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Abstract

In this paper, we study the hub location problem of an entrant airline that tries to maximize
its market share, in a market with already existing competing players. The routes open for use can
be either of multiple allocation or single allocation type. The entrant’s problem is modelled as a
non-linear integer program in both the situations, which is intractable for off-the-shelf commercial
solvers, like CPLEX and Gurobi, etc. Hence, we propose four alternate approaches to solve the
problem. The first is based on a mixed integer second order conic program reformulation, while
the second uses lifted polymatroid cuts based approximation of second order cone constraints.
The third is the second order conic program within Lagrangian relaxation, while the fourth uses
approximated lifted polymatroid cuts within lagrangian relaxation. The four methods performs
differently for the single allocation and multiple allocation models, and second approach is the best
for single allocation model and for smaller instances in multiple allocation model. As the problem
size in multiple allocation model increases, the third method starts to be the better performer in
terms of computation time.

Hub and Spoke Networks, Competition, Non-Linear Program, Exact Solution Methods

1 Introduction

This paper discusses hub location problems in the presence of competition. A new airline, called the
entrant, plans to enter a market where competitor airlines are already meeting the passenger flow
demand. The entrant wants to maximize its market share in the said market, wherein the customers’
airline choice depends on their utility (instead of just cost), given the competitor’s best response of
the hub and spoke network design. To the best of our knowledge, there is only one other related study
in literature in this area, by Eiselt and Marianov (2009). The shortcoming of Eiselt and Marianov
(2009)’s market share model is the assumption that the customer choice depends just on the location
of the hubs and not on the path to be chosen to fly by any airline. In such a situation, the airlines
will end up flying their aircraft through multiple routes for a particular origin destination (O-D) pair,
which doesn’t make economic sense. This also suggests that every city is connected to all the open
hubs in the network, which defeats the entire purpose of having a hub and spoke network as there are
relatively fewer economies of scale due to higher operational and setup costs in the model.

The suggested limitations are addressed in the current paper by designing a more realistic hub and
spoke network, which allows for just one route to be operational between every O-D pair by any airline.
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The route allowed can be operational in either a single or a multiple allocation setting, resulting in
two different formulations. Both these formulations are NP hard and more difficult to solve than the
formulation proposed by Eiselt and Marianov (2009), which is even solved using genetic algorithm.
The raised difficulty in our formulations arise from the increase in the number of binary routing vari-
ables and effect in non-linear integer programs, which are very challenging to solve using off-the-shelf
solvers like CPLEX, Gurobi, etc. We address this challenge by providing four alternate approaches to
solve the problem. The first approach relies on a mixed integer second order conic program (MISOCP)
based reformulation of the problem. The second approach is based on outer approximations of the
aforementioned second order cone constraints, generated using lifted polymatroid cuts in an iterative
procedure (LP-MISOCP). The third approach employs a Lagrangian relaxation of the mixed integer
second order conic program (LR-MISOCP), while the fourth approach uses a Lagrangian relaxation
of the lifted polymatroid cuts based method (LRLP-MISOCP). Further, we compare the above four
solution approaches based on extensive computational experiments. Our analysis highlights the supe-
riority of the LP-MISOCP approach for all the test networks. With the best approach, we are able to
solve problem instances that are otherwise intractable in computational time of less than 1.6 hours.
To summarise, the major contributions of this paper are as follows:

1. We propose two different formulations to model a competitive hub location problem in order to
rectify the limitations of Eiselt and Marianov (2009)’s model.

2. Also, we present four alternate approaches for each of the formulations to solve the problem that
are based on second order cones, lifted polymatroid cuts, lagrangian relaxation of second order
cones and lifted polymatroid cuts.

3. Additionally, we compare the mentioned solution approaches based on extensive experiments for
their computational performance.

The rest of the paper is organized as follows. In Section 2, we study the problem description,
followed by its mathematical formulation. We present our alternate solution approaches in Section 3,
followed by extensive computational results in Section 4. Finally, the conclusions and directions for
future research are presented in Section 5.

2 Literature Review

We first present in Section 2 the literature on HLP and its variants in the monopolistic setting, focusing
mainly on single or multiple allocation and then we review the literature in the competitive setting.

2.1 Hub Location Literature

Designing a hub and spoke network requires solving a hub location problem, for the optimal location
of hubs and the routes for any passenger travelling between any O-D pair. O’kelly (1986) studies
he first ever hub location problem in literature, with the objective to minimize the transportation
cost of the network. However, O’kelly (1987) proposes the first mathematical formulation as an
optimisation problem, which is a quadratic p median single allocation problem. Later, Skorin-Kapov
et al. (1996) provide a linear reformulation of the model and Ernst and Krishnamoorthy (1996) model
the problem as a multi-commodity flow problem. Any formulation is classified as single allocation
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when the immediate hub visited by any flow originating from (or destined to) a given node is the
same irrespective of their destinations (or origins). The single allocation p-hub median problems are
proven to be NP-hard in a seminal work by Kara and Tansel (2000). There is an extensive literature
on multiple allocation p-hub median problems as well. Campbell (1992) presented the first multiple
allocation hub location model which was quadratic in nature. Skorin-Kapov et al. (1996) extended
this work and developed a linear model for the problem.

Although hub location problem (HLP) with median objective constitutes the main focus of the
literature, other objectives like p center, covering or fixed charge are also investigated by researchers.
The objective for a p center HLP is to minimize the maximum transportation cost between any pair
of nodes (Campbell, 1994; Kara and Tansel, 2000) for locating p hubs. A covering HLP can either
be hub set-covering if the objective is to minimize the number of hubs to cover the entire demand
(Campbell, 1994; Kara and Tansel, 2000), or maximal hub-covering if the objective is to maximize the
demand covered with a given number of hubs to locate (Campbell, 1994). An interested reader may
refer to surveys by Campbell and O’Kelly (2012); Campbell et al. (2002); Alumur and Kara (2008);
Kara and Taner (2011) for a detailed discussion of hub location problems.

2.2 Hub Location with competition

Although the literature on competition in location science has been studied in detail, competitive hub
location studies in literature are rare, despite the prevalent application in transportation logistics,
energy and telecommunication networks. Hub location studies in a competitive setting are either in
the form of cooperative games or non-cooperative games. Cooperative games focus on the collective
payoffs from coalitions and joint actions amongst firms. Lin and Lee (2010) is one such study, which
focuses on cooperative game in freight services in an oligopolistic market.

On the other hand, non-cooperative games focus on payoffs from individual firms’ actions. In
the hub location literature, these games can be divided into two classes; the one where modelling
competition doesn’t take into account the response of the competitors while deciding the the hub
locations for a player. This kind of situation generally arises when an entering firm has to make a
strategic decision, say locating facilities, and it is difficult for incumbent firms to change their already
taken strategic decisions as it might be very expensive. These kinds of studies are classified as static
in facility location literature Plastria (2001) and we are extending the classification to hub location
literature. Marianov et al. (1999) belongs to this category, and to the best of our knowledge, is also
the first to introduce competition in the area of hub location. The problem models the decision of
an entrant, to locate a set of hubs so as to maximize the demand flow captured from its competitors.
They included proportional capture levels in addition to all-or-nothing type in their model. The
resulting mixed integer linear program (MILP) was solved using a tabu search heuristic. Wagner
(2008) highlights certain shortcomings of the model proposed by Marianov et al. (1999), and describes
a new capture set where the follower gets nothing in case of same service levels as the leader . Lüer-
Villagra and Marianov (2013) considered hub location as well as pricing decisions of an entrant firm
where another firm has already been operating on the market, thereby solving the resulting model
using genetic algorithm. Eiselt and Marianov (2009) also studies the problem of an entrant airline
that wants to maximize its market share, wherein the customers’ choice of an airline depends on their
utility (instead of just cost). The problem is formulated as a non-linear integer program, which is
again solved using genetic algorithm.

As opposed to the above cited papers, the second class of papers take into account the competitor’s
response while solving the HLP and are referred to as dynamic. These papers model the problem of

W.P. No. WP 2019-12-02 Page No. 4



IIMA ‚ INDIA

Research and Publications

Table 1: Summary of Literature

Reference Collaboration Competition Static Dynamic Exact Method

Lin and Lee (2010) X
Sasaki and Fukushima (2001) X X

Sasaki (2005) X X
Sasaki et al. (2014) X X

Mahmutogullari and Kara (2016) X X X
Marianov et al. (1999) X X

Wagner (2008)* X X X
Eiselt and Marianov (2009) X X

Lüer-Villagra and Marianov (2013) X X
This work X X X

* They studied the total traffic captured by the entrant, which being linear is much easier and tractable
than our formulations

the leader firm as a Stackelberg game. Sasaki and Fukushima (2001) studies the perspective of a leader
who competes with several existing firms to maximize his/her profit. The problem is modelled as a
bilevel Stackelberg game, and solved using sequential quadratic programming. Sasaki (2005) extends
the problem from a continuous network to a discrete one, which is solved using complete enumeration
and greedy heuristics. Sasaki et al. (2014) studies the problem of a leader who tries to locate hub arcs,
as opposed to locating hub nodes, to maximize revenue. The resulting bilevel program is solved using
implicit enumeration. Mahmutogullari and Kara (2016) studies a duopoly model in a Stackelberg
framework, where two competitors sequentially choose their respective hub locations with the aim to
maximize their captured flow. The problem is formulated as a bilevel HLP, and solved using implicit
enumeration of the leader’s problem.

The work in this paper falls under the category of static competitive hub location. As evident from
the review above, the literature in this area is scarce. Also the assumption in Eiselt and Marianov
(2009)’s market share model is questionable as explained in 1. Further, the extant studies in the area
have resorted to heuristic approaches. Specifically, we study the problem of market share maximization
by the entrant firm in a competitive airline industry. The market share of the entrant is modeled as
a probabilistic function of its routing decisions, which introduces non-linearity in the problem. The
resulting mathematical program is a non-linear IP, for which we propose alternate solution approaches.
Table 1 summarizes studies in the competitive hub location literature where the last row corresponds
to this paper.

3 Problem Description and Model Formulation

Air passenger traffic in a market is served by an existing company (or a set of companies, collectively),
called the incumbent (or incumbents), that utilizes a hub and spoke network. Like all fundamental
hub location models, our model also assumes reduced transportation costs due to economies of scale
in inter-hub, collection and distribution traffic, and that the discount factors are constant. We also
assume that the incumbent’s hubs are fully connected and are located optimally for cost minimization
while serving all the demand, though the incumbent may end up serving less than that after a new
company, referred to as the entrant arrives. The entrant intends to enter the same market, using its
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own hub and spoke network and tries to maximise its market share, giving up some part of profit in the
beginning. We consider this objective based on the argument given by Rumelt and Wensley (1981),
that it is necessary to look at long term profits, even though there is a cost of capturing market share.
Both the incumbent and the entrant may offer the same route between an O-D pair, one among which
is patronized by the customers on the basis of price as well as other attributes as travel time and
attractiveness measure of the competing companies. Customers’ decision based on the utility derived,
is modeled using a gravity model. The gravity model is used very often to assist in the forecasting
of future consumer behavioral patterns based on hypothesised parameters, which is well validated in
the transportation literature (de Dios Ortuzar and Willumsen, 2011). All competitors in the market
have same information of the demand structure. Airfares are proportional to the costs incurred by
the airlines.

The problem is described over a hub and spoke network, represented by a complete graph G “

pN,Aq, in which incumbent airlines represented by the superscript c are competing to capture maxi-
mum demand. Suppose that there exists inelastic demand (fij) between every origin node i P N and
destination node j P N , which is routed through one or at most two of the hubs from the set of hubs
H. χ, α and δ are the discount factors due to flow consolidation in collection (origin to hub), transfer
(between hubs)and distribution (hub to destination), respectively. The demand is served by either
the incumbent c or the entrant e. The utility of a single passenger represents preferences concerning
attractiveness, cost and time based on the gravity model. Model parameters are drawn from Huff
(1964, 1966), and the utility (ueijkl) that the customers derive from the entrant airline e is defined as:

ueijkl “ Aekl{
´

γ
`

T eijkl
˘β
` p1´ γq

`

Be
ijkl

˘δ
¯

(1)

where Aekl is the basic attractiveness index of a pair of hubs (k,l) used for the trip, Be
ijkl and T eijkl

denotes the the cost and the total time required by the flight respectively for traveling along the route
(iÑ k Ñ lÑ j), parameters β and δ denote the attraction decay of travel time and cost, respectively.
The customers’ utility from choosing a competing airline c, ucijkl, can be similarly computed. In the
model, higher values of γ means that customers are very sensitive to travel time and they will mostly
choose less time consuming routes. Smaller values of γ means that the customers are more sensitive
to price differences, and there will be a higher customers’ spread among the different routes. For
further details on this models, please refer to de Dios Ortuzar and Willumsen (2011); Huff (1964,
1966). Finally, Hc is the set of nodes where the incumbent’s hubs are located.

This gravity based utility function can then be introduced into the probabilistic customer choice
model to calculate entrant e’s market share for a particular O-D pair as :

ρeij “
ÿ

kPHe

ÿ

lPHe

ueijkl{
´

ÿ

kPHe

ÿ

lPHe

ueijkl `
ÿ

kPHc

ÿ

lPHc

ucijkl

¯

. (2)

The total capture of passengers using the route pi Ñ k Ñ l Ñ jq offered by the entrant is denoted
by fijρ

e
ij . The objective of the airline is to capture as large a market share as possible, by locating

a fixed p number of hubs. In Eiselt and Marianov (2009)’s model, there is a exists a possibility of
one city being connected to multiple or all hubs in the optimal network. Hence, there can be multiple
operational paths between any i ´ j pair for a single airline as well in the network. This defeats the
entire purpose of setting up a hub spoke network as it doesn’t make economic sense for an airline to
operate multiple routes for an O-D pair. To allow for a more realistic model, we assume that each
competitor can have only a single route between any i´ j pair, passing through different hubs or pairs
of hubs.

In order to allow only one operational path, the entrant airline’s problem can be modelled in
two different ways; one based on single allocation and the other based on multiple allocation. In
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single allocation model; a non-hub node can be connected to a single hub node. However, in multiple
allocation hub network, a non-hub node can be connected to multiple hub nodes. Both single and
multiple allocation hub location problems are proved to be NP-hard (Kara and Tansel, 2000). The
problem at hand is even more complex owing to the non-linearity arising in the objective function based
on utility on top of either single allocation or multiple allocation. Next, we present the mathematical
model describing the entrant airline’s problem with single allocation in (3.1) followed by multiple
allocation in (3.2).

3.1 Single Allocation Model

To define the mathematical model, we define the following decision variables:

zik “

#

1 if non-hub node located at i is allocated to hub at node k for the entrant,

0 otherwise .
(3)

xijkl “

#

1 if path iÑ k Ñ l Ñ j exists for the entrant ,

0 otherwise ,
(4)

Considering the decision variables and the given parameters, the integer non-linear programming
for SACOHLP , based on (Skorin-Kapov et al., 1996), can be formulated as follows:

rSACOHLP s :

θpx, zq “ max
ÿ

i

ÿ

j

fij

#

ř

kPHe

ř

lPHe ueijklxijkl
ř

kPHe

ř

lPHe ueijklxijkl `
ř

kPHc

ř

lPHc ucijklx
c
ijkl

+

(5)

s.t.
ÿ

kPHe

zik “ 1 @ i P N (6)

zik ď zkk @ i P N, k P He (7)
ÿ

k

zkk “ p (8)

ÿ

lPHe

xijkl “ zik @ i, j, k P He (9)

ÿ

lPHe

xijlk “ zjk @ i, j, k P He (10)

zik P t0, 1u @ i, k (11)

xijkl P t0, 1u @ i, j, k, l (12)

In the above model, xcijkl is a parameter derived by solving the p-median hub location problems for
the competitors. It is 1, if path iÑ k Ñ l Ñ j exists for the competitor, 0 otherwise. The objective
function (5) maximizes the total demand captured by the entering airline, given the competitors’ hub
locations and operational paths. Constraint set (6) assures that all nodes are assigned to a hub, while
(7) requires that if a node i is assigned to a hub at k, then a hub must be opened there. Constraint
sets (9) and (10) are the only linking constraints between x and z variables. Constraint sets (9) and
(10) guarantees that if any travel from i to j goes through hub krls, then node irjs must be assigned
to a hub krls. Constraint (8) enforces p hubs to be open. Constraint sets (12) and (11) are the
binary constraints on x and z variables, respectively. SACOHLP is a non-linear IP, which off-the-shelf
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solvers like CPLEX and Gurobi cannot handle (since they cannot handle non-linear problems that are
non-quadratic).

Please note that SACOHLP can be transformed into a non-linear mixed integer program by relaxing
the binary variables xijkl to take continuous values in r0, 1s using the following argument: whenever
both zik and zjl, which are binary, take a value 1, xijkl will always assume a value of 1 (as objective
function (5) is an increasing function in xijkl). On the other hand, when one of zik or zjl is 0, xijkl
takes a value 0. Therefore, (12) can be relaxed as:

xijkl P r0, 1s (13)

3.2 Multiple Allocation Model

To define the mathematical model, we define the following decision variables:

zk “

#

1 if k node is set up as hub for the entrant,

0 otherwise .
(14)

xijkl “

#

1 if path iÑ k Ñ l Ñ j exists for the entrant ,

0 otherwise ,
(15)

Considering various variables and parameters, the integer non-linear programming for MACOHLP ,
based on (Hamacher et al., 2004) can be formulated as follows :

[MACOHLP s :

θpx, zq “ max
ÿ

i

ÿ

j

fij

#

ř

kPHe

ř

lPHe ueijklxijkl
ř

kPHe

ř

lPHe ueijklxijkl `
ř

kPHc

ř

lPHc ucijklx
c
ijkl

+

(16)

s.t.
ÿ

k

zk “ p (17)

ÿ

kPHe

ÿ

lPHe

xijkl “ 1 @ i, j P N (18)

ÿ

lPHe

xijkl `
ÿ

lPHe´k

xijlk ď zk @ i, j, l P He (19)

zk P t0, 1u @ i, k (20)

xijkl P t0, 1u @ i, j, k, l (21)

In the above model, zk “ 1, if hub is located at node k, 0 otherwise. The objective function (16)
maximizes the total demand captured by the entering airline, given the competitors’ hub locations
and operational paths. Constraint (17) enforces p hubs to be open. Constraint set (18) states that
every i to j pair of demand has to be routed via one or two hub nodes k and l. Constraint set (19) is
the only linking constraints between x and z variables and ensures that flow is only sent via open hub.
Constraint sets (20) and (21) are the binary constraints on x and z variables, respectively. MACOHLP,
like SACOHLP is a non-linear IP, which off-the-shelf solvers like CPLEX and Gurobi cannot handle.
Also, similar to SACOHLP, (21) can be relaxed as:

xijkl P r0, 1s (22)

However, the resulting non-linear mixed integer programs are still difficult for off-the-shelf solvers.
Next, we discuss alternate solution methods to solve the problem efficiently, exploiting (22) wherever
possible.
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4 Solution Methods

In this section, we propose four novel solution approaches, which solve both SACOHLP andMACOHLP .
The first approach is based on the reformulation into a mixed integer second order conic program (MIS-
OCP), which can be solved efficiently using an off-the-shelf solver (Alizadeh and Goldfarb, 2003). The
second approach is based on approximating the second order cone constraints using lifted polymatroid
cuts in an iterative procedure (Sen et al., 2017). The third approach is based on Lagrangian relaxation,
which separates the resulting problem into an linear integer program and a non-linear program (NLP)
with continuous variables. The fourth approach is used for solving the resulting non-linear program
(NLP) with continuous variables using lifted polymatroid cuts. We discuss these four approaches in
the upcoming subsections.

4.1 Mixed Integer Second Order Conic Program (MISOCP)

Second order conic programs (SOCPs) are of particular interest as they can be solved efficiently with
widely available commercial solvers, like CPLEX and Gurobi. Hence, SOCPs have recently been
employed to a variety of problems, like portfolio optimization, value-at-risk minimization, machine
scheduling, supply chain network design and airline rescheduling with speed control (Vielma et al.
(2008); Aktürk et al. (2014); Antoniou and Lu (2007)). Mixed integer second order conic programs
(MISOCPs) have also been studied in a variety of problems like hub location problems with congestion
and assortment problems (Sen et al., 2017) among many others. SACOHLP, as discussed in Section 3.1,
is a non-linear IP, which cannot be solved using off-the-self solvers. Therefore, in this section, we
reformulate SACOHLP as a mixed integer second order conic program (MISOCP). To convert the
SACOHLP into an MISOCP, we introduce the following sets of variables:

aij “ 1{
´

ÿ

kPHe

ÿ

lPHe

ueijklxijkl `
ÿ

kPHc

ÿ

lPHc

ucijklx
c
ijkl

¯

(23)

gij “
ÿ

kPHe

ÿ

lPHe

ueijklxijkl `
ÿ

kPHc

ÿ

lPHc

ucijklx
c
ijkl (24)

oij “ aij
ÿ

kPHe

ÿ

lPHe

ueijklxijkl (25)

The above transformations result in the following MISOCP based reformulation of COHLP:

rSACOHLPMISOCP s : (26)

max
ÿ

i

ÿ

j

f̂i ´
ÿ

i

#

ÿ

j

ÿ

kPHc

ÿ

lPHc

ucijklx
c
ijklf̂iaij `

ÿ

j

pf̂i ´ fijqoij

+

s.t. p6q ´ p11q, (13), (24), p53q ´ p54q

Likewise, for the multi allocation version the program can be formulated as follows:

rMACOHLPMISOCP s : (27)

max
ÿ

i

ÿ

j

f̂i ´
ÿ

i

#

ÿ

j

ÿ

kPHc

ÿ

lPHc

ucijklx
c
ijklf̂iaij `

ÿ

j

pf̂i ´ fijqoij

+

s.t. p17q ´ p19q, (22), (24), p53q ´ p54q
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Both SACOHLPMISOCP and MACOHLPMISOCP have 3N2 additional variables and 5N2 additional
constraints, out of which 2N2 are SOC constraints. The programs can be solved directly by CPLEX
using either of the two parameter settings; miqcpstrat 1 and miqcpstrat 2. In miqcpstrat 1, it uses an
SOCP based branch-and-bound algorithm, wherein at each node, the continuous relaxation is solved
using an interior point algorithm specifically designed for SOCPs. In miqcpstrat 2, CPLEX uses outer
approximation of the MISOCP, which produces an LP at each node of the branch-and-bound tree.
In our numerical experiments, reported in Section 5, we use the default setting of CPLEX, which is
miqcpstrat 0 to allow CPLEX to choose the best strategy, depending on the problem structure.

4.2 MISOCP with lifted polymatroid cuts

Commercial software packages utilize a branch-and-bound algorithm for solving MISOCPs, and their
performance can be significantly improved by strengthening the formulations using structural cutting
planes. Atamtürk and Narayanan (2008) have pioneered the polymatroid cuts to strengthen the
convex relaxation of sub-modular cone constraints. Although there are exponentially many extremal
polymatroid inequalities, only a small subset of them are needed in the branch-and-bound search
tree. It turns out that, given a solution, finding a violated polymatroid cut can be done easily
using a separation problem for the extended polymatroid inequalities. Thus, the separation problem
(formulated from problem structure) is an optimization over an extended polymatroid, which is solved
by the greedy algorithm of Edmonds and Fulkerson (1970) for sub-modular functions. Solving the
separation problem usually is not easy and at times is heuristically done, which is the case for second
order cone constraints with only continuous variables. Also, it is important to note that in our
formulation we have two different kinds of SOC constraints, Class (I) being equation (53) and the
Class (II) being (54).

4.2.1 Single Allocation

We consider an equivalent optimization problem, with very small values of ε1 and ε2 to begin with:

rRSACOHLP s :

max
ÿ

i

ÿ

j

f̂i ´
ÿ

i

#

ÿ

j

ÿ

kPHc

ÿ

lPHc

ucijklx
c
ijklf̂iaij `

ÿ

j

pf̂i ´ fijqoij

+

´
ÿ

i

ÿ

j

!

ζ1o
1
ij ` ζ2g

1
ij

)

s.t. p6q ´ p11q, (13), (24), (52), p53q ´ p54q

o1ij ´
oij

ř

k,lPHe ueijkl
ě 0 (28)

g1ij ´
gij

ř

k,lPHe ueijkl `
ř

k,lPHc ucijkl
ě 0 (29)

o1ij , g
1
ij P t0, 1u (30)

Since aij ď 1, hence oij ď
ř

k,lPHe ueijkl. This implies that oij{
ř

k,lPHe ueijkl ď 1. Also gij ď
ř

k,lPHe ueijkl `
ř

k,lPHc ucijkl, since xijkl ď 1 and hence gij{
ř

k,lPHe ueijkl `
ř

k,lPHc ucijkl ď 1 .

The complete algorithm to solve the problem, begins by removing all the SOC constraints from
the formulation and iteratively adds violated cuts to the algorithm. The UB to the problem is found
using a separation algorithm (1). The LB to the problem is found using proposition 31. The process
is repeated upto an optimality gap of 1%.
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Proposition 1. For any given xqijkl, (31) provides a lower bound to the optimal objective function
value of SACOHLP

LBq “ θpxqijklq “
ÿ

i,jPN

fij

ř

k,lPHe xijklu
c
ijkl

ř

k,lPHexijkluijkl`
ř

k,lPHc xcijklu
c
ijkl

(31)

Proof. If pxqijklq is a solution to the relaxed MISOCP: RSACOHLPMISOCP , then it is a feasible solu-
tion to SACOHLP (since it satisfies constraints (6)-(10). Hence, the objective function of SACOHLP
evaluated at (xqijkl), given by (31), provides a lower bound on the optimal objective of COHLP.

4.2.2 Multiple Allocation

Likewise for multiple allocation (since the SOC constraints are of similar format), the complete al-
gorithm to solve the problem, begins by removing all the SOC constraints from the formulation and
iteratively adds violated cuts to the algorithm. The UB to the problem is found using a separation
algorithm (1). The LB to the problem is found using proposition 37. The process is repeated up to
an optimality gap of 1%.

Algorithm 1 Separation Problem

1: if ε ą .01 then
2: Given X˚, X

1˚, o˚, g˚, Sdm “ ∅ ; sort Xm in non-increasing order such that Xp1q ě Xp2q ě. . . .

3: For m “ 1, 2, 3. . . . . . . .|M |, let Sdm “ tp1q, p2q, p3q....pmqu and πm “
b

ř

kPSd
m
ak ´

ř

kPSd
m´1

ak

4: if πX
1

ě o` g ` α1
!

X 1 ´X
)

then

5: Add the polymatroid cut (55)
6: else
7: For m “ 1, 2, 3....|M |, Sam “ N let Sam “ tpmq, pm´ 1q....p2q, p1qu

8: if
´

πX̂
1

´ αSpX
1

´Xq
¯2
`
ř

mPNzSa
m
amX

2
m ą po` gq

2 then

9: Add the polymatroid cut (56)
10: else
11: For given Sa removing largest m from Sa

12: if πSX̂
1

`

b

ř

mPT amX̂
2 ą αSpX

1

S ´XSq then

13: Add polymatroid cut (60)
14: end if
15: end if
16: end if
17: Similarly run iterations for a1{Xp1q, a2{Xp2q . . . permutation.
18: Similarly run iterations for a1Xp1q, a2Xp2q . . . permutation.
19: end if

4.3 Lagrangian Relaxation with SOCP

Lagrangian relaxation (LR) is a popular technique that has been used to solve a wide variety of
integer/ mixed integer linear and non-linear programs (NLP) (Narula et al., 1977; Mirchandani et al.,
1985; Aykin, 1994; Pirkul and Schilling, 1998, 1991).
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4.3.1 Single Allocation

In this section, we apply LR to SACOHLP. The challenge with LR method is to correctly identify the
constraints to be relaxed. For this particular work, we relax (6), (9) and (10) using εi, λijk and µijk
as their respective Lagrange multipliers, which produces the following Lagrangian sub-problem:

rSACOHLPSUBs :

θSUBpλ, µq “ max
ÿ

i

ÿ

j

fij

ř

kPHe

ř

lPHe ueijklxijkl
ř

kPHe

ř

lPHe ueijklxijkl `
ř

kPHc

ř

lPHc ucijklx
c
ijkl

`
ÿ

i

ÿ

j

ÿ

kPHe

λijkpzik ´
ÿ

lPHe

xijklq

`
ÿ

i

ÿ

j

ÿ

lPHe

µijkpzjk ´
ÿ

lPHe

xijlkq `
ÿ

i

εip1´
ÿ

k

zikq (32)

s.t. p7q ´ p8q, (11)´ (12)

λijk, µijk, εi P r´8,8s (33)

For a given set of pλ, µ, εq, the Lagrangian sub-problem provides an upper bound (UB) to SACOHLP .
The tightest (smallest) UB is obtained by solving the following Lagrangian dual problem:

min
λ, µ, ε

θSUBpλ, µq (34)

(34) is non-linear optimization problem, which is popularly solved using the sub-gradient algorithm
(Held et al., 1974; Fisher, 1981) as elaborated in Algorithm (4). A feasible solution to SACOHLP can
be obtained by turning the (infeasible) solution obtained from Lagrangian sub-problem into a feasible
solution, which provides a lower bound (LB) to SACOHLP. The best feasible solution (maximum of
the known lower bounds) is reported, and the relative optimality gap is calculated at every iteration
as 1-(LB/UB), which is used as a termination criterion for the sub-gradient algorithm.

For a given set of Lagrange multipliers (λ, µ, ε), the sub-problem (34) decomposes into the follow-
ing two independent sub-problems, with one involving only z variables, while the other involving x
variables.

rSUB1s :

θSUB1 “ max
ÿ

i

ÿ

k

ÿ

j

pλijk ` µjik ´ εiqzik `
ÿ

i

εi (35)

s.t.
ÿ

kPHe

zkk “ p

zik ď zkk @ i, k

zik P t0, 1u @ k P He

rSUB2s :

θSUB2 “ max
ÿ

i

ÿ

j

fij

ř

kPHe

ř

lPHe xijklu
e
ijkl

ř

kPHe

ř

lPHe xijklu
e
ijkl `

ř

kPHc

ř

lPHc ucijklx
c
ijkl

´
ÿ

i

ÿ

j

ÿ

k

ÿ

l

!

λijkxijkl ` νijlxijkl

)

(36)

s.t. xijkl P r0, 1s

SUB1 can be solved optimally for a given set of pλ, µ, εq by locating p hubs with the maximum
contribution to objective function (41). The steps of the method to solve SUB1 are summarized in
Algorithm (2)
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Algorithm 2 Optimal Solution for SUB1

1: Set zkk “ 1 @ k
2: if (

ř

jpλijk ` µijk ´ εiq ą 0 @ i, k) then
3: Set zik “ 1
4: end if
5: Set Sk “

ř

i

ř

jpλijk ` µijk ´ εiq @ k
6: Define an ordered set § “ tk : Sk ě Sk`1u. Let §m denote an element in §, m P t1, . . . , |§|u.
7: Set zmm “ 1 @ m “ §1, . . . , §p ; zmm “ 0 @ m “ §p`1, . . . , §|§|
8: if (

ř

jpλijm ` µijm ´ εiq ą 0 @ i,m “ §1, . . . , §p) then,
9: Set zim “ 1

10: else
11: Set zim “ 0
12: end if

SUB2 is an unconstrained non-linear binary program, which can be solved by reformulating it as
a MISOCP, as explained in Section (4.1). For this, we exploit the fact that SUB2, given by (36),
can be reformulated as the following MISCOP, using the transformations (23), (24) and (25) from
Section 4.1.

We also introduce the following modifications in SUB2 on top of the above transformations, to
solve it more efficiently. First, (10) can be replaced by (13), although this may not guarantee binary
values for xijkl variables, and therefore, may result in a relatively weaker Lagrangian upper bound.
Nonetheless, we still prefer to use (13) since it converts SUB2 into a Second Order Conic Program
(SOCP) named as SUB12, which have polynomial time complexity. Second, we add

ř

kPHe

ř

lPHe xijkl “
1 to SUB12, which is redundant to SACOHLP , but helps to strengthen the Lagrangian upper bound
forming a connect between SUB1 and SUB12. SUB2 with the reformulation and modifications is
written as follows:

rSUB12s :

θSUB12 “ max
ÿ

i

ÿ

j

f̂i ´
ÿ

i

#

ÿ

j

ÿ

kPHc

ÿ

lPHc

ucijklx
c
ijklf̂iaij `

ÿ

j

pf̂i ´ fijqoij

+

´
ÿ

i

ÿ

j

ÿ

k

ÿ

l

!

λijk ` νijl

)

xijkl

s.t. gij “
ÿ

kPHe

ÿ

lPHe

ueijklxijkl `
ÿ

kPHc

ÿ

lPHc

ucijklx
c
ijkl @ i, j P N

poij ` gijq
2 ě 2

ÿ

kPHe

ÿ

lPHe

ueijklx
2
ijkl ` o

2
ij ` g

2
ij @i, j P N

paij ` gijq
2 ě 2` a2ij ` g

2
ij @ i, j P N

ÿ

kPHe

ÿ

lPHe

xijkl “ 1 @ i, j P N

xijkl P r0, 1s @ i, j, k, l

aij , gij , oij ě 0 @ i, j P N

We now state the following two propositions, which are used in the development of the complete
sub-gradient algorithm.

Proposition 2. For any given set of pλq, νq, εqq, (37) provides an upper bound on the optimal objective
function value of SACOHLP, where (zqik), px

q
ijkl, a

q
ij , o

q
ijq are the optimal solutions to SUB1 and SUB12
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with the objective function values θqSUB1
and θq

SUB12
, respectively.

UBq “ θqSUB1
` θq

SUB12
“

ÿ

i

ÿ

k

ÿ

j

pλqijk ` µ
q
jik ´ ε

q
i qz

q
ik`

ÿ

i

ÿ

j

f̂i ´
ÿ

i

#

ÿ

j

ÿ

kPHc

ÿ

lPHc

ucijklx
c
ijklf̂ia

q
ij `

ÿ

j

pf̂i ´ fijqo
q
ij

+

´
ÿ

i

ÿ

j

ÿ

k

ÿ

l

!

λqijk ` ν
q
ijl

)

xqijkl (37)

Proof. Since SACOHLPSUB is a Lagrangian relaxation of the full problem COHLP, the objective
function value of SACOHLPSUB, given by θSUB, provides an upper bound on the optimal objective
function value of COHLP.

Proposition 3. For any given set of pλq, νq, εqq, (38) provides a lower bound to the optimal objective
function value of SACOHLP, where pzqikq is an optimal solution to SUB1 and xqijkl is calculated using
Algorithm 3.

LBq “ θpzq, xqijklq “
ÿ

i,jPN

fij

ř

k,lPHe x
q
ijklu

c
ijkl

ř

k,lPHexqijkluijkl`
ř

k,lPHc ucijklx
c
ijkl

(38)

Proof. If pzqikq is an optimal solution to SUB1 and xqijkl is derived from Algorithm 3, then the solution

set pzqik, x
q
ijklq is feasible to the original problem since it satisfies constraints (6), (9)-(10). These

constraints were relaxed in the Langrangian relaxation. Hence, the objective function of SACOHLP
evaluated at (zqik, x

q
ijkl), given by (38), provides a lower bound on the optimal objective of SACOHLP.

A good, but not necessarily optimal, set of Lagrange multipliers to SACOHLP is obtained using the
standard sub-gradient optimization, as summarized in Algorithm 4. At each iteration, the algorithm
also produces a feasible solution, the best among which is reported as the final solution once the
algorithm terminates, which happens either on reaching the specified maximum time limit pM˚q or
upon reaching a particular optimality gap.

We explore the possibility of improving this method further. LR-SOCP requires solving SUB1 and
SUB12 at each iteration of the sub-gradient algorithm. Solving SUB1 is computationally much cheaper
than solving SUB12. Further, an UB is useful only to the extent of identifying when to terminate the
algorithm. Hence, computing an UB is not necessarily required at every iteration of the sub-gradient
algorithm. We exploit this idea to avoid solving SUB12 frequently. We repeat the experiments using
LR-SOCP for all the test instances, with the modification that SUB22 is solved only after every ψ
iterations. From our limited experiments, ψ “ 75 turned out to be a good choice and we use it for all
our further experiments based on lagrangian based relaxation.

Algorithm 3 Feasible

1: Set zik “ 0, @ i, k.
2: For each i, find k that maxtpλijk ` µjik ´ εiq : zkk “ 1u. Set that k zik “ 1.
3: Set xijkl “ zik ˚ zjl @ i, j, k, l.
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Algorithm 4 Sub-Gradient Optimisation Algorithm

1: q Ð 1, λq Ð 0, µq Ð 0, εq Ð 0, UBq Ð8, LBq Ð ´8, UB Ð UBq and LB Ð LBq, tq Ð 0.
2: Initialise ∆ (the step-size multiplier), NI (maximum iterations with no improvement in UB), ε

(optimality gap), M (maximum CPU time limit).
3: do
4: Solve SUB1, SUB2, and obtain UBq, LBq from (37), (38), respectively.
5: UB Ð UBq, LB Ð maxtLB,LBqu.
6: pz˚, x˚q Ð arg maxz,xtLBu and pλ˚, µ˚, ε˚q be the corresponding lagrange multipliers.
7: Find a feasible solution using Algorithm (3).
8: Adjust the multipliers as :

λq`1ijk Ð λqijk ` t
qpzqjk ´

ÿ

lPHe

xqijlkq @ i, j, k

µq`1ijl Ð µqijl ` t
qpzqjk ´

ÿ

lPHe

xqijlkq @ i, j, l

εq`1i Ð εqi ` t
qp1´

ÿ

kPHe

zqikq @ i

where, tq`1 Ð ∆

#

UB ´ LB
ř

i

ř

j

ř

kpz
q
jk ´

ř

lPHe x
q
ijlkq

2 `
ř

i

ř

j

ř

lpz
q
jk ´

ř

lPHe x
q
ijlkq

2 `
ř

ip1´
ř

kPHe z
q
ikq

2

+

.

9: If no improvement in UB in NI consecutive iterations, ∆ Ð ∆{2 and (λ, µ, εq Ð pλ˚, µ˚, ε˚)
10: q Ð q ` 1.
11: while (1´ LBq{UBq ď ε_ CPU Time ďM)

4.3.2 Multiple Allocation

Lagrangian relaxation has been effectively used by Ishfaq and Sox (2011) to solve multi allocation
model. They have used Skorin-Kapov et al. (1996)’s model for their multiple allocation problem.
Since then, a formulation has been proposed in literature by Hamacher et al. (2004) which provide
comparatively tighter LP relaxation. Hence, for computational benefits, we have used this formulation
and have relaxed the facet inducing constraint (19) to decompose the problem. For MACOHLP , the
Lagrangian sub-problem can be written as follows:

rMACOHLPSUBs : θSUBpνq “

max
ÿ

i

ÿ

j

fij

ř

kPHe

ř

lPHe xijklu
e
ijkl

ř

kPHe

ř

lPHe xijklu
e
ijkl `

ř

kPHc

ř

lPHc ucijkl
`
ÿ

i

ÿ

j

ÿ

kPHe

νijkpzk ´
ÿ

lPHe

xijkl `
ÿ

lPHe´k

xijlkq

(39)

s.t. p16q ´ p18q, (20)´ (21)

νijk P r´8,8s (40)

For a given set of pνq, , the Lagrangian sub-problem provides an upper bound (UB) toMACOHLP .
For a given set of Lagrange multipliers (,), the sub-problem (50) decomposes into the following two
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independent sub-problems, with one involving only z variables, while the other involving x variables

rSUB3s :

θSUB3 “ max
ÿ

i

ÿ

k

ÿ

j

νijkzk (41)

s.t.
ÿ

kPHe

zkk “ p

zk P t0, 1u

rSUB4s :

θSUB4 “ max
ÿ

i

ÿ

j

fij

ř

kPHe

ř

lPHe xijklu
e
ijkl

ř

kPHe

ř

lPHe xijklu
e
ijkl `

ř

kPHc

ř

lPHc ucijklx
c
ijkl

´
ÿ

i

ÿ

j

ÿ

kPHe

νijkp
ÿ

lPHe

xijkl `
ÿ

lPHe´k

xijlkq

(42)

s.t.
ÿ

k

ÿ

l

xijkl “ 1 @i, j P N

xijkl P r0, 1s

SUB3 can be solved optimally for a given set of pνq by locating p hubs with the maximum contribution
to objective function (41). The steps of the method to solve SUB3 are summarized in Algorithm 5

Algorithm 5 Optimal Solution for SUB3

1: Define an ordered set S=ti : ζi ě ζi`1, ζi P tνijkl : i, j P N k, l P Heuu. Let Sj denote an element
in S, j P 1, . . . , |S|.

2: Set zj “ 1 @ j “ S1, . . . , Sp; zj “ 0 @ j “ Sp`1, . . . , S|S|

SUB4 is an unconstrained non-linear binary program, which can be solved by reformulating it as a
MISOCP, as explained in Section (4.1). For this, we exploit the fact that SUB4, given by (42), can be
reformulated as the following MISCOP, using the transformations (23), (24) and (25) from Section 4.1.
We also introduce the same modifications that we did for SUB2. SUB4 with the reformulation and
modifications is written as follows:

rSUB14s : θSUB14 “

max
ÿ

i

ÿ

j

f̂i ´
ÿ

i

#

ÿ

j

ÿ

kPHc

ÿ

lPHc

ucijklx
c
ijklf̂iaij `

ÿ

j

pf̂i ´ fijqoij

+

´
ÿ

i

ÿ

j

ÿ

kPHe

νijkp
ÿ

lPHe

xijkl `
ÿ

lPHe´k

xijlkq

s.t. gij “
ÿ

kPHe

ÿ

lPHe

ueijklxijkl `
ÿ

kPHc

ÿ

lPHc

ucijklx
c
ijkl @ i, j P N

poij ` gijq
2 ě 2

ÿ

kPHe

ÿ

lPHe

ueijklx
2
ijkl ` o

2
ij ` g

2
ij @ i, j P N

paij ` gijq
2 ě 2` a2ij ` g

2
ij @ i, j P N

ÿ

kPHe

ÿ

lPHe

xijkl “ 1 @ i, j P N

xijkl P r0, 1s @ i, j, k, l

aij , gij , oij ě 0 @ i, j P N

The above model (SUB4) is an SOCP, which has a polynomial time complexity, and hence can be
solved efficiently using off-the-shelf solvers. It is worth noting that in MACOHLP((17)-(21)), xijkl is
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binary. One could have chosen to retain xijkl as binary variables in SUB14, which would have produced
a tighter Lagrangian UB. However, this would have resulted in an MISOCP model for SUB14, which
is not polynomial time solvable.

Algorithm 6 Feasible for MACOHLP

1: For a given ν, Set zk @k using Algorithm 5. Let Hr denote the set of opened hubs, i.e., zk “ 1.
2: For each i, chose m P Hr which minmtpdikq : zm “ 1u and set zim “ 1.
3: Set xrijmn “ zim ˚ zjn @ i, j,m, n.

With the above transformation, MACOHLP can be solved using a sub-gradient algorithm, similar
to Algorithm 4. The lower and upper bounds (LBq and UBq) are updated according to the following
propositions:

Proposition 4. For any given set of pνqq, (43) provides an upper bound on the optimal objective
function value of SACOHLP, where (zqk), px

q
ijkl, a

q
ij , o

q
ijq are the optimal solutions to SUB3 and SUB14

with the objective function values θqSUB3
and θq

SUB14
, respectively.

UBq “ θqSUB3
` θq

SUB14
“

ÿ

i

ÿ

k

ÿ

j

νijkz
q
k`

ÿ

i

ÿ

j

f̂i´
ÿ

i

#

ÿ

j

ÿ

kPHc

ÿ

lPHc

ucijklx
c
ijklf̂ia

q
ij `

ÿ

j

pf̂i ´ fijqo
q
ij

+

´
ÿ

i

ÿ

j

ÿ

kPHe

νqijkp
ÿ

lPHe

xqijkl`
ÿ

lPHe´k

xqijlkq

(43)

Proof. Since MACOHLPSUB is a Lagrangian relaxation of the full problem MACOHLP, the objective
function value of MACOHLPSUB, given by θSUB, provides an upper bound on the optimal objective
function value of MACOHLP.

Proposition 5. For any given set of pνqq, (44) provides a lower bound to the optimal objective func-
tion value of MACOHLP, where pzqikq is an optimal solution to SUB1 and xrqijkl is calculated using
Algorithm 3.

LBq “ θpzq, xrqijklq “
ÿ

i,jPN

fij

ř

k,lPHe x
rq
ijklu

c
ijkl

ř

k,lPHexrqijkluijkl`
ř

k,lPHc ucijklx
c
ijkl

(44)

Proof. If pzqikq is an optimal solution to SUB3 and xrqijkl is derived from Algorithm 6, then the so-

lution set pzqik, x
rq
ijklq is feasible to the original problem since it satisfies constraints (17)-(19). These

constraints were relaxed in the Langrangian relaxation. Hence, the objective function of MACOHLP
evaluated at (zqik, x

rq
ijkl), given by (38), provides a lower bound on the optimal objective of MA-

COHLP.

With the above transformation, MACOHLP can be solved using a sub-gradient algorithm, similar
to Algorithm 4, with the exception that SUB3 is solved as an SOCP pSUB14q. The lower and upper
bounds (UBq and LBq) are updated according to proposition 43, 44 respectively.
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4.4 Lagrangian relaxation with Lifted Polymatroid Cuts

In this section, like in Section 4.3, we use the sub-gradient algorithm (refer to Algorithm 4) to solve
SACOHLP and MACOHLP . However, the UB to them is computed by solving SUB2 and SUB4

in a different way, as opposed to using MISOCP based reformulation. The UB is calculated for both
the problems by exploiting the fact that SUB2 and SUB4 can be solved by approximating the conic
constraints with the help of lifted polymatroid cuts, as discussed in section 4.2. The relaxed problem
is then solved iteratively to give a solution within a set optimality gap.

5 Numerical Experiments

We first describe in Section 5.1 the relevant data used in our experiments, followed by a discussion of
our results in Section 5.2.

5.1 Data Generation

All our computational experiments are based on the Australian Post (AP) data-set from HLP litera-
ture. This data-set, introduced by Ernst and Krishnamoorthy (1996), consists of nodes representing
district postcodes, along with their coordinates and mail flow volumes. In the context of competitive
HLP, this data-set has been used by Eiselt and Marianov (2009); Marianov et al. (1999), which are the
closest to our work. However, there is no information available on computation of customers’ utility
in either of the data-sets, and hence we provide below the scheme used in this paper to generate them.

In all our experiments, we assume there is only one incumbent player, denoted by c, operating
with a set of hubs in the network, and the entrant, denoted by e, intends to capture a part of its
market by locating its own set of p hubs. As discussed in Section 3, the share of the market captured
by the entrant is given by (??), wherein the customer utility appearing in (??) are given by (1). The
parameters used in (1) are set as follows: β “ 1, δ “ 1, γ “ 0.75, and Ackl “ 1.25 @ k, l : l “ k; 1
otherwise. The attractiveness index Ackl is set 25% higher when l “ k to capture the fact that single
hub routes are more attractive to customers than multiple hub routes. We assume that the the travel
time for the same route pi Ñ k Ñ l Ñ jq is the same for both the airlines, which is computed as
T aijkl “ T aik ` T akl ` T alj @ a P tc, eu. The travel time (in minutes) between any two cities i and k is
given by 30 ` 0.12dik, where dik is the distance (in miles) between the cities i and k, and 30 is an
approximation for the layover time (in minutes) at the two cities (Grove and O’Kelly, 1986). The
operational routes and hubs for the competitor airline is found by solving a p-median hub location
problem. The transportation cost per unit volume is also assumed to be the same for a given route
pi Ñ k Ñ l Ñ jq, which is computed as Ba

ijkl “ χT aik ` αT akl ` ηT alj @ a P tc, eu, where χ and η are
the transportation costs per unit volume on the collection and distribution legs, respectively. All the
parameter values used in our experiments are summarized in Table 2. All the experiments are run
on a personal computer with 2.20 GHz Intel(R) Xenon(R) E5-2630 CPU and 64 GB RAM. The four
solution methods, as described in Section 4, are coded in C++, and ILOG CPLEX 12.7.1 is used
as the default solver. The optimality gap pUB ´ LBq{LB for all the iterative algorithms is set at
.01, and the maximum CPU time limit pMq of 2 hours is used for each instance. For MISOCP in
Section 4.1, we use the default value of 0 for the CPLEX parameter miqcpstrat, as discussed earlier in
Section 4.1. For the Lagrangian based methods (LR-MISOCP and LRLP-MISOCP), the parameters
in the sub-gradient algorithm are initialized as: ∆ “ 6 and NI “ 50.
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Table 2: Parameters

Common Parameters Entrant’s Parameters

Allocation N p χ ν α γ β δ A

Single t10, 15, 20, 25u t2, 3, 4u 1 1 t.1, .2, .3, .4, .5, .6, .7, .8, .9, 1u .75 1 1 1
Multiple t10, 15, 20, 25, 50u t2, 3, 4u 1 1 t.1, .2, .3, .4, .5, .6, .7, .8, .9, 1u .75 1 1 1

5.2 Results and Analysis

Tables 3 and 4 present the computational performances (in terms of CPU time) of the four alternate
solution approaches corresponding to different combinations of |N |, p, α for the AP dataset. In each
of these tables, the column “CPU Time” reports the time required to reach the final solution, while
the column “Gap%” reports the optimality gap (in %) at algorithm termination. For the iterative
methods (MISOCP, LP-MISOCP, LR-MISOCP, LRLP-MISOCP), the termination criterion used is:
1% optimality gap or 2 hours of CPU time. For MIS, which is directly solved using the CPLEX solver,
we use the default termination criteria of CPLEX or 2 hours of CPU time.

As obvious from Table 3, for all the instances that MIS could solve, it was consistently the worst
in terms of CPU time. There are other instances, particularly for |N | ě 15, for which MIS runs out
of memory, which are indicated using a “**”. On the other hand, for 97% of the instances, LP-MIS
outperforms all the other methods.

As obvious from Table 4, 5, for all the instances, MISOCP was consistently the worst in terms of
CPU time. There are no test instances for upto |N | “ 50, for which MISOCP runs out of memory.
This is because of the presence of integer variables of size |N |, rather than |N |2 in single allocation.
For 54% of the instances, LP-MISOCP outperforms all the other methods and the for the rest of the
46% of the instances, LR-MIS outperforms all the other methods. Also in general, for larger instances
(¿ |N | “ 20), LR-MISOCP turns out to be the best, and for smaller instances, LP-MISOCP is the
best performing method (LP-MISOCP).

To further tease out the difference in the performances of the 4 different methods, we show their
performance profiles (Dolan and Moré, 2002) through Figures 1a-1b. For this, let tp,s be the CPU
time taken to solve the instance p P P using method s P S. Then, performance ratio rp,s is calculated
as:

rp.s “
tp,s

minsPS tp,s

Treating rp,s as a random variable, a performance profile ρspτq “ P prp,s ď 2τ q gives its cumulative
probability distribution. In other words, it gives the probability with which the CPU time taken by a
given approach s does not exceed 2τ times the CPU time required by the best among all the approaches
under study. Specifically, the intercept on the y-axis for a given approach s gives the proportion of
instances for which it is the best. As clear from Figure 1a, LR-MISOCP is the best for 97% of the 30ˆ4
instances for single allocation model. Further, LR-MISOCP is able to solve 100% of the instances at
τ “ .2, whereas MISOCP is unable to solve all of them at τ “ 1.8. For multiple allocation model,
there is a close competition in terms of computation time between LP-MISOCP and LR-MISOCP,
which is also clear in the table 4-5. The methods MISOCP, LR-MISOCP and LP-MISOCP are able to
solve all the instances given about 1.44 time the time required by the best method. LPLR-MISOCP
is performing particularly poorly as is also the case for single allocation model.
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Table 3: Computational Performance for SA. MISOCP referred as MIS in this table

p
CPU Time Avg % Gap CPU Time Avg % Gap

MIS LP-MIS LR-MIS LRLP-MIS MIS LP-MIS LR-MIS LRLP-MIS MIS LP-MIS LR-MIS LRLP-MIS MIS LP-MIS LR-MIS LRLP-MIS

N=10
α “ .1 α “ .2

2 51.64 41.96 49.10 56.13 0.00 0.00 0.00 0.00 55.05 44.48 67.55 75.11 0.00 0.00 0.00 0.00
3 122.62 98.34 120.09 123.04 0.00 0.00 0.00 0.00 121.46 97.66 135.83 145.70 0.00 0.00 0.00 0.00
4 182.24 146.75 179.77 184.89 0.00 0.00 0.00 0.00 185.13 148.44 193.18 196.80 0.00 0.00 0.00 0.00

α “ .3 α “ .4
2 57.31 46.10 54.66 64.36 0.00 0.00 0.00 0.00 60.10 48.92 69.44 76.44 0.00 0.00 0.00 0.00
3 124.39 99.89 121.08 127.16 0.00 0.00 0.00 0.00 125.23 101.18 140.83 144.32 0.00 0.00 0.00 0.00
4 188.97 151.74 185.66 193.22 0.00 0.00 0.00 0.00 192.28 153.90 195.79 201.24 0.00 0.00 0.00 0.00

α “ .5 α “ .6
2 60.91 48.75 56.43 58.97 0.00 0.00 0.00 0.00 56.39 45.61 72.65 78.67 0.00 0.00 0.00 0.00
3 128.26 103.44 124.53 131.85 0.00 0.00 0.00 0.00 123.52 99.06 141.87 150.65 0.00 0.00 0.00 0.00
4 195.90 157.37 194.23 195.42 0.00 0.00 0.00 0.00 192.06 154.50 195.39 199.62 0.00 0.00 0.00 0.00

α “ .7 α “ .8
2 49.02 39.82 46.13 52.37 0.00 0.00 0.00 0.00 48.35 38.98 73.92 81.64 0.00 0.00 0.00 0.00
3 119.80 95.87 116.82 126.97 0.00 0.00 0.00 0.00 119.25 95.54 137.66 139.34 0.00 0.00 0.00 0.00
4 190.63 152.74 186.01 190.19 0.00 0.00 0.00 0.00 189.65 151.90 193.11 193.68 0.00 0.00 0.00 0.00

α “ .9 α “ 1
2 44.19 35.98 41.45 50.75 0.00 0.00 0.00 0.00 38.00 30.75 68.49 76.84 0.00 0.00 0.00 0.00
3 118.14 95.08 117.68 119.84 0.00 0.00 0.00 0.46 112.50 90.06 132.50 141.83 0.00 0.00 0.00 0.00
4 183.87 147.60 181.27 189.33 0.00 0.00 0.00 0.90 182.04 146.46 189.92 194.40 0.00 0.00 0.00 0.00

N=15
α “ .1 α “ .2

2 623.79 499.38 603.98 739.28 0.00 0.00 0.00 0.99 625.89 501.06 666.02 669.90 0.00 0.00 0.00 0.90
3 745.62 597.08 718.80 843.98 0.00 0.00 0.00 0.95 750.17 600.53 861.73 868.76 0.00 0.00 0.00 0.68
4 1260.04 1008.69 1212.46 1361.45 0.00 0.00 0.00 0.40 1264.79 1011.97 1692.75 1699.66 0.00 0.00 0.00 0.40

α “ .3 α “ .4
2 624.37 499.54 620.73 718.29 0.00 0.00 0.00 0.39 628.55 502.92 667.60 668.42 0.00 0.00 0.00 0.33
3 753.82 603.15 702.28 745.42 0.00 0.00 0.00 0.37 755.61 604.97 872.02 878.76 0.00 0.00 0.00 0.57
4 1270.97 1017.30 1251.66 1320.90 0.00 0.00 0.00 0.75 1271.94 1018.52 1693.96 1700.26 0.00 0.00 0.00 0.21

α “ .5 α “ .6
2 632.26 506.34 623.06 637.00 0.00 0.00 0.00 0.89 627.06 502.05 666.13 667.15 0.00 0.00 0.00 0.23
3 761.34 609.64 759.21 788.36 0.00 0.00 0.00 0.10 756.25 605.02 875.24 883.30 0.00 0.00 0.00 0.83
4 1278.06 1022.76 1259.80 1323.00 0.00 0.00 0.00 0.20 1276.19 1021.82 1693.13 1702.15 0.00 0.00 0.00 0.05

α “ .7 α “ .8
2 627.72 502.21 580.04 706.53 0.00 0.00 0.00 0.44 623.83 499.41 659.53 665.84 0.00 0.00 0.00 0.91
3 754.43 604.54 714.57 745.70 0.00 0.00 0.00 0.58 748.30 599.32 868.50 870.74 0.00 0.00 0.00 0.02
4 1272.46 1018.02 1263.76 1295.07 0.00 0.00 0.00 0.92 1272.73 1018.22 1686.83 1689.58 0.00 0.13 0.13 0.73

α “ .9 α “ 1
2 624.21 500.04 574.75 579.36 0.00 0.00 0.00 0.82 620.85 496.72 653.91 659.85 0.00 0.00 0.00 0.31
3 748.96 600.07 698.75 838.38 0.00 0.00 0.00 0.66 744.33 595.75 866.29 875.83 0.00 0.10 0.10 0.35
4 1267.95 1014.75 1265.68 1381.79 0.00 0.56 0.54 0.09 1264.50 1011.84 1683.71 1686.62 0.00 0.38 0.38 0.28

N=20
α “ .1 α “ .2

2 2919.05 2335.57 2677.28 2846.07 0.00 0.00 0.00 0.37 2920.83 3030.17 3189.52 3427.68 0.00 0.00 0.00 0.47
3 3097.78 2478.28 2881.70 3087.00 0.00 0.19 0.22 0.36 3101.38 3139.34 3303.79 3315.27 0.00 0.52 0.46 0.29
4 3123.16 2499.07 2870.39 2894.46 0.00 0.89 0.88 0.99 ** 3271.57 3443.11 3672.50 0.00 0.91 0.90 0.81

α “ .3 α “ .4
2 2923.08 2339.17 2900.75 2976.76 0.00 0.00 0.00 0.75 ** 3039.21 3198.31 3306.03 0.00 0.67 0.67 0.88
3 ** 2422.96 3230.18 3379.75 0.00 0.81 0.74 0.73 ** 3144.29 3309.25 3383.14 0.00 0.43 0.36 0.14
4 ** 2558.88 3410.92 3601.85 0.00 0.52 0.45 0.89 ** 3278.02 3450.11 3604.57 0.00 0.46 0.44 0.54

alpha=.3 alpha=.4
2 ** 2294.21 3057.82 3147.07 0.00 0.53 0.54 0.34 ** 3039.74 3199.11 3425.80 0.00 0.28 0.98 0.46
3 ** 2459.79 3279.71 3320.59 0.00 0.76 0.74 0.76 ** 3139.49 3303.80 3477.34 0.00 0.59 0.54 0.63
4 ** 2503.40 3337.76 3495.90 0.00 0.72 0.93 0.94 ** 3276.10 3448.27 3451.43 0.00 0.39 0.20 0.36

alpha=.7 alpha=.8
2 ** 2337.48 3116.34 3168.05 0.00 0.75 0.75 0.23 ** 3037.94 3197.33 3445.72 0.00 0.54 0.54 0.86
3 ** 2408.46 3210.46 3370.30 0.00 0.58 0.42 0.38 ** 3132.39 3297.21 3336.86 0.00 0.82 0.79 0.79
4 ** 2505.66 3340.06 3403.32 0.00 0.36 0.06 0.70 ** 3271.77 3443.78 3525.08 0.00 0.43 0.37 0.29

alpha=.9 alpha=1
2 ** 2393.05 3190.06 3310.44 0.00 0.29 0.13 0.66 ** 3035.13 3194.44 3407.37 0.00 0.46 0.44 0.99
3 ** 2430.40 3240.32 3284.00 0.00 0.75 0.73 0.89 ** 3128.55 3292.37 3424.30 0.00 0.42 0.43 0.66
4 ** 2545.58 3393.18 3469.50 0.00 0.59 0.48 0.17 ** 3264.64 3436.43 3449.99 0.00 0.29 0.14 0.26

N=25
alpha=.1 alpha=.2

2 6121.66 4897.71 4596.81 4731.90 0.00 0.55 0.53 0.48 ** 4422.00 4654.02 4919.51 0.00 0.13 0.11 0.48
3 7033.14 5626.90 4669.69 4692.08 0.00 0.62 0.37 0.75 ** 4470.38 4705.62 4758.52 0.00 0.67 0.65 0.98
4 ** 5744.03 6045.47 6081.23 0.00 0.49 0.48 0.05 ** 5831.46 6137.66 6411.98 0.00 0.96 0.97 0.36

alpha=.3 alpha=.4
2 ** 4335.21 4562.58 4622.87 0.00 0.43 0.38 0.64 ** 4425.94 4658.22 5042.29 0.00 0.92 0.87 0.82
3 ** 4462.55 4697.18 5018.25 0.00 0.32 0.30 0.95 ** 4476.85 4711.44 4903.92 0.00 0.88 0.89 0.41
4 ** 5813.06 6118.54 6426.07 0.00 0.19 0.12 0.84 ** 5840.45 6147.78 6404.73 0.00 0.62 0.60 0.94

alpha=.5 alpha=.6
2 ** 4381.88 4612.41 4881.79 0.00 0.17 0.12 0.43 ** 4424.25 4656.11 4938.36 0.00 0.61 0.56 0.38
3 ** 4387.73 4618.30 4704.12 0.00 0.16 0.19 0.90 ** 4476.27 4711.84 4752.85 0.00 0.32 0.34 0.12
4 ** 5689.14 5987.85 6207.39 0.00 0.71 0.75 0.02 ** 5842.11 6148.68 6366.89 0.00 0.35 0.37 0.98

alpha=.7 alpha=.8
2 ** 4352.66 4581.68 4663.98 0.00 0.41 0.37 0.20 ** 4422.68 4655.08 4973.17 0.00 0.34 0.01 0.30
3 ** 4384.37 4614.76 4891.14 0.00 0.19 0.16 0.95 ** 4470.55 4705.24 4959.40 0.00 0.72 0.65 0.04
4 ** 5820.60 6126.68 6281.50 0.00 0.38 0.35 0.58 ** 5837.36 6143.55 6342.62 0.00 0.63 0.67 0.32

alpha=.9 alpha=1
2 ** 4327.33 4554.52 4705.33 0.00 0.52 0.51 0.55 ** 4411.18 4643.16 4756.31 0.00 0.19 0.25 0.77
3 ** 4457.34 4690.99 4912.00 0.00 0.68 0.66 0.30 ** 4464.99 4699.97 4772.27 0.00 0.29 0.17 0.28
4 ** 5827.74 6134.35 6471.28 0.00 0.35 0.34 0.84 ** 5824.38 6130.41 6203.42 0.00 0.57 0.56 0.56
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Table 4: Computational performance for all solution approaches for MA. MISOCP referred as MIS in
this table

p
CPU Time Avg % Gap CPU Time Avg % Gap

MIS LP-MIS LR-MIS LRLP-MIS MIS LP-MIS LR-MIS LRLP-MIS MIS LP-MIS LR-MIS LRLP-MIS MIS LP-MIS LR-MIS LRLP-MIS

N=10
α “ .1 α “ .2

2 17.30 14.02 16.65 18.11 0.00 0.00 0.00 0.00 18.97 15.56 18.25 18.62 0.00 0.00 0.00 0.00
3 47.53 38.09 50.75 50.89 0.00 0.00 0.00 0.00 46.11 37.07 46.43 48.81 0.00 0.00 0.00 0.00
4 69.15 55.81 71.75 72.85 0.00 0.00 0.00 0.00 72.09 58.32 73.43 73.95 0.00 0.00 0.00 0.00

alpha=.3 alpha=.4
2 20.04 16.79 18.55 20.47 0.00 0.00 0.00 0.00 21.26 17.73 20.12 21.35 0.00 0.00 0.00 0.00
3 48.27 39.12 48.91 51.21 0.00 0.00 0.00 0.00 48.04 39.04 51.28 52.28 0.00 0.00 0.00 0.00
4 73.25 59.60 73.42 75.41 0.00 0.00 0.00 0.00 75.77 60.92 77.88 81.40 0.00 0.00 0.00 0.00

alpha=.5 alpha=.6
2 23.31 19.46 23.18 23.47 0.00 0.00 0.00 0.00 19.34 15.53 18.14 19.75 0.00 0.00 0.00 0.00
3 49.36 40.01 52.57 53.50 0.00 0.00 0.00 0.00 48.52 39.66 51.16 54.24 0.00 0.00 0.00 0.00
4 77.31 62.28 78.62 82.29 0.00 0.00 0.00 0.00 76.24 61.15 77.78 81.77 0.00 0.00 0.00 0.00

alpha=.7 alpha=.8
2 17.99 14.81 16.57 17.36 0.00 0.00 0.00 0.00 16.96 14.09 16.22 18.61 0.00 0.00 0.00 0.00
3 45.11 36.78 45.12 45.54 0.00 0.00 0.00 0.00 45.78 36.79 46.31 48.01 0.00 0.00 0.00 0.00
4 74.30 59.89 74.31 75.24 0.00 0.00 0.00 0.00 72.91 59.32 73.15 77.11 0.00 0.00 0.00 0.00

alpha=.9 alpha=1
2 14.33 11.47 13.89 17.07 0.00 0.00 0.00 0.00 13.70 11.32 12.58 15.99 0.00 0.00 0.00 0.00
3 46.50 37.32 46.71 47.82 0.00 0.00 0.00 0.00 41.65 33.72 42.98 45.33 0.00 0.00 0.00 0.00
4 69.89 56.44 72.55 74.87 0.00 0.00 0.00 0.00 71.58 57.86 74.43 77.31 0.00 0.00 0.00 0.00

N=15
alpha=.1 alpha=.2

2 186.34 149.72 164.68 203.83 0.00 0.00 0.00 0.00 186.09 149.07 164.74 174.56 0.00 0.00 0.00 0.00
3 222.19 177.78 197.63 248.61 0.00 0.00 0.00 0.00 222.68 178.22 197.82 233.20 0.00 0.00 0.00 0.00
4 376.49 301.85 334.74 379.41 0.00 0.00 0.00 0.00 378.49 303.29 336.37 393.05 0.00 0.00 0.00 0.00

alpha=.3 alpha=.4
2 186.60 149.69 166.04 199.68 0.00 0.00 0.00 0.00 186.14 149.24 164.69 209.62 0.00 0.00 0.00 0.00
3 223.49 179.51 197.65 217.80 0.00 0.00 0.00 0.00 224.23 179.84 198.89 257.38 0.00 0.00 0.00 0.00
4 378.72 303.72 336.30 354.20 0.00 0.00 0.00 0.00 378.64 302.94 336.63 358.50 0.00 0.00 0.00 0.00

alpha=.5 alpha=.6
2 186.77 149.60 164.88 179.99 0.00 0.00 0.00 0.00 187.22 149.89 165.42 216.57 0.00 0.00 0.00 0.00
3 227.42 182.31 201.36 217.98 0.00 0.00 0.00 0.00 224.03 179.73 198.26 244.27 0.00 0.00 0.00 0.00
4 382.07 305.95 339.55 358.92 0.00 0.00 0.00 0.00 381.80 306.20 339.60 359.26 0.00 0.00 0.00 0.00

alpha=.7 alpha=.8
2 186.45 149.71 164.51 205.91 0.00 0.00 0.00 0.00 186.69 150.14 165.94 220.54 0.00 0.00 0.00 0.00
3 225.79 180.68 200.29 222.53 0.00 0.00 0.00 0.00 222.55 178.67 197.64 225.99 0.00 0.00 0.00 0.00
4 381.42 305.16 338.15 372.89 0.00 0.00 0.00 0.00 381.00 305.61 338.07 359.41 0.00 0.00 0.00 0.00

alpha=.9 alpha=1
2 186.43 149.51 165.02 204.50 0.00 0.00 0.00 0.00 183.28 146.92 162.57 216.44 0.00 0.00 0.00 0.00
3 221.17 177.81 196.76 213.79 0.00 0.00 0.00 0.00 221.72 178.10 197.16 240.91 0.00 0.00 0.00 0.00
4 379.30 304.21 336.93 365.36 0.00 0.00 0.00 0.00 378.46 303.76 335.53 373.21 0.00 0.00 0.00 0.00

N=20
alpha=.1 alpha=.2

2 1020.02 816.22 927.69 1023.28 0.00 0.00 0.00 0.50 1020.92 817.07 929.03 1030.61 0.00 0.00 0.00 0.32
3 1240.14 992.45 1128.50 1363.73 0.00 0.19 0.22 0.80 1241.97 994.35 1129.16 1350.80 0.00 0.52 0.46 0.54
4 1248.74 999.39 1135.47 1416.15 0.00 0.89 0.88 0.72 1259.71 1007.81 1145.04 1294.12 0.00 0.91 0.90 0.78

alpha=.3 alpha=.4
2 1170.67 936.83 990.53 1058.35 0.00 0.00 0.00 0.72 1399.27 1331.54 1330.98 1418.49 0.00 0.67 0.67 0.18
3 1459.62 1369.32 1383.62 1617.55 0.00 0.81 0.74 0.58 1460.67 1371.93 1371.02 1431.01 0.00 0.43 0.36 0.05
4 1578.21 1490.74 1588.20 1697.29 0.00 0.52 0.45 0.90 1584.68 1492.20 1491.78 1637.82 0.00 0.46 0.44 0.98

alpha=.5 alpha=.6
2 1367.00 1331.93 1331.64 1515.28 0.00 0.53 0.54 0.99 1424.28 1329.42 1329.23 1335.02 0.00 0.28 0.98 0.49
3 1449.86 1370.96 1370.94 1416.15 0.00 0.76 0.74 0.78 1459.35 1371.28 1370.49 1371.85 0.00 0.59 0.54 0.77
4 1580.89 1493.65 1492.52 1574.47 0.00 0.72 0.93 0.66 1506.27 1490.88 1490.39 1522.28 0.00 0.39 0.20 0.08

alpha=.7 alpha=.8
2 1359.72 1328.10 1327.58 1338.91 0.00 0.75 0.75 0.51 1345.63 1329.31 1328.50 1392.93 0.00 0.54 0.54 0.85
3 1381.13 1371.92 1370.65 1488.82 0.00 0.58 0.42 0.25 1377.23 1368.73 1367.67 1569.57 0.00 0.82 0.79 0.75
4 1520.97 1489.84 1489.27 1493.47 0.00 0.36 0.06 0.53 1565.12 1489.48 1489.16 1702.27 0.00 0.43 0.37 0.90

alpha=.9 alpha=1
2 1329.49 1327.20 1326.74 1472.83 0.00 0.29 0.13 0.41 1381.82 1326.84 1325.49 1395.82 0.00 0.46 0.44 0.47
3 1452.77 1370.30 1368.96 1384.22 0.00 0.75 0.73 0.47 1412.45 1370.31 1369.08 1534.22 0.00 0.42 0.43 0.19
4 1587.61 1487.81 1486.91 1678.51 0.00 0.59 0.48 0.19 1494.03 1488.12 1487.46 1721.73 0.00 0.29 0.14 0.77

N=25
alpha=.1 alpha=.2

2 3049.13 2958.57 2690.92 2757.03 0.00 0.55 0.53 0.90 3017.18 2959.36 2692.94 2785.11 0.00 0.13 0.11 0.26
3 4069.91 4062.77 3533.45 3689.98 0.00 0.62 0.37 0.83 4096.83 4064.41 3535.94 3676.98 0.00 0.67 0.65 0.76
4 4391.00 4316.80 3453.38 3484.54 0.00 0.49 0.48 0.95 4329.39 4320.06 3455.29 3536.72 0.00 0.96 0.97 0.84

alpha=.3 alpha=.4
2 3010.88 2961.48 2694.55 2746.50 0.00 0.64 0.57 0.47 2976.72 2962.15 2694.58 2797.69 0.00 0.48 0.87 0.22
3 3424.77 3387.89 2947.17 3128.45 0.00 0.22 0.16 0.79 3439.77 3389.20 2948.16 2951.41 0.00 0.29 0.89 0.80
4 3660.10 3602.23 2881.13 3090.34 0.00 0.19 0.04 0.07 3702.23 3603.46 2882.75 2967.02 0.00 0.06 0.60 0.75

alpha=.5 alpha=.6
2 3012.37 2963.77 2696.67 2856.98 0.00 0.17 0.67 0.71 3017.51 2961.59 2693.67 2715.65 0.00 0.96 0.56 0.71
3 3393.24 3390.15 2948.82 3101.29 0.00 0.76 0.66 0.75 3685.64 3658.32 3181.71 3417.90 0.00 0.28 0.34 0.76
4 3644.41 3607.28 2885.51 3095.77 0.00 0.80 0.24 0.84 3962.53 3893.85 3114.07 3222.78 0.00 0.66 0.37 0.46

alpha=.7 alpha=.8
2 3005.79 2958.85 2691.37 2908.74 0.00 0.38 0.03 0.61 3017.30 2959.13 2692.65 2874.77 0.00 0.65 0.61 0.43
3 3672.06 3656.25 3180.36 3386.84 0.00 0.77 0.76 0.49 3721.63 3655.51 3180.17 3427.75 0.00 0.21 0.55 0.85
4 3916.80 3893.01 3114.39 3159.22 0.00 0.92 0.80 0.15 3959.14 3890.31 3111.41 3111.84 0.00 0.29 0.66 0.19

alpha=.9 alpha=1
2 2972.99 2958.29 2690.76 2910.83 0.00 0.10 0.42 0.51 3000.03 2956.80 2690.36 2700.24 0.00 0.73 0.25 0.93
3 3673.37 3653.72 3178.52 3220.24 0.00 0.88 0.95 0.24 3664.57 3653.35 3177.73 3385.55 0.00 0.41 0.17 0.03
4 3916.50 3889.03 3110.24 3293.75 0.00 0.43 0.69 0.22 3916.11 3886.59 3108.20 3229.48 0.00 0.04 0.56 0.36
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Figure 1: Performance Profile of proposed exact solution methods for CAB and AP dataset

Table 5: Computational performance for all solution approaches for MA. MISOCP referred as MIS in
this table

p
CPU Time Avg % Gap CPU Time Avg % Gap

MIS LP-MIS LR-MIS LRLP-MIS MIS LP-MIS LR-MIS LRLP-MIS MIS LP-MIS LR-MIS LRLP-MIS MIS LP-MIS LR-MIS LRLP-MIS

N=50
α “ .1 α “ .2

2 4684.35 4666.12 4152.45 4331.90 0.00 0.55 0.53 0.88 4684.87 4665.47 4151.44 4153.67 0.00 0.13 0.11 0.95
3 6517.90 6481.97 5639.24 5704.91 0.00 0.62 0.37 0.98 6533.95 6480.95 5637.68 5720.61 0.00 0.67 0.65 0.74
4 7081.35 7065.41 5651.54 5883.70 0.00 0.49 0.48 0.65 7154.77 7064.66 5651.03 5666.27 0.00 0.96 0.97 0.07

alpha=.3 alpha=.4
2 4965.15 4918.64 4474.89 4485.50 0.00 0.30 0.48 0.94 4695.73 4684.94 4169.51 4357.43 0.00 0.38 0.87 0.52
3 6889.72 6832.09 5942.60 5983.14 0.00 0.91 0.67 0.87 5619.82 5570.56 4956.56 5197.23 0.00 0.31 0.89 0.58
4 7175.92 7173.93 5737.99 5981.99 0.00 0.19 0.49 0.81 6772.36 6679.81 5943.65 5974.40 0.00 0.03 0.60 0.03

alpha=.5 alpha=.6
2 4951.18 4938.84 4493.38 4518.18 0.00 0.17 0.45 0.69 4799.02 4704.07 4185.69 4395.35 0.00 0.11 0.56 0.91
3 5941.31 5872.43 5107.71 5153.29 0.00 0.65 0.90 0.32 5645.05 5593.27 4976.66 5141.80 0.00 0.87 0.34 0.89
4 7077.17 7041.51 5631.90 5698.97 0.00 0.42 0.72 0.98 6778.15 6707.14 5968.73 6178.66 0.00 0.42 0.37 0.71

alpha=.7 alpha=.8
2 5048.30 4959.12 4511.45 4712.21 0.00 0.76 0.15 0.21 4764.51 4723.59 4297.24 4339.46 0.00 0.94 0.59 0.44
3 5933.30 5896.41 5128.80 5277.82 0.00 0.54 0.73 0.55 5678.65 5617.15 4998.65 5051.51 0.00 0.25 0.58 0.81
4 7142.87 7070.14 5654.74 5664.47 0.00 0.16 0.60 0.70 6784.78 6735.50 6196.55 6370.84 0.00 0.76 0.95 0.65

alpha=.9 alpha=1
2 4983.61 4979.86 4581.05 4618.89 0.00 0.76 0.09 0.35 4768.22 4742.85 4361.96 4463.58 0.00 0.89 0.25 0.64
3 5968.31 5921.60 5446.68 5530.97 0.00 0.96 0.08 0.18 5698.21 5640.05 5188.17 5237.19 0.00 0.62 0.17 0.90
4 7176.24 7100.25 6532.17 6579.85 0.00 0.88 0.57 0.08 6822.20 6762.52 6287.95 6495.24 0.00 0.25 0.56 0.21
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6 Conclusions and Directions for Future Research

In this paper, we proposed two alternate formulations for competitive hub location problem , wherein
an entrant is making a strategic decision of locating its hubs, thereby routing its traffic in a market with
already existing competing players. The routes can either be based on single allocation or multiple
allocation, which result in the aforementioned two formulations. The entrant has the objective to
maximize its market share, which is a function of the utility that customers get from using its services.
Both the classes of problems are non-linear IP, which is computationally intractable. Papers that
have studied similar problems (Marianov et al., 1999; Eiselt and Marianov, 2009) have resorted to
heuristics, even when they are not deciding on the routes of the passenger. In this paper, we proposed
four alternate solution approaches, MISOCP, LP-MISOCP, LR-MISOCP, LRLP-MISOCP.

Besides proposing a new formulation for the problem, our other contributions lie in second order
conic reformulation, in using lifted polymatroid cuts to approximate second order cone constraints
and also in using second order cone programming within Lagrangian relaxation, to solve the problem
efficiently for the two allocation classes. For the single allocation type problem, the method LP-
MISOCP is the most efficient and is able to solve all the problem instances within 1% optimality
gap in less than 1.7 hours of CPU time. For the multiple allocation class problem, the method LR-
MISOCP is the more efficient one for larger test instances but LP-MISOCP performs better for smaller
test instances.

Prompted by our success in the current study, we foresee the application of SOCP approximation
using lifted polymatroid cuts in similar classes of problems, where non-linearity may arise due to
competition, congestion, economies of scale, uncertainties, etc. The problem studied in this paper
does not take into account the response of the competing firms to the entrant’s actions. A possible
extension of this work could be to model it as a leader-follower game, wherein the entrant takes into
account the follower’s response while solving its problem.
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Lüer-Villagra, A. and Marianov, V. (2013). A competitive hub location and pricing problem. European Journal
of Operational Research, 231(3):734–744.

Mahmutogullari, A. I. and Kara, B. Y. (2016). Hub location under competition. European Journal of Operational
Research, 250(1):214–225.

Marianov, V., Serra, D., and ReVelle, C. (1999). Location of hubs in a competitive environment. European
Journal of Operational Research, 114(2):363–371.

Mirchandani, P. B., Oudjit, A., and Wong, R. T. (1985). ‘multidimensional’extensions and a nested dual
approach for the m-median problem. European Journal of Operational Research, 21(1):121–137.

Narula, S. C., Ogbu, U. I., and Samuelsson, H. M. (1977). An algorithm for the p-median problem. Operations
Research, 25(4):709–713.

W.P. No. WP 2019-12-02 Page No. 24



IIMA ‚ INDIA

Research and Publications

O’kelly, M. E. (1986). The location of interacting hub facilities. Transportation science, 20(2):92–106.

O’kelly, M. E. (1987). A quadratic integer program for the location of interacting hub facilities. European
journal of operational research, 32(3):393–404.

Pirkul, H. and Schilling, D. A. (1991). The maximal covering location problem with capacities on total workload.
Management Science, 37(2):233–248.

Pirkul, H. and Schilling, D. A. (1998). An efficient procedure for designing single allocation hub and spoke
systems. Management Science, 44(12-part-2):S235–S242.

Plastria, F. (2001). Static competitive facility location: an overview of optimisation approaches. European
Journal of Operational Research, 129(3):461–470.

Rumelt, R. P. and Wensley, R. (1981). In search of the market share effect. In Academy of management
proceedings, volume 1981, pages 2–6. Academy of Management Briarcliff Manor, NY 10510.

Sasaki, M. (2005). Hub network design model in a competitive environment with flow threshold. Journal of the
Operations Research Society of Japan, 48(2):158–171.

Sasaki, M., Campbell, J. F., Krishnamoorthy, M., and Ernst, A. T. (2014). A stackelberg hub arc location
model for a competitive environment. Computers & operations research, 47:27–41.

Sasaki, M. and Fukushima, M. (2001). Stackelberg hub location problem. Journal of the Operations Research
Society of Japan, 44(4):390–402.

Sen, A., Atamturk, A., and Kaminsky, P. (2017). A conic integer programming approach to constrained
assortment optimization under the mixed multinomial logit model. arXiv preprint arXiv:1705.09040.

Skorin-Kapov, D., Skorin-Kapov, J., and O’Kelly, M. (1996). Tight linear programming relaxations of uncapac-
itated p-hub median problems. European journal of operational research, 94(3):582–593.

Vielma, J. P., Ahmed, S., and Nemhauser, G. L. (2008). A lifted linear programming branch-and-bound
algorithm for mixed-integer conic quadratic programs. INFORMS Journal on Computing, 20(3):438–450.

Wagner, B. (2008). A note on “location of hubs in a competitive environment”. European Journal of Operational
Research, 184(1):57–62.

W.P. No. WP 2019-12-02 Page No. 25



IIMA ‚ INDIA

Research and Publications

7 Appendix

The objective function (5) in MCOHLP can be rewritten as :

θpx, zq “
ÿ

i

ÿ

j

f̂i ´
ÿ

i

ÿ

j

f̂i `
ÿ

i

ÿ

j

fij

#

ř

kPHe

ř

lPHe ueijklxijkl
ř

kPHe

ř

lPHe ueijklxijkl `
ř

kPHc

ř

lPHc ucijklx
c
ijkl

+

, (45)

where f̂i “ maxj fij . Further, using the newly defined sets of variables, (45) can be restated as:

θpoq “
ÿ

i,j

f̂i ´
ÿ

i,j

f̂i `
ÿ

i

ÿ

j

fijoij (46)

From (23) & (25), we can conclude that:

oij `
ÿ

kPHc

ÿ

lPHc

ucijklaij “ 1 (47)

Introducing the relation (47) in (46), we get:

θpa, oq “
ÿ

i

ÿ

j

f̂i ´
ÿ

i

ÿ

j

f̂i

´

oij `
ÿ

kPHc

ÿ

lPHc

ueijklaij

¯

`
ÿ

i

ÿ

j

fijoij (48)

On rearranging the terms, (48), can be restated as:

θpa, oq “
ÿ

i

ÿ

j

f̂i ´
ÿ

i

#

ÿ

j

ÿ

kPHc

ÿ

lPHc

ucijklx
c
ijklf̂iaij `

ÿ

j

pf̂i ´ fijqoij

+

Using the above form of the objective function, SACOHLP can be restated as:

max
ÿ

i

ÿ

j

f̂i ´
ÿ

i

#

ÿ

j

ÿ

kPHc

ÿ

lPHc

ucijklf̂iaij `
ÿ

j

pf̂i ´ fijqoij

+

(49)

s.t.p6q ´ p11q

aijgij ě 1 @ i, j P N (50)

oijgij ě
ÿ

kPHe

ÿ

lPHe

ueijklxijkl @ i, j P N (51)

aij , gij , oij ě 0 @ i, j P N (52)

In (49)-(52), the constraint set (50) is derived using (23) and (24). Constraint set (51) is derived using
(23) and (25). Also, since xijkl P t0, 1u, (51) can be rewritten as oijgij ě

ř

kPHe

ř

lPHe ueijklx
2
ijkl @ i, j P

N , which is a rotated second order conic constraint. The rotated second order cone (SOC) can be
transformed to a standard SOC as follows (Alamdari and Black, 1992):

poij ` gijq
2 ě 2

ÿ

kPHe

ÿ

lPHe

ueijklx
2
ijkl ` o

2
ij ` g

2
ij @ i, j P N (53)

Similarly, (50), which is also a rotated SOC constraint, can be transformed to a standard SOC as
follows:

paij ` gijq
2 ě 2` a2ij ` g

2
ij @ i, j P N (54)
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The vector Xij represents N2` 2 elements, with the first N2 elements being xijkl and the last two
elements being oij , gij for a given i, j. The vector X

1

ij corresponds to the maximum value of every Xij .
We add three different types of cuts for each SOC constraint set to the separation problem. The first
type of cut is:

πX
1

ij ď oij ` gij ` α
1
!

X 1ij ´Xij

)

@i, j (55)

Here α1ij “
aij?

a1`a2`¨¨¨`aij
, where aij has N2 ` 2 elements. The first N2 elements being 2ueijkl and the

last two being 1 each. The second type of cut is written as follows:

κ1 `
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1

ijq

#
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1
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#

πSaX
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(59)

Likewise, the third type of cut is written as follows:
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