

E[Nk(t)] =
(1 + c2kl)(

∑
i

∑
jWijt

l
ik)

2

2(γlk)(γ
l
k −

∑
i

∑
jWijtlik)

+

∑
i

∑
jWijt

l
ik

γlk
.

We introduce variable rkl, tkl ≥ 0, such that

(
∑

i

∑
jWijt

l
ik)

2

γlk −
∑

i

∑
jWijtlik

≤ rkl ⇐⇒ (
∑
i

∑
j

Wijt
l
ik)

2 ≤ rkl(γlk −
∑
i

∑
j

Wijt
l
ik) ∀k, l.

Also, γlk −
∑

i

∑
jWijt

l
ik ≥ tkl ∀k, l, therefore we have the following set of constraints

(
∑
i

∑
j

Wijt
l
ik)

2 ≤ rkltkl ∀k ∈ N, l ∈ L, (57)

γlk −
∑
i

∑
j

Wijt
l
ik ≥ tkl ∀k ∈ N, l ∈ L, (58)

tkl, rkl ≥ 0 ∀k ∈ N, l ∈ L. (59)

Constraint (57), which is hyperbolic constraint, is transformed to (Form-2.1) as:

2(
∑
i

∑
j

Wijt
l
ik)

2 + r2kl + t2kl ≤ (rkl + tkl)
2 ∀k ∈ N, l ∈ L. (60)

Notice that because of minimization objective, both rkl and tkl hold with equality at the
optimum. Also (58) dominates (31), hence (31) is eliminated. Our sixth EK-MISOCP-based
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formulation is as follows:

[EK-MISOCP6] min
∑
i

∑
k

dik(χOi + δDi)
∑
l

tlik +
∑
i

∑
k

∑
m

αdkmxikm

+
∑
k

∑
l

Qlkt
l
kk + θ

∑
k

∑
l

(1 + c2kl)

2(γlk)
rkl +

∑
i

∑
jWijt

l
ik

γlk

s.t. (26)− (30), (32)− (34), (58)− (60).

EK-MISOCP6 has 2NL additional constraints and 2NL additional variables, out of which
there are NL number of SOCs of dimension 4.
EK-MISOCP7: From (24) we have,

E[Nk(t)] = 1/2

{(
1 + c2kl

) ∑
i

∑
jWijt

l
ik(

γlk −
∑

i

∑
jWijtlik

) +
(

1− c2kl
)∑

i

∑
jWijt

l
ik

γlk

}
.

Introducing variable skl such that,
(
∑
i

∑
jWijt

l
ik)

γlk−
∑
i

∑
jWijtlik

≤ skl and (γlk −
∑

i

∑
jWijt

l
ik) ≥ tkl, we

have the following constraints∑
i

∑
j

Wij(t
l
ik)

2 ≤ skltkl ∀k ∈ N, l ∈ L, (61)

γlk −
∑
i

∑
j

Wijt
l
ik ≥ tkl ∀k ∈ N, l ∈ L, (62)

tkl, skl ≥ 0 ∀k ∈ N, l ∈ L. (63)

Hyperbolic constraint (61) is transformed to Form-2.1 as

2
∑
i

∑
j

Wij(t
l
ik)

2 + s2kl + t2kl ≤ (skl + tkl)
2 ∀k ∈ N, l ∈ L. (64)

Seventh EK-MISOCP-based reformulation is as follows:

[EK-MISOCP7] min
∑
i

∑
k

dik(χOi + δDi)
∑
l

tlik +
∑
i

∑
k

∑
m

αdkmxikm

+
∑
k

∑
l

Qlkt
l
kk + θ/2

∑
k

∑
l

(
1 + c2kl

)
skl +

(
1− c2kl

)∑
i

∑
jWijt

l
ik

γlk

s.t. (26)− (30), (32)− (34), (62)− (64).

EK-MISOCP7 has 2NL additional constraints and 2NL additional variables, out of which
there are NL SOCs, each of dimension N + 3.
EK-MISOCP8: We propose another reformulation by using sk and introducing variable
ulijk such that,

∑
i

∑
j

ulijk ≤ skl ∀k ∈ N, l ∈ L , and
Wijt

l
ik

γlk −
∑

i

∑
jWijtlik

≤ ulijk.
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Substituting γlk −
∑

i

∑
jWijt

l
ik ≥ tkl, we get the following set of constraints

Wij(t
l
ik)

2 ≤ ulijktkl ∀i, j, k ∈ N, l ∈ L, (65)∑
i

∑
j

ulijk ≤ skl ∀k ∈ N, l ∈ L, (66)

γlk −
∑
i

∑
j

Wijt
l
ik ≥ tkl ∀k ∈ N, l ∈ L, (67)

uijkl ≥ 0 ∀i, j, k ∈ N, l ∈ L, (68)

tkl, skl ≥ 0 ∀k ∈ N, l ∈ L. (69)

Transformation of hyperbolic constraint (65) to Form-2.1 gives us,

2Wij(t
l
ik)

2 + (ulijk)
2 + t2kl ≤ (ulijk + tkl)

2∀i, j, k ∈ N, l ∈ L. (70)

Our eighth EK-MISOCP-based reformulation is as follows:

[EK-MISOCP8] min
∑
i

∑
k

dik(χOi + δDi)
∑
l

tlik +
∑
i

∑
k

∑
m

αdkmxikm

+
∑
k

∑
l

Qlkt
l
kk + θ/2

∑
k

∑
l

(
1 + c2kl

)
skl +

(
1− c2kl

)∑
i

∑
jWijt

l
ik

γlk

s.t. (26)− (30), (32)− (34), (66)− (70).

EK-MISOCP8 has 3NL additional constraints and N3L+ 2NL additional variables, out of
which there are N3L SOCs, each of dimension N + 3.
EK-MISOCP9: Multiplying both sides with γlk, and adding (

∑
i

∑
jWijt

l
ik)

2 to the

constraint (
∑

i

∑
jWijt

l
ik) ≤ skl(γ

l
k −

∑
i

∑
jWijt

l
ik) ∀k, l, we have (

∑
i

∑
jWijt

l
ik)

2 ≤
(sklγ

l
k −

∑
i

∑
jWijt

l
ik)(γ

l
k −

∑
i

∑
jWijt

l
ik) ∀k, l.

Define tkl and vkl, such that,

vkl = sklγ
l
k −

∑
i

∑
j

Wijt
l
ik, ∀k ∈ N, l ∈ L, (71)

tkl = γlk −
∑
i

∑
j

Wijt
l
ik ∀k ∈ N, l ∈ L, (72)

tkl, vkl, skl ≥ 0 ∀k ∈ N, l ∈ L. (73)

The constraint becomes

(
∑
i

∑
j

Wijt
l
ik)

2 ≤ tklvkl ∀k, l, (74)

which is transformed to Form-2.1 as:

2(
∑
i

∑
j

Wijt
l
ik)

2 + v2kl + t2kl ≤ (vkl + tkl)
2 ∀k, l. (75)

Our ninth EK-MISOCP-based formulation is, therefore:

[EK-MISOCP9] min
∑
i

∑
k

dik(χOi + δDi)
∑
l

tlik +
∑
i

∑
k

∑
m

αdkmxikm

+
∑
k

∑
l

Qlkt
l
kk + θ/2

∑
k

∑
l

(
1 + c2kl

)
skl +

(
1− c2kl

)∑
i

∑
jWijt

l
ik

γlk

s.t. (26)− (30), (32)− (34), (71)− (73), (75).
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EK-MISOCP9 introduces 3NL additional constraints and 3NL additional variables includ-
ing NL SOCs, each of dimension 4.

Table 1 presents a summary of all MISOCPs including number (#) of constraints, vari-
ables, and SOCs along with their dimensions.

Table 1: Summary of MISOCP-based Reformulations

EK SOCs Model Constraints

Binary Var. Conti. Var.MISOCP Eqn # # Size Eqn # #

1 39 N N+3 3-7, 9, 15- 16, 18- 19, 21, 37, 39 3N2 + 7N + 2NL + 1 N2 +NL N3 + 3N + 2NL

2 44 N L+3 3-7, 9, 15- 16, 18- 19, 21, 41-42, 44 3N2 + 8N + 2NL + 1 N2 +NL N3 + 4N + 2NL

3 46 NL 4 3-7, 9, 15- 16, 18- 19, 21, 41-42, 46 3N2 + 7N + 3NL + 1 N2 +NL N3 + 4N + 2NL

4 50 N 4 3-7, 9, 15- 16, 18- 19, 21, 41-42, 47, 50 3N2 + 9N + 2NL + 1 N2 +NL N3 + 5N + 2NL

5 56 N 4 3-9, 15- 16, 18- 19, 21, 52-53, 56 3N2 + 9N + 2NL + 1 N2 +NL N3 + 4N + 2NL

6 60 NL 4 26-30, 32, 58, 60 3N2 +N2L + 2NL +N + 1 N2L N3 + 2NL

7 64 NL N+3 26-30, 32, 62, 64 3N2 +N2L + 2NL +N + 1 N2L N3 + 2NL

8 70 N3L 4 26-30, 32, 66-67, 70 3N2 +N3L +N2L + 2NL N2L N3 +N3L + 2NL
+ N+1

9 75 NL 4 26-30, 32, 71-72, 75 3N2 +N2L + 3NL +N + 1 N2L N3 + 3NL

5 Computational Experiments

For our computational experiments, we use two well-known datasets, CAB (56) and AP (3).
In Section 5.1, we perform experiments on instances generated from the CAB dataset for
all MISOCP-based reformulations (SK-2s, SK-3s, EK-2s and EK-3s based reformulations),
which are solved directly using the solver. We compare their performances against the
two MILP reformulations, which are obtained using outer-approximation (OA). All the
computational experiments are run on a workstation with a 2.20 GHz Intel Xeon E5-2630
processor and 64 GB RAM. All MISOCP-based reformulations are solved directly using
CPLEX 12.7.1. For the two OA-based methods, the MILP at each iteration is solved using
CPLEX 12.7.1.

CPLEX uses one of the following two alternate parameter settings to solve MISOCPs:
miqcpstrat 1 and miqcpstrat 2. In miqcpstrat 1, it uses an SOCP based branch and bound
algorithm, where at each node the continuous relaxation is solved using an interior point
algorithm, specifically designed for SOCPs. In miqcpstrat 2, it uses the fact that the SOCPs
are NLPs, which can be approximated using outer-approximations. To allow CPLEX to
choose the best strategy from among the two, we set the parameter to miqcpstrat 0.

5.1 Experiments based on CAB dataset

Using CAB dataset, we run our experiments on instances with the number of nodes (|N |)
as 10, 15, 20 and 25, and the number of hubs (p) as 3 and 4. We use two values of the
inter-hub discount factor (α) as 0.4 and 0.8, and two values of congestion cost(θ) as 20 and
50. The coefficient of variation (ck) of the service times at hub k is varied as 0, 1 and 2 to
model (M/D/1), (M/M/1) and (M/G/1) queues, respectively. This gives us a total of 96
instances for our computational experiments. For each of these instances, the three capacity

levels (l = 1, 2, 3) at any hub are set as
∑
i

∑
jWij

p + βAl
∑

i

∑
jWij , where Al = -1, 0, 1 for
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l = 1, 2, 3, respectively, and β is set to 0.21, 0.22, 0.23 and 0.24 for |N |= 10, 15, 20 and
25. Fixed cost Qlk is set as 150, 200 and 250 for the three capacity levels. A similar scheme
for setting the capacity levels and the corresponding costs is used by (1). The optimality
tolerance (ε) for OA is set to 10−6. For each instance, a maximum CPU time limit of 14,400
seconds (4 hours) is used.

5.1.1 Results and Analysis:

From our initial experiments, as reported in Table 5 and Table 8 in Appendix A, we find
that the results from the SK-based models are far inferior to those based on EK-based
models. Hence, in the remaining experiments, we restrict our analysis to only the EK-
based models. We compare the performances of all the proposed EK-based MISOCP re-
formulations against EK-OA-2s, EK-OA-3s, obtained using OA, and strengthened using
perspective reformulation (57). Reformulations using OA is presented in Appendix B. Our
initial computational experiments clearly suggested EK-MISOCP8 to be the worst among
all formulations, and is, therefore, excluded from further analysis. We discuss the reasons
for the inferior performance of EK-MISOCP8 in Section 5.3. Tables 2, 3, 4, and 5 present
the computational performances (in terms of CPU time) of eight of the nine MISOCPs
(excluding EK-MISOCP8), and the two OA-based reformulations for |N |=10, 15, 20 and
25. In each of these tables, the column “Hub” reports the set of p hubs opened in the
resulting solution, while columns “Cap” and “Intensity” report the corresponding capacity
level and the traffic intensity at each of the open hubs, respectively. The flow cost, location
(capacity installation) cost, congestion cost, and sum of all the three costs are reported
under the columns “FC”, “LC”, “CC”, and “TC”. The last row in each table reports the
number of instances for which each of the formulations performs the best, based on which
EK-MISOCP4 and EK-MISOCP5 seem to be the best two formulations, exhibiting the best
performances for 46 and 31 (out of a total of 96) instances, respectively. Comparison among
the rest of the formulations is not so obvious from the tables. Further, for the remaining 19
instances where neither EK-MISOCP4 nor EK-MISOCP5 is the best, it is not immediately
obvious from the tables how well they perform vis-à-vis the rest. Hence, for a better com-
parative analysis, we use performance profiles (58). For this, let ns and np be the number of
formulations and the number of test instances, respectively, and S and P be their respective
sets. Let tp,s be the CPU time taken to solve the instance p ∈ P using formulation s ∈ S.
Then, performance ratio rp,s is calculated as:

rp,s =
tp,s

mins∈S{tp,s}

Treating tp,s as a random variable, a performance profile ρs(τ) gives its cumulative proba-
bility distribution at τ . In other words, it gives the probability with which the CPU time
taken by a given formulation s does not exceed 2τ times the CPU time required by the best
among all the formulations under study. Mathematically, it can be stated as:

ρs(τ) =
1

np

{
p ∈ P : log2(rp,s) ≤ τ

}
.

Specifically, ρs(τ = 0) gives the probability that s is the best among all the formulations.

Figure 1 presents four different performance profiles of the different EK-MISOCP and
OA-based reformulations, one corresponding to each value of |N |. For |N | = 10, Figure 1a
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shows that EK-MISOCP5 and EK-MISOCP4 perform the best for around 46% (11 out of
24) and 33% (8 out of 24) of the instances, respectively. This is something that is already
obvious from Table 2. However, what is less obvious from that table is the fact that EK-
MISOCP5 never takes more than twice the CPU time taken by the best formulation for any
of the 24 instances, which is only revealed by the performance profile. Even less obvious is
another fact that at τ = 0.8, EK-MISOCP4 is able to solve all the 24 instances, whereas
EK-MISOCP5 can solve only 96% of the instances. Further, from Figures 1b, 1c, and 1d, we
see that EK-MISOCP5 and EK-MISOCP4 are the best two formulations across all problem
instances. We do similar analyses for all formulations with respect to the congestion factor
θ and the coefficient of variation (c), the results for which are presented in Figure 2 and
Figure 3, respectively. Once again, we observe that all MISOCPs dominate the OA-based
reformulations, with EK-MISOCP5 being the best, followed by EK-MISOCP4. Moreover,
EK-MISOCP5, which is the best formulation, solves all the instances 20-60 times faster as
compared to SK-OA-2s, which is the existing best formulation/method in the literature.

In the absence of congestion, hub location model with three-subscripted capacity allo-
cation variable is known to dominate the model with two-subscripted capacity allocation
variable in terms of LP relaxation (41). For CAB dataset, we observe from our computa-
tional results that this dominance of EK-3s does not necessarily translate into an advantage
from a computational point of view owing to its larger model size. Specifically, all the
formulations based on EK-2s, except EK-MISOCP1, perform better than EK-3s. However,
in the presence of congestion, this conclusion may not be generalized to other datasets.
Hence, for the next set of computational experiments, based on AP dataset, we proceed
with EK-MISOCP4 and EK-MISOCP5 (the best two among EK-2s) and EK-MISOCP6
and EK-MISOCP9 (the best two among EK-3s).

5.2 Experiments based on AP dataset

For the AP dataset, we limit our computational experiments only to EK-MISOCP4, EK-
MISOCP5, EK-MISOCP6 and EK-MISOCP9 for |N |=25 and 50. The AP dataset specifies
two different possible values for the capacity at each hub, referred to as tight (T) and
loose (L). Following the scheme used by (43), we set the capacity (γlk) and the fixed cost
(Qlk) for level l at the potential hub node k as γLk = ΓLk , γlk = 0.7 × γl+1

k , QLk = ΓkL, and

Qlk = 0.9×Ql+1
k ∀l = 1 . . . L−1, where ΓLk is the capacity for hub k provided in the dataset.

Similar to experiments using CAB dataset, corresponding to each value of |N |, we run our
experiments with the number of hubs (p) as 3 and 4, inter-hub discount factor (α) as 0.4
and 0.8, and the coefficient of variation (ck) of the service times at hub k as 0, 1 and 2. In
addition, we set the congestion cost(θ) as 20 and 50.

5.2.1 Results and Analysis:

Tables 6 and 7 present the computational results for our experiments with the AP dataset.
The column names in these tables are the same as the ones used for CAB dataset. For EK-
MISOCP5, the column “CPU time (sec)/% Gap” reports the CPU time in seconds taken
to solve the instance to optimality. For the other MISOCPs (4, 6, and 9), the maximum
CPU time limit is set as the CPU time required to solve EK-MISOCP5 to optimality. For
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Figure 1: Performance Profile of EK-MISOCPs and OA-based method for N=
10,15,20,25

the instances that could not be solved to optimality within the time limit, we provide their
optimality gap as reported by CPLEX. For a few instances that were solved within the time
limit, we report the corresponding CPU times. For many of the instances, CPLEX was
not able to find even a single integer feasible solution, which we denote in the table using
an asterisk (*). As obvious from Tables 6 and 7, EK-MISOCP5 continues to outperform
all other MISOCPs, followed by EK-MISOCP4. However, for smaller instances (|N |=25)
with loose capacity (L), EK-3s models (EK-MISOCP6 and EK-MISOCP9) are able to beat
EK-2s models (EK-MISOCP5 and EK-MISOCP4) in a few cases. This clearly suggests that
for smaller instances continuous relaxation may play a role; however, for larger instances
the performance is primarily dictated by the model size.

5.3 Observations

The difference in performances among the alternate MISOCPs can be partly understood
from Table 1, which summarizes their properties. The number of SOC constraints (|N |)
and their dimensions (4) are the smallest for EK-MISOCP5. It also has the least number of
binary variables (|N |2 + |N |× |L|) and continuous variables (|N |3 +4|N |+2|N |× |L|). This
explains the superiority of EK-MISOCP5 over all the other MISOCPs. EK-MISOCP4 also
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has the same number and dimension of SOC constraints, and the number of binary variables.
However, its performance is slightly worse overall, as compared to EK-MISOCP5, due to
a slightly higher number of continuous variables. Understandably, EK-MISOCP8 performs
the worst since it has the largest number of SOC constraints (|N |3|L|) and also the largest
number of binary variables (|N |2|L|) and continuous variables (|N |3 + |N |3|L|+ 2|N |× |L|).
Though the dimension of the SOCs in EK-MISOCP8 is the smallest (4), its computational
performance gets dictated largely by the other attributes, which are comparatively far
worse. For similar reasons, the performance of EK-MISOCP7 is also very poor, only next
to EK-MISOCP8. EK-MISOCP1, EK-MISOCP2, EK-MISOCP3, EK-MISOCP6, and EK-
MISOCP9 are intermediate performers. Their performances can be explained based on the
attributes discussed above. We hope the insights presented in this section will be useful in
selecting an MISOCP from among several alternatives in other problem contexts as well.

6 Conclusions and Future Research Directions

In this paper, we have proposed several MISOCP-based reformulations for the hub location
problem with capacity selection under congestion. The hub location problem is computa-
tionally challenging to solve; accounting for congestion at hubs adds another layer of diffi-
culty by introducing non-linearity in the resulting model. The contribution of the paper lies
in proposing several MISOCP-based reformulations for the NLMIP problem, which can be
efficiently handled by the existing mixed integer programming solvers. All our MISOCP-
based reformulations outperform the reformulations based on outer approximation on all
the 96 instances generated from the CAB dataset. Further, based on our computational
studies, we have identified the best MISOCP-based reformulation (EK-MISOCP5), which
turns out to be several times faster than the existing best formulation/method in the liter-
ature. In particular, EK-MISOCP5 has allowed us to exactly solve instances from the AP
dataset of the size of up to 50 nodes in less half-an-hour. The paper also provides insights
into the properties of MISOCPs that determine their computational efficiency, which would
be important in making the best selection from among various alternate formulations.

To the best of our knowledge, ours is the first application of MISOCP-based reformu-
lation to hub location problem under congestion. Prompted by our success in the current
study, we foresee its applications in other classes of hub location problems, where non-
linearities may arise. For example, one potential application can be in the area of com-
petitive hub location (59; 60), and more broadly in competitive facility location, where the
non-linearity results from the market share function. On the methodology side, decompo-
sition based techniques, like Lagrangean decomposition, Dantzig-Wolfe decomposition, and
Benders decomposition, can be explored to solve the resulting MISOCP-based reformulation
even more efficiently. Further, valid inequalities like polymatroid cuts (61), which charac-
terize the convex hull corresponding to the mixed integer second order conic constraint, can
be used in a branch-and-cut framework.
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Table 6: Comparison among EK-MISOCP4, 5, 6 and 9 for |N| = 25 (AP dataset)

c θ Hub Cap Intensity

Costs CPU time (sec)/% Gap

FC, LC, CC TC

MISOCPs

4 5 6 9

N=25L

p=3, α = 0.4

0
50 2,13,18 3,3,3 0.9, 0.8, 0.9 68263.4, 4529.85, 682.589 73475.9 1.5% 12.872 5.5% 5.5%

100 2,13,18 3,3,3 0.9, 0.8, 0.9 68263.4, 4529.85, 1365.18 74158.5 24.734 25.52 7.8% 7.8%
200 7,14,18 1,1,3 0.6, 0.4, 0.9 66671.8, 6843.55, 1831.22 75346.6 10.4% 14.268 * 5.7%

1
50 2,13,18 3,3,3 0.9, 0.8, 0.9 68263.4, 4529.85, 1235.26 74028.6 * 9.624 * *

100 7,14,18 1,1,3 0.6, 0.4, 0.9 66671.8, 6843.55, 1640.5 75155.9 2% 33.06 12.5% 12.5%
200 8,17,18 2,1,3 0.6, 0.5, 0.8 68095.7, 7486.54, 1129.36 76711.6 48.435 62.64 49.231 46.591

2
50 7,14,18 1,1,3 0.6, 0.4, 0.9 66671.8, 6843.55, 1907.59 75423 2.2% 37.048 9.4% 6.5%

100 8,17,18 2,1,3 0.6, 0.5, 0.8 68095.7, 7486.54, 1134.41 76716.6 3.8% 34.7 24.1% 24.1%
200 8,17,18 3,1,3 0.5, 0.4, 0.8 68077.1, 7766.61, 1845.37 77689.1 11% 42.232 17.6% 17.4%

p=3, α = 0.8

0
50 2,13,18 3,3,3 0.9, 0.8, 1 79579.2, 4529.85, 872.156 84981.2 2.7% 36.672 4.6% 5.3%

100 8,17,18 1,1,3 0.8, 0.5, 0.8 78172.7, 6730.34, 578.558 85481.6 3% 37.608 5.3% 5.3%
200 8,17,18 1,1,3 0.8, 0.5, 0.8 78172.7, 6730.34, 1157.12 86060.1 5.1% 16.312 * *

1
50 8,17,18 1,1,3 0.8, 0.5, 0.8 78172.7, 6730.34, 474.379 85377.4 3.2% 44.14 4.9% *

100 8,17,18 1,1,3 0.8, 0.5, 0.8 78172.7, 6730.34, 948.756 85851.8 6.1% 16.044 * *
200 8,17,18 1,1,3 0.8, 0.5, 0.8 78172.7, 6730.34, 1897.51 86800.5 41.5% 11.844 * *

2

50 8,17,18 1,1,3 0.8, 0.5, 0.8 78172.7, 6730.34, 1029.68 85932.7 3% 52.296 3.7% 5.8%
100 8,17,18 2,1,3 0.6, 0.5, 0.8 78228.9, 7486.54, 1197.6 86913 6.1% 14.792 * *
200 8,17,18 3,1,3 0.4, 0.5, 0.8 78383.5, 7766.61, 1858.08 88008.2 54.512 65.824 51.902 17%

p=4, α = 0.4

0
50 2,8,16,18 3,1,1,3 0.9, 0.6, 0.6, 0.9 61510.8, 5776.87, 530.304 67818 1.2% 17.968 4.2% 4.2%

100 2,8,16,18 3,1,1,3 0.9, 0.6, 0.6, 0.9 61510.8, 5776.87, 1060.61 68348.3 2% 13.924 21.7% *
200 2,8,17,18 3,1,1,3 0.9, 0.6, 0.5, 0.8 60773.4, 7165.09, 1462.18 69400.6 3.7% 18.5 5.8% 6%

1
50 2,8,16,18 3,1,1,3 0.9, 0.6, 0.6, 0.9 61510.8, 5776.87, 909.356 68197.1 3.5% 18.06 3.5% 4.8%

100 2,8,16,18 3,1,1,3 0.9, 0.6, 0.6, 0.9 61510.8, 5776.87, 1818.71 69106.4 4% 23.996 6% 6.1%
200 2,8,17,18 3,1,1,3 0.9, 0.6, 0.5, 0.8 60773.4, 7165.09, 2382.41 70320.9 6.4% 40.188 7.8% 8.5%

2
50 2,8,17,18 3,1,1,3 0.9, 0.6, 0.5, 0.8 60773.4, 7165.09, 1285.78 69224.2 2.6% 36.576 6.5% 6.6%

100 7,14,17,18 1,1,1,3 0.5, 0.4, 0.4, 0.7 60098.4, 9390.78, 786.621 70275.8 8% 34.652 9.8% 6.1%
200 7,14,17,18 1,1,1,3 0.5, 0.4, 0.4, 0.7 60098.4, 9390.78, 1573.24 71062.4 61.668 69.608 53.996 56.637

p=4, α = 0.8

0
50 2,8,17,18 3,1,1,3 0.9, 0.5, 0.5, 0.8 74143.6, 7165.09, 376.54 81685.2 1.8% 53.9 3.5% 3.7%

100 2,8,17,18 3,1,1,3 0.9, 0.5, 0.5, 0.8 74143.6, 7165.09, 753.079 82061.7 2.7% 41.792 5.1% 8%
200 7,14,17,18 1,1,1,3 0.5, 0.4, 0.4, 0.7 72648.8, 9390.78, 629.282 82668.9 2% 53.464 4.3% 4.5%

1
50 2,8,17,18 3,1,1,3 0.9, 0.5, 0.5, 0.8 74143.6, 7165.09, 619.434 81928.1 2.7% 47.76 4.1% 7.3%

100 7,14,17,18 1,1,1,3 0.5, 0.4, 0.4, 0.7 72648.8, 9390.78, 432.636 82472.2 2.8% 39.248 4.8% 7.5%
200 7,14,17,18 1,1,1,3 0.5, 0.4, 0.4, 0.7 72648.8, 9390.78, 865.272 82904.8 18.1% 15.096 42% 19.3%

2

50 7,14,17,18 1,1,1,3 0.5, 0.4, 0.4, 0.7 72648.8, 9390.78, 393.311 82432.9 3.7% 47.904 13.7% 4.9%
100 7,14,17,18 1,1,1,3 0.5, 0.4, 0.4, 0.7 72648.8, 9390.78, 786.621 82826.2 2% 68.824 4.8% 6%
200 7,14,17,18 1,1,1,3 0.5, 0.4, 0.4, 0.7 72648.8, 9390.78, 1573.24 83612.8 2.8% 50.936 4.9% 17.9%

No. of best performing instances 1 32 2 1

N=25T
p=3, α = 0.4

0
50 12,14,19 3,3,3 1, 0.7, 1 83485.5, 4545.57, 1376.68 89407.7 2.8% 19.512 * *

100 9,12,19 3,3,3 0.9, 0.8, 1 84249.1, 4394.85, 2087.51 90731.5 * 8.14 * *
200 9,12,25 3,3,3 0.7, 0.8, 0.9 84948.4, 4971.62, 1820.64 91740.7 3.1% 20.96 * *

1
50 9,12,19 3,3,3 0.9, 0.8, 1 84249.1, 4394.85, 1951.3 90595.3 * 8.068 * *

100 9,12,25 3,3,3 0.7, 0.8, 0.9 84948.4, 4971.62, 1583.44 91503.5 4.1% 19.326 * *
200 9,12,25 3,3,3 0.7, 0.8, 0.9 84948.4, 4971.62, 3166.87 93086.9 2.3% 18.256 * *

2
50 9,12,25 3,3,3 0.7, 0.8, 0.9 84948.4, 4971.62, 1801.39 91721.4 2.9% 21.396 * *

100 9,12,25 3,3,3 0.7, 0.8, 0.9 84948.4, 4971.62, 3602.77 93522.8 2.1% 19.764 * *
200 9,12,25 3,3,3 0.8, 0.8, 0.8 86542.2, 4971.62, 5433.94 96947.7 2% 24.568 * *

p=3, α = 0.8

0
50 12,14,19 3,3,3 1, 0.7, 1 92977.1, 4545.57, 1376.68 98899.4 40.638 41.11 40.2% 20.2%

100 12,14,19 3,3,3 1, 0.7, 1 92977.1, 4545.57, 2753.35 100276 * 24.216 * *
200 12,14,19 3,3,3 0.9, 0.8, 1 94069.2, 4545.57, 3819.53 102434 4.2% 34.826 * *

1
50 12,14,19 3,3,3 1, 0.7, 1 92977.1, 4545.57, 2621.03 100144 * 30.952 * *

100 12,14,19 3,3,3 0.9, 0.8, 1 94069.2, 4545.57, 3555.17 102170 4.3% 30.578 * *
200 12,14,19 3,3,3 0.9, 0.8, 0.9 96086.3, 4545.57, 4443.7 105076 6.8% 37.612 * *

2

50 12,14,19 3,3,3 0.9, 0.8, 1 94069.2, 4545.57, 4245.7 102860 5.1% 25.23 * *
100 12,14,19 3,3,3 0.9, 0.8, 0.9 96086.3, 4545.57, 5160.54 105792 6.4% 38.08 * *
200 12,14,25 3,3,3 0.8, 0.6, 0.8 100341, 5122.34, 5399.39 110863 6.2% 40.008 * *

p=4, α = 0.4

0
50 2,12,14,19 2,3,2,3 0.7, 0.8, 0.9, 1 71993.2, 5046.17, 1015.4 78054.8 31.451 36.94 * 11.5%

100 2,12,14,19 3,3,3,3 0.5, 0.8, 0.6, 1 71993.2, 5285.22, 1655.2 78933.7 2.6% 27.284 * *
200 2,12,14,19 3,3,3,3 0.5, 0.8, 0.6, 1 71993.2, 5285.22, 3310.4 80588.9 3.1% 31.452 * 21%

1
50 2,12,14,19 3,3,3,3 0.5, 0.8, 0.6, 1 71993.2, 5285.22, 1509.2 78787.7 6.1% 19.97 * *

100 2,12,14,19 3,3,3,3 0.5, 0.8, 0.6, 1 71993.2, 5285.22, 3018.4 80296.9 3.4% 27.364 * *
200 2,12,14,19 3,3,3,3 0.5, 0.8, 0.7, 0.9 74089.3, 5285.22, 3078.21 82452.7 30.3% 36.924 23.6% 23.9%

2
50 2,12,14,19 3,3,3,3 0.5, 0.8, 0.6, 1 71993.2, 5285.22, 3554.01 80832.5 6.2% 30.398 * *

100 2,12,14,19 3,3,3,3 0.5, 0.8, 0.7, 0.9 74089.3, 5285.22, 3412.22 82786.7 5.4% 29.784 * *
200 2,12,14,25 3,3,3,3 0.5, 0.7, 0.5, 0.8 75698.2, 5861.99, 4379.49 85939.7 6.9% 29.778 * 28.3%

p=4, α = 0.8

0
50 2,12,13,19 2,3,3,3 0.7, 0.8, 0.9, 1 85729.8, 4675.97, 1083.56 91489.3 5.1% 52.408 11.6% 18.8%

100 2,12,13,19 3,3,3,3 0.5, 0.8, 0.9, 1 85729.8, 4749.94, 2076.34 92556.1 32.7% 43.4 11.9% 9.1%
200 12,13,19,23 3,3,3,3 0.9, 0.8, 0.9, 0.6 86603.4, 4914.24, 2336.89 93854.5 4.6% 47.118 15.4% 14.3%

1
50 2,12,13,19 3,3,3,3 0.5, 0.8, 0.9, 1 85729.8, 4749.94, 1915.65 92395.4 4.4% 48.376 15.7% 8.6%

100 12,13,19,23 3,3,3,3 0.9, 0.8, 0.9, 0.6 86603.4, 4914.24, 2021.08 93538.7 27.7% 29.52 * *
200 12,13,19,23 3,3,3,3 0.9, 0.8, 0.9, 0.7 86908.9, 4914.24, 3715.95 95539.1 53.8% 38.78 18.1% 21%

2

50 12,13,19,23 3,3,3,3 0.9, 0.8, 0.9, 0.6 86603.4, 4914.24, 2289.49 93807.1 53.9% 26.634 * *
100 12,14,19,23 3,3,3,3 0.9, 0.5, 0.9, 0.7 86856.4, 5449.52, 3663.73 95969.7 6.8% 51.56 11.5% 13.2%
200 12,14,19,23 3,3,3,3 0.9, 0.5, 0.9, 0.7 86856.4, 5449.52, 7327.46 99633.4 0.1% 94.404 10.5% 8%

No. of best performing instances 2 34 0 0

* represents no solution in the given time limit.
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Table 7: Comparison among EK-MISOCP4, 5, 6 and 9 for |N| = 50 (AP dataset)

c θ Hub Cap Intensity

Costs CPU time (sec)/ % Gap

FC, LC, CC TC

MISOCPs

4 5 6 9

N=50L

p=3, α = 0.4

0
50 15,27,35 2,1,3 0.8, 0.8, 0.8 68783.3, 5656.71, 323.386 74763.4 3% 116.774 * *

100 15,27,35 2,1,3 0.8, 0.8, 0.8 68783.3, 5656.71, 646.773 75086.8 3.2% 338.784 * *
200 15,28,35 2,1,3 0.7, 0.5, 0.8 68345.4, 6320.55, 913.826 75579.8 2.2% 431.446 28.9% *

1
50 15,27,35 2,1,3 0.8, 0.8, 0.8 68783.3, 5656.71, 529.873 74969.9 2.4% 370.762 * *

100 15,28,35 2,1,3 0.7, 0.5, 0.8 68345.4, 6320.55, 714.416 75380.4 2.6% 385.506 * *
200 15,28,35 3,1,3 0.5, 0.5, 0.8 68345.4, 6515.28, 1118.55 75979.3 8.9% 448.654 * 9.4%

2
50 15,28,35 2,1,3 0.7, 0.5, 0.8 68345.4, 6320.55, 743.462 75409.5 3.7% 340.874 70% *

100 15,28,35 3,1,3 0.5, 0.5, 0.8 68345.4, 6515.28, 1131.45 75992.2 3.9% 446.93 * *
200 15,28,35 3,1,3 0.5, 0.5, 0.8 68345.4, 6515.28, 2262.91 77123.6 18.5% 493.07 10.5% 6.4%

p=3, α = 0.8

0
50 15,27,35 1,2,3 0.9, 0.7, 0.8 79532.5, 5465.73, 449.344 85447.6 2.7% 537.106 * *

100 15,27,35 2,1,3 0.7, 0.8, 0.8 79495.2, 5656.71, 675.043 85827 3% 280.716 * *
200 15,27,35 2,2,3 0.7, 0.6, 0.8 79357.6, 5991.5, 1000.08 86349.1 3.6% 452.032 65.4% *

1
50 15,27,35 2,1,3 0.7, 0.8, 0.8 79495.2, 5656.71, 557.771 85709.7 3.7% 258.748 * *

100 15,27,35 2,2,3 0.7, 0.6, 0.8 79357.6, 5991.5, 787.872 86136.9 3.1% 649.472 26.5% *
200 15,27,35 3,3,3 0.5, 0.4, 0.8 79357.6, 6310.22, 1128.85 86796.6 8.9% 528.212 * *

2

50 15,27,35 2,2,3 0.7, 0.6, 0.8 79357.6, 5991.5, 825.684 86174.8 3.4% 367.834 * *
100 15,27,35 3,3,3 0.5, 0.4, 0.8 79357.6, 6310.22, 1152.41 86820.2 7.2% 755.904 6.7% *
200 15,27,35 3,3,3 0.5, 0.4, 0.8 79357.6, 6310.22, 2304.82 87972.6 5.3% 685.908 25.8% 7.8%

p=4, α = 0.4

0
50 6,27,32,35 1,2,3,2 0.7, 0.8, 0.6, 0.8 62898.9, 6414.66, 424.539 69738.1 * 484.038 * *

100 6,27,32,35 1,3,3,2 0.7, 0.6, 0.6, 0.8 62898.9, 6538.65, 650.289 70087.8 6% 955.1 3.7% 3.1%
200 6,27,32,35 1,3,3,3 0.7, 0.6, 0.6, 0.6 62898.9, 6850.95, 912.131 70662 10.5% 281.668 * *

1
50 6,27,32,35 1,3,3,2 0.7, 0.6, 0.6, 0.8 62898.9, 6538.65, 514.124 69951.7 5.1% 780.996 5.3% 8.3%

100 6,27,32,35 1,3,3,3 0.7, 0.6, 0.6, 0.6 62898.9, 6850.95, 664.834 70414.7 5.6% 476.92 45.9% *
200 6,27,32,35 1,3,3,3 0.7, 0.6, 0.6, 0.6 62898.9, 6850.95, 1329.67 71079.5 8.8% 652.208 51.1% *

2
50 6,27,32,35 1,3,3,3 0.7, 0.6, 0.6, 0.6 62898.9, 6850.95, 645.57 70395.4 * 348.712 * *

100 6,27,32,35 1,3,3,3 0.7, 0.6, 0.6, 0.6 62898.9, 6850.95, 1291.14 71041 8.3% 500.232 * *
200 15,28,32,35 3,1,3,3 0.5, 0.5, 0.5, 0.6 62602.4, 7752.29, 1600.4 71955.1 * 523.654 * *

p=4, α = 0.8

0
50 15,27,33,35 2,1,1,2 0.7, 0.8, 0.7, 0.8 74921.6, 6834.9, 377.662 82134.2 3.6% 1440.12 4.6% 4.7%

100 15,27,33,35 2,1,1,2 0.7, 0.8, 0.7, 0.8 74921.6, 6834.9, 755.323 82511.8 3.2% 1127.72 7.3% 4.9%
200 15,27,33,35 2,2,1,2 0.7, 0.6, 0.7, 0.8 74831.4, 7169.68, 1243.22 83244.3 2.9% 1609.54 5.1% 3.5%

1
50 15,27,33,35 2,1,1,2 0.7, 0.8, 0.7, 0.8 74921.6, 6834.9, 605.322 82361.8 2.9% 1208.93 5.6% 6.1%

100 15,27,33,35 2,2,1,2 0.7, 0.6, 0.7, 0.8 74831.4, 7169.68, 963.124 82964.2 4.4% 1086.15 4.9% 7.1%
200 15,27,33,35 3,3,1,3 0.5, 0.4, 0.7, 0.5 74831.4, 7800.71, 1083.75 83715.8 4.9% 938.108 9.2% 7.7%

2

50 15,27,33,35 2,2,1,2 0.7, 0.6, 0.7, 0.8 74831.4, 7169.68, 993.829 82994.9 3.7% 1104.28 5.5% 10.3%
100 15,27,33,35 3,3,1,3 0.5, 0.4, 0.7, 0.5 74831.4, 7800.71, 1028.23 83660.3 4% 1067.78 9% 9.2%
200 15,27,32,35 3,3,3,3 0.5, 0.4, 0.5, 0.6 75366.6, 7547.24, 1503.58 84417.4 4.2% 1224.02 8.1% 6.7%

No. of best performing instances 0 36 0 0

N=50T
p=3, α = 0.4

0
50 14,32,46 3,3,3 1, 1, 1 78946.8, 4108.17, 2600.49 85655.5 3.3% 210.299 * *

100 25,32,46 3,3,3 0.9, 0.9, 1 80396.7, 4310.42, 2279.2 86986.3 28.7% 77.007 * *
200 25,32,46 3,3,3 0.9, 0.9, 1 80504.6, 4310.42, 4416.95 89232 23.9% 120.364 * *

1
50 25,32,46 3,3,3 0.9, 0.9, 1 80396.7, 4310.42, 2140.34 86847.5 4.5% 253.749 * *

100 25,32,46 3,3,3 0.9, 0.9, 1 80504.6, 4310.42, 4139.33 88954.4 24.2% 179.458 * *
200 25,32,46 3,3,3 0.9, 0.9, 0.9 81082, 4310.42, 7221.97 92614.4 * 149.601 * *

2
50 25,32,46 3,3,3 0.9, 0.9, 0.9 81082, 4310.42, 4306.16 89698.6 18.6% 239.085 * *

100 25,32,46 3,3,3 0.9, 0.9, 0.9 81082, 4310.42, 8612.34 94004.7 39.5% 404.728 * *
200 25,32,46 3,3,3 0.9, 0.9, 0.9 81082, 4310.42, 17224.7 102617 5.9% 708.027 * *

p=3, α = 0.8

0
50 25,32,46 3,3,3 0.9, 0.9, 1 90540.8, 4310.42, 1139.6 95990.9 * 215.879 * *

100 25,32,46 3,3,3 0.9, 0.9, 1 90540.8, 4310.42, 2279.21 97130.5 * 226.852 * *
200 25,32,46 3,3,3 0.9, 0.9, 1 90540.8, 4310.42, 4558.41 99409.7 * 460.623 * *

1
50 25,32,46 3,3,3 0.9, 0.9, 1 90540.8, 4310.42, 2140.34 96991.6 6.5% 550.565 * *

100 25,32,46 3,3,3 0.9, 0.9, 1 90540.8, 4310.42, 4280.69 99131.9 2.5% 320.46 * *
200 25,32,46 3,3,3 0.9, 0.9, 0.9 91249.5, 4310.42, 7221.98 102782 1.2% 845.82 * *

2

50 25,32,46 3,3,3 0.9, 0.9, 0.9 91249.5, 4310.42, 4306.17 99866.1 4% 211.736 * *
100 25,32,46 3,3,3 0.9, 0.9, 0.9 91249.5, 4310.42, 8612.34 104172 895.252 1167.57 * *
200 25,32,46 3,3,3 0.9, 0.9, 0.9 91249.5, 4310.42, 17224.6 112785 1.5% 1219.12 * *

p=4, α = 0.4

0
50 14,32,35,38 3,2,3,3 0.9, 0.8, 0.9, 0.9 66111.9, 4848.88, 1070.9 72031.6 * 102.578 * *

100 14,32,35,38 3,2,3,3 0.9, 0.8, 0.9, 0.9 66281.3, 4848.88, 1929.72 73059.9 1.3% 188.701 * *
200 14,32,35,38 3,3,3,3 0.9, 0.6, 0.9, 0.9 66516.6, 5008.57, 3185.12 74710.3 1.8% 474.116 * *

1
50 14,32,35,38 3,2,3,3 0.9, 0.8, 0.9, 0.9 66281.3, 4848.88, 1754.22 72884.4 1.2% 320.526 * *

100 14,32,35,38 3,3,3,3 0.9, 0.6, 0.9, 0.9 66516.6, 5008.57, 2858.54 74383.7 1.5% 378.696 * *
200 14,32,38,46 3,3,3,3 0.8, 0.6, 0.8, 0.8 67753.9, 5245.61, 3259.03 76258.5 3.9% 571.256 * *

2
50 14,32,38,46 3,3,3,3 0.8, 0.5, 0.9, 0.9 67306.2, 5245.61, 2175.47 74727.3 1.3% 535.173 * *

100 14,26,32,46 3,3,3,3 0.8, 0.8, 0.5, 0.8 68070.7, 5534.68, 2917.62 76523 7.3% 441.907 * *
200 14,26,32,46 3,3,3,3 0.7, 0.7, 0.6, 0.8 68502.3, 5534.68, 5194.29 79231.3 3.7% 358.919 * *

p=4, α = 0.8

0
50 14,34,35,38 3,3,3,3 0.9, 0.9, 0.9, 1 78385.4, 4335.01, 1410.33 84130.7 2.4% 511.334 * *

100 14,32,35,38 3,2,3,3 0.9, 0.8, 0.9, 0.9 78223.6, 4848.88, 2141.79 85214.3 2.5% 1000.13 * *
200 14,32,35,38 3,3,3,3 0.8, 0.6, 0.9, 0.9 78831, 5008.57, 3183.82 87023.4 6.6% 927.888 53.3% *

1
50 14,32,35,38 3,2,3,3 0.9, 0.8, 0.9, 0.9 78223.6, 4848.88, 1965.77 85038.2 4.1% 617.19 * *

100 14,32,35,38 3,3,3,3 0.8, 0.6, 0.9, 0.9 78831, 5008.57, 2857.6 86697.2 5.1% 778.654 * *
200 14,32,38,46 3,3,3,3 0.8, 0.6, 0.8, 0.8 80251, 5245.61, 3262.68 88759.3 4.2% 716.398 * *

2

50 14,32,35,38 3,3,3,3 0.8, 0.7, 0.9, 0.8 79833.2, 5008.57, 2283.2 87125 3.4% 870.678 * *
100 14,32,38,46 3,3,3,3 0.8, 0.6, 0.8, 0.8 80251, 5245.61, 3615.39 89112 6.1% 939.039 * *
200 14,26,32,46 3,3,3,3 0.7, 0.7, 0.6, 0.8 81345.8, 5534.68, 5161.03 92041.5 4.4% 1578.46 2.1% 4.1%

No. of best performing instances 1 35 0 0

* represents no solution in the given time limit.

W.P. No. 2018-12-04 Page No. 29



IIMA • INDIA

Research and Publications

References

[1] N. Azizi, N. Vidyarthi, S. S. Chauhan, Modelling and analysis of hub-and-spoke net-
works under stochastic demand and congestion, Annals of Operations Research 264 (1-
2) (2018) 1–40.

[2] B. Y. Kara, B. C. Tansel, On the single-assignment p-hub center problem, European
Journal of Operational Research 125 (3) (2000) 648–655.

[3] A. T. Ernst, M. Krishnamoorthy, Efficient algorithms for the uncapacitated single
allocation p-hub median problem, Location science 4 (3) (1996) 139–154.

[4] S. Elhedhli, H. Wu, A lagrangean heuristic for hub-and-spoke system design with capac-
ity selection and congestion, INFORMS Journal on Computing 22 (2) (2010) 282–296.

[5] D. Skorin-Kapov, J. Skorin-Kapov, M. O’Kelly, Tight linear programming relaxations
of uncapacitated p-hub median problems, European Journal of Operational Research
94 (3) (1996) 582–593.

[6] M. E. OKelly, D. Bryan, Hub location with flow economies of scale, Transportation
Research Part B: Methodological 32 (8) (1998) 605–616.

[7] A. Kimms, Economies of scale in hub & spoke network design models: We have it all
wrong, in: Perspectives on operations research, Springer, 2006, pp. 293–317.

[8] C. B. Cunha, M. R. Silva, A genetic algorithm for the problem of configuring a hub-and-
spoke network for a ltl trucking company in brazil, European Journal of Operational
Research 179 (3) (2007) 747–758.

[9] R. S. de Camargo, G. de Miranda Jr, H. P. L. Luna, Benders decomposition for hub
location problems with economies of scale, Transportation Science 43 (1) (2009) 86–97.

[10] M. W. Horner, M. E. O’Kelly, Embedding economies of scale concepts for hub network
design, Journal of Transport Geography 9 (4) (2001) 255–265.

[11] D. Bryan, Extensions to the hub location problem: Formulations and numerical exam-
ples, Geographical Analysis 30 (4) (1998) 315–330.

[12] I. Racunica, L. Wynter, Optimal location of intermodal freight hubs, Transportation
Research Part B: Methodological 39 (5) (2005) 453–477.

[13] M. E. O’kelly, The location of interacting hub facilities, Transportation science 20 (2)
(1986) 92–106.

[14] J. F. Campbell, Integer programming formulations of discrete hub location problems,
European Journal of Operational Research 72 (2) (1994) 387–405.

[15] A. T. Ernst, M. Krishnamoorthy, Solution algorithms for the capacitated single allo-
cation hub location problem, Annals of Operations Research 86 (1999) 141–159.

[16] J. G. Klincewicz, Heuristics for the p-hub location problem, European Journal of Op-
erational Research 53 (1) (1991) 25–37.

W.P. No. 2018-12-04 Page No. 30



IIMA • INDIA

Research and Publications

[17] J. G. Klincewicz, Avoiding local optima in thep-hub location problem using tabu search
and grasp, Annals of Operations research 40 (1) (1992) 283–302.

[18] D. Skorin-Kapov, J. Skorin-Kapov, On tabu search for the location of interacting hub
facilities, European Journal of Operational Research 73 (3) (1994) 502–509.

[19] H. Pirkul, D. A. Schilling, An efficient procedure for designing single allocation hub
and spoke systems, Management Science 44 (12-part-2) (1998) S235–S242.

[20] J. Ebery, Solving large single allocation p-hub problems with two or three hubs, Euro-
pean Journal of Operational Research 128 (2) (2001) 447–458.

[21] J. F. Campbell, Location and allocation for distribution systems with transshipments
and transportion economies of scale, Annals of operations research 40 (1) (1992) 77–99.

[22] A. T. Ernst, M. Krishnamoorthy, An exact solution approach based on shortest-paths
for p-hub median problems, INFORMS Journal on Computing 10 (2) (1998) 149–162.

[23] R. S. de Camargo, G. Miranda Jr, H. Luna, Benders decomposition for the uncapac-
itated multiple allocation hub location problem, Computers & Operations Research
35 (4) (2008) 1047–1064.

[24] A. T. Ernst, M. Krishnamoorthy, Exact and heuristic algorithms for the uncapacitated
multiple allocation p-hub median problem, European Journal of Operational Research
104 (1) (1998) 100–112.

[25] J. Ebery, M. Krishnamoorthy, A. Ernst, N. Boland, The capacitated multiple allocation
hub location problem: Formulations and algorithms, European Journal of Operational
Research 120 (3) (2000) 614–631.

[26] M. Sasaki, M. Fukushima, On the hub-and-spoke model with arc capacity conatraints,
Journal of the Operations Research Society of Japan 46 (4) (2003) 409–428.

[27] N. Boland, M. Krishnamoorthy, A. T. Ernst, J. Ebery, Preprocessing and cutting for
multiple allocation hub location problems, European Journal of Operational Research
155 (3) (2004) 638–653.

[28] J. G. Klincewicz, Hub location in backbone/tributary network design: A review, Lo-
cation Science 6 (1-4) (1998) 307–335.

[29] S. Alumur, B. Y. Kara, Network hub location problems: The state of the art, European
journal of operational research 190 (1) (2008) 1–21.

[30] J. F. Campbell, M. E. O’Kelly, Twenty-five years of hub location research, Transporta-
tion Science 46 (2) (2012) 153–169.

[31] R. Z. Farahani, M. Hekmatfar, A. B. Arabani, E. Nikbakhsh, Hub location problems:
A review of models, classification, solution techniques, and applications, Computers &
Industrial Engineering 64 (4) (2013) 1096–1109.

[32] T. Aykin, Lagrangian relaxation based approaches to capacitated hub-and-spoke net-
work design problem, European Journal of Operational Research 79 (3) (1994) 501–523.

W.P. No. 2018-12-04 Page No. 31



IIMA • INDIA

Research and Publications

[33] T. Aykin, Networking policies for hub-and-spoke systems with application to the air
transportation system, Transportation Science 29 (3) (1995) 201–221.

[34] M. da Graça Costa, M. E. Captivo, J. Cĺımaco, Capacitated single allocation hub
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7 SHLPCC for the SK-based model

For SK-based model, the flow variables xikm are replaced by path variables xijkm, where

xijkm =

{
1, if flows from i to j are routed via hub k and m

0, otherwise.
Definition of other variables and parameters remain same.

7.1 Two-subscripted capacity allocation variable

[SK-2s] min
∑
i

∑
j

∑
k

∑
m

Fijkmxijkm +
∑
k

∑
l

Qlkykl + θ
∑
k

1/2E[Nk(y, z)]

s.t. (3)− (5), (7)− (10), (12), (14)− (21)∑
m

xijkm = zik ∀i, j, k (76)∑
k

xijkm = zjm ∀i, j,m (77)

xijkm ∈ 0, 1 ∀i, j, k,m, l (78)

Here, Fijkm = Wij(χdik + αdkm + δdmj) is the total flow through path i− j − k −m. (76)
and (77) connect the assignment variables and path variables.
[SK-MISOCP1] (3)-(5), (7), (9)-(10), (12), (14)-(21), (37)-(39), (76)-(78)
[SK-MISOCP2] (3)-(5), (7), (9)-(10), (12), (14)-(21), (41)-(44), (76)-(78).
[SK-MISOCP3] (3)-(5), (7), (9)-(10), (12), (14)-(21), (41)-(43), (46), (76)-(78).
[SK-MISOCP4] (3)-(5), (7), (9)-(10), (12), (14)-(21), (41)-(43), (47), (49), (50), (76)-(78).
[SK-MISOCP5] (3)-(5), (7)-(10), (12), (14)-(21), (52)-(54), (56), (76)-(78).

7.2 Three-subscripted capacity allocation variable

[SK-3s] min
∑
i

∑
j

∑
k

∑
m

Fijkmxijkm +
∑
k

∑
l

Qlkt
l
kk + θE[Nk]

s.t. (26)− (28), (30), (32), (34)∑
m

xijkm =
∑
l

tlik ∀i, j, k (79)∑
k

xijkm =
∑
l

tljm ∀i, j,m (80)

xijkm ∈ 0, 1 ∀i, j, k,m, l (81)

[SK-MISOCP6] (26)-(28), (30), (32),(34), (58)-(60), (79)-(81).
[SK-MISOCP7] (26)-(28), (30), (32),(34), (62)-(64), (79)-(81).
[SK-MISOCP8] (26)-(28), (30), (32),(34),(66)-(70), (79)-(81).
[SK-MISOCP9] (26)-(28), (30), (32),(34), (71)-(73), (75), (79)-(81).
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Table 8: Computation time for N=25

c t0 Hub Cap

Costs CPU time (sec)

FC, LC, CC TC

SK SK SK-MISOCP

OA-2s OA-3s 1 2 3 4 5 6 7 8 9

p=4, a=0.4

0
20 1,4,12,17 2,3,2,3 695, 900, 109 1704 1299 1334 1727 2952 2334 1601 3647 2290 2344 * 1660
50 1,4,12,17 3,3,2,3 795, 950, 219 1963 2531 3001 4203 7094 5006 4020 5525 4254 9471 * 7612

1
20 1,4,12,17 2,3,2,3 792, 900, 165 1857 3000 3531 3816 3771 4101 3002 3366 3457 4993 * 2294
50 1,4,12,17 3,3,3,3 803, 1000, 247 2050 4474 7000 8092 7735 11477 10445 8077 * * * *

2
20 1,4,12,17 3,3,3,3 803, 1000, 185 1988 4691 6531 6539 * * 11061 2623 1988 * * *
50 1,4,12,17 3,3,3,3 824, 1000, 420 2244 5855 9001 * * * * 2856 2244 * * *

* represents no solution in the given time limit.
SK-OA-2s represents outer-approximation results for the two-subscripted model based on SK.

8 OA Method

8.1 EK-OA-2s: OA-based method for EK-2s

The auxillary variable Lkl and ρk which were defined as Lkl = ρkykl and ρk = sk
1+sk , imply

Lkl =

{
0, if ykl =0
sk

1+sk
, if ykl=1.

(82)

Also, earlier results ,
∑

l Lkl = ρk ∀k , Lkl ≤ ykl ∀k, l and
∑

i

∑
jWijzik =

∑
l γ

l
kLkl,

remain. The function, Lkl = sk
(1+sk)

is a concave function which can be approximated with
piecewise linear functions that are basically tangents to the function Lkl . The method
chooses the minimum of these tangents at points shk ∀h ∈ H, k ∈ N, l ∈ L to best approxi-
mate the function. The cuts are given by

Lkl = minh∈H

{
1

(1 + shk)2
sk +

(
shk

1 + shk

)2
}

⇐⇒ Lkl ≤
1

(1 + shk)2
sk +

(
shk

1 + shk

)2

∀k ∈ N, l ∈ L, h ∈ H (83)

In the OA-based method proposed by (48), for every k − l pair, the non linear congestion
term is approximated with tangents (cuts), given by (82), at points shk . Here h ∈ H denotes
the indexing of these points. At every iteration a relaxed mixed integer linear problem is
solved. The solution of which not only gives the lower bound but also supplies information
for the next cut. Also, this solution is feasible for the main problem thus giving the upper
bound. The algorithm terminates when both upper and lower bounds are ε (or less) away
from each other where ε ≥ 0. (57) proposed perspective counterpart for (83) as

Lkl =
sk

1 + sk/yk

and the corresponding perspective cut at shk as

Lkl ≤
1

(1 + shk)2
sk +

(
shk

1 + shk

)2

ykl, ∀k, l (84)
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The formulation for the OA-2s is as follows:

[EK-OA-2s] min
∑
i

∑
k

Cik(χOi + δDi)zik +
∑
i

∑
k

∑
m

αCkmxikm

+
∑
k

∑
l

Qlkykl + θ/2
∑
k

{
sk + ρk +

∑
l

c2kl
(
Vkl − Lkl

)}
s.t. (3)− (21), (84)

Algorithm for the above discussed OA-based method is as follows:

1: Set UBτ−1 →∞, LBτ−1 → −∞, τ → 0
2: Choose initial cuts at points sh0k where h0 ∈ H
3: while UBτ−1−LBτ−1

UBτ−1 ≥ ε do
4: Find LBτ by solving (OA−2s)τ and obtain the optimal solution (xτ , zτ , yτ , ρτ , sτ , Lτ , V τ )

5: Find UBτ by substituting (xτ , zτ , yτ ) in the objective function as

UBτ = min

{
UBτ−1,

∑
i

∑
j

∑
k

∑
m

Fijkmx
τ
ijkm +

∑
k

∑
l

Qlky
τ
kl

+ 1/2

{(
1 +

∑
l

c2kly
τ
kl

) ∑
i

∑
jWijz

τ
ik(∑

l γ
l
ky
τ
kl −

∑
i

∑
jWijzτik

) +
(

1−
∑
l

c2kly
τ
kl

)∑
i

∑
jWijz

τ
ik∑

l γ
l
ky
τ
kl

}}

6: Update new point shnewk =
∑
i

∑
jWijz

τ
ik∑

l γ
l
ky
τ
kl−

∑
i

∑
jWijzτik

with the current solution (xτ , zτ , yτ ).

7: Generate new cut: Lkl ≤ 1

(1+shnewk )2
sk +

(
shnewk

1+shnewk

)2

ykl, ∀k, l

8: Add new cut: Hτ+1 → Hτ + hnew
9: τ → τ + 1

10: end while

8.2 EK-OA-3s: OA-based method for EK-3s

For formulations with tlik, we had objective function as

min (
∑
i

∑
k

Cik(χOi + δDi)
∑
l

tlik) +
∑
i

∑
k

∑
m

αCkmxikm +
∑
k

∑
l

Qlkt
l
kk

+ θ
∑
k

∑
l

1/2

{(
1 + c2kl

) ∑
i

∑
jWijt

l
ik(

γlk −
∑

i

∑
jWijtlik

) +
(

1− c2kl
)∑

i

∑
jWijt

l
ik

γlk

}

We introduce variable ρk and skl such that∑
i

∑
jWijt

l
ik

γlk
≤ ρkl ∀k, l (85)∑

i

∑
jWijt

l
ik

γlk −
∑

i

∑
jWijtlik

≤ skl ∀k, l (86)
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ρkl and skl are related as

ρkl =
skl

1 + skl
∀k, l

which is non-linear concave function and can be approximated using tangent hyperplanes as
discussed in the previous section. For perspective reformulation, we introduce the following
constraint

ρkl ≤ tlkk (87)

to the following equivalent perspective form

ρkl =
skl

1 + (skl/t
l
kk)

(88)

By following logic similar to (83), we have perspective cuts as

ρkl ≤
1

(1 + shkl)
2
skl +

(shkl)
2

(1 + shkl)
2
tlkk, ∀k, l (89)

The overall formulation for the approximation method is as follows:

[EK-OA-3s] min
∑
i

∑
k

Cik(χOi + δDi)
∑
l

tlik) +
∑
i

∑
k

∑
m

αCkmxikm +
∑
k

∑
l

Qlkt
l
kk

+ θ
∑
k

∑
l

1/2

{(
1 + c2kl

)
skl +

(
1− c2kl

)
ρkl

}
s.t. (26)− (34), (87), (89)

Algorithm for the above discussed OA-based method is as follows:

1: Set UBτ−1 →∞, LBτ−1 → −∞, τ → 0
2: Choose initial cuts at points sh0k where h0 ∈ H
3: while UBτ−1−LBτ−1

UBτ−1 ≥ ε do
4: Find LBτ by solving (OA− 3s)τ and obtain the optimal solution (xτ , tτ , ρτ , sτ )
5: Find UBτ by substituting (xτ , tτ ) in the objective function as

UBτ = min

{
UBτ−1,

∑
i

∑
k

Cik(χOi + δDi)
∑
l

tl
(τ)

ik ) +
∑
i

∑
k

∑
m

αCkmx
τ
ikm +

∑
k

∑
l

Qlkt
l(τ)

kk

+ 1/2

{(
1 + c2kl

) ∑
i

∑
jWijt

l(τ)

ik(
γlk −

∑
i

∑
jWijtl

(τ)

ik

) +
(

1− c2kl
)∑

i

∑
jWijt

l(τ)

ik

γlk

}

6: Update new point shnewk =
∑
i

∑
jWijt

l(τ)

ik∑
l γ
l
k−

∑
i

∑
jWijtl

(τ)

ik

with the current solution (xτ , tτ ).

7: Generate new cut: ρkl ≤ 1

(1+shnewkl )2
skl +

(shnewkl )2

(1+shnewkl )2
tlkk, ∀k, l

8: Add new cut: Hτ+1 → Hτ + hnew
9: τ → τ + 1

10: end while

9 Performance Profile for coefficient of variation (c), and
unit congestion cost θ.
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Figure 2: Performance Profile of EK-MISOCPs and EK-OA-based method for
θ= 20, 50
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Figure 3: Performance Profile of EK-MISOCPs and EK-OA-based method for
c= 0, 1, 2
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