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Abstract

In this paper, we study the hub location problem of an entrant airline that tries to maximize
its share in a market with already existing competing players. The problem is modelled as a non-
linear integer program, which is intractable for off-the-shelf commercial solvers, like CPLEX and
Gurobi, etc. Hence, we propose four alternate approaches to solve the problem. The first among
them uses the Kelly’s cutting plane method, the second is based on a mixed integer second order
conic program reformulation, the third uses the Kelly’s cutting plane method within Lagrangian
relaxation, while the fourth uses second order conic program within Lagrangian relaxation. The
main contribution of this paper lies in the fourth approach, which along with refinements is the
most efficient. Many of the problem instances that were not solvable using standard techniques,
like the Kelly’s cutting plane method, have been solved in less than 2 hours of CPU time within
1% optimality gap.

Competitive Hub and Spoke Network, Non-Linear Integer Program, Kelly’s Cutting Plane,

Second Order Conic Program, Lagrangian Relaxation

1 Introduction

Hub and spoke network was pioneered in the airline industry by Delta Airlines in 1955 to compete
with the low cost Eastern Airlines (Delta History, 1955). In a hub and spoke network, every origin-
destination (O-D) pair is connected through an intermediate node, called hub. Hubs are consolidation
points, where traffic from various non-hub nodes, called spokes, is aggregated, thereby generating
economies of scale. This leads to a lower operational cost, compared to alternative network configu-
rations with direct O-D connections (O’kelly, 1986; Hamacher et al., 2004; Chen, 2007). A hub and
spoke network also results in a lower setup cost since it requires fewer links to connect various origins
and destinations in the network. Several studies have documented the benefits, leading to competitive
advantage, from the use of hub and spoke network (McShan and Windle, 1989; Oum et al., 1995; Bania
et al., 1998; Martins de Sá et al., 2015). Since the deregulation of the US airline industry in 1978,
hub and spoke network has become almost a default choice for airline networks. Besides the airline
industry, hub and spoke networks are also used in other industries, for instance, telecommunications
(Klincewicz, 1998), energy (Lumsden et al., 1999), road transportation (Üster and Agrahari, 2011).

Designing a hub and spoke network calls for solving a hub location problem (HLP), which deter-
mines the optimal location of hubs and the path through some of those hubs between every O-D pair
(Campbell and O’Kelly, 2012). In a multi-player setting, HLPs can be broadly classified either as
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cooperative games or non-cooperative games. Cooperative games focus on coalitions and joint actions
among firms, thereby determining their collective payoffs, as opposed to non-cooperative games, where
individual players focus on their own payoffs under competition. Lin and Lee (2010) studies a coopera-
tive game in freight services in an oligopolistic market. In a non-cooperative setting, an HLP is solved
either by an entrant airline that intends to set up its network by locating the hubs, or by an incumbent
airline that intends to revamp its existing network. In this paper, we focus on this network design
problem faced by an entrant. Most of the extant literature on HLP has studied the above problem
in a monopolistic setting, without accounting for the presence of competing firms in the market. The
literature on the entrant’s problem in a competitive setting can be broadly classified in the following
two categories: (i) the best response of the entrant explicitly accounting for the competitors’ reaction
(Sasaki and Fukushima, 2001; Sasaki, 2005; Sasaki et al., 2014; Mahmutogullari and Kara, 2016) (ii)
the best response of the entrant without accounting for the reaction from the competitors (Marianov
et al., 1999; Wagner, 2008; Eiselt and Marianov, 2009; Lüer-Villagra and Marianov, 2013). In this
paper, we specifically focus on the problem of maximizing the market share of an entrant airline in the
second category of competitive HLP. The problem results in an non-linear integer program (NLIP),
which is challenging to solve using off-the-shelf solvers like CPLEX, Gurobi, etc. To the best of our
knowledge, ours is the first study to solve the above problem exactly.

Through this paper, we make the following contributions to the related literature. We propose
four alternate approaches to solve the problem. The first approach (CPA) is based on the Kelly’s
cutting plane algorithm to address the non-linearity in the problem. The second approach (MISOCP)
relies on a mixed integer second order conic program based reformulation of the problem. The third
approach (LR-CPA) employs Kelly’s cutting plane algorithm within Lagrangian relaxation, while the
fourth approach (LR-SOCP) uses a Lagrangian relaxation of the mixed integer second order conic
program. Further, we compare the above four solution approaches based on extensive computational
experiments. Our analysis highlights the superiority of LR-SOCP for most of the test instances. We
also propose a refinement for the LR-SOCP approach, using which we are able to solve all the test
instances within an optimality gap of 1% in less than 2 hours of CPU Time.

The rest of the paper is organized as follows. In Section 2, we present a review of the literature on
HLP and its variants in a competitive setting. The problem description, followed by its mathematical
formulation, is presented in Section 3. In Section 4, we present our alternate solution approaches,
followed by extensive computational results in Section 5. Finally, the conclusions and directions for
future research are presented in Section 6.

2 Literature Review

HLPs can be classified as p-median, p-center, covering or fixed-charge on the basis of their objective
functions. The objective in the p-median HLP is to minimize the total transportation cost (O’kelly,
1986; Skorin-Kapov et al., 1996; Campbell, 1996; Ernst and Krishnamoorthy, 1996), while that for a
p-center HLP is to minimize the maximum transportation cost between any pair of nodes (Campbell,
1994; Kara and Tansel, 2000). A covering HLP can either be hub set-covering if the objective is to
minimize the number of hubs to cover all the nodes (Campbell, 1994; Kara and Tansel, 2000), or
maximal hub-covering if the objective is to maximize the demand covered with a given number of
hubs to locate (Campbell, 1994). Further, an HLP can be single allocation (O’kelly, 1986; Campbell,
1994) or multiple allocation (Campbell, 1992; Skorin-Kapov et al., 1996; Ernst and Krishnamoorthy,
1996) depending on whether the immediate hub visited by any flow originating from (or destined to)
a given node is the same irrespective of their destinations (or origins), or they can be different. HLPs
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can also be classified as complete or incomplete on the basis of the hub topology. Most of the papers
in the literature assume a complete hub network topology, wherein there exists a direct connection
between every pair of hubs. Incomplete HLPs, on the other hand, assume a specific hub topology
like star (Labbé and Yaman, 2008), tree (Contreras et al., 2010), etc. For an extensive review on
HLPs, the readers may refer to Campbell and O’Kelly (2012). Next, we review literature on HLPs in
a competitive setting (non-cooperative games), which we further categorize into two classes.

The first class of non-cooperative games in HLPs consists of papers that do not take into account
the response of the competitors while deciding the hub locations for a player. Marianov et al. (1999)
belongs to this category, and to the best of our knowledge, is also the first to introduce competition
in the area of hub location. The problem models the decision of an entrant, to locate a set of hubs
so as to maximize the demand flow captured from its competitors (without taking into account the
response of the competitors). This results in a mixed integer linear program (MILP), which is solved
using a tabu search heuristic. Wagner (2008) highlights certain shortcomings of the model proposed
by Marianov et al. (1999), and proposes ways to correct them. Lüer-Villagra and Marianov (2013)
studies the problem of an entrant that wants to determine the prices so as to maximize its profit, given
the pricing scheme of the competitor, and solves the resulting model using genetic algorithm. Eiselt
and Marianov (2009) also studies the problem of an entrant airline that wants to maximize its market
share, wherein the customers’ choice of an airline depends on their utility (instead of just cost). The
problem is formulated as an NLIP, which is again solved using genetic algorithm.

In contrast to the above cited papers, the second class of papers take into account the competitor’s
response while solving the HLP. Sasaki and Fukushima (2001) studies the perspective of a leader who
competes with several existing firms to maximize his/her profit. The problem is modelled as a bilevel
Stackelberg game, and solved using sequential quadratic programming. Sasaki (2005) extends the
problem from a continuous network to a discrete one, which is solved using complete enumeration and
greedy heuristics. Sasaki et al. (2014) studies the problem of a leader who tries to locate hub arcs, as
opposed to locating hub nodes, to maximize revenue. The resulting bilevel program is solved using
implicit enumeration. Mahmutogullari and Kara (2016) studies a duopoly model in a Stackelberg
framework, where two competitors sequentially choose their respective hub locations with the aim to
maximize their captured flow. The problem is formulated as a bilevel HLP, and solved using implicit
enumeration of the leader’s problem.

The focus of this paper is on the first category. As evident from the review above, the literature
in this area is scarce. Further, the extant studies resort to heuristic approaches. Specifically, we
study the problem of market share maximization by the entrant firm in a competitive airline industry.
The market share of the entrant is modeled as a probabilistic function of its hub location decisions,
which introduces non-linearity in the problem. The resulting mathematical program is a non-linear
IP, for which we propose alternate exact solution approaches. Next, we provide a detailed problem
description, followed by its mathematical formulation.

3 Problem Description and Model Formulation

Consider a network of cities, represented by a complete graph G “ pN,Aq, in which a set C “

t1, 2, . . . , |C|u of airlines are competing for their respective market shares. There exists a given demand
fij for each pair (i P N, j P N, i ‰ j) of cities. Each airline c P C operates in a hub and spoke network
with a set Hc Ă N of hubs, such that the traffic between any city pair (i, j) is routed via a maximum
of two intermediate hubs (k, l P Hc), so as to exploit the benefits arising from the economies of scale
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in inter-hub transportation. Let Bc
ij be the transportation cost per unit traffic for a direct connection

between a city pair (i, j), which is the same for every airline. The cost benefit due to economies of
scale is captured using a constant α ă 1, such that the cost per unit inter-hub traffic between hubs
k and l is given by αBc

kl. We further assume that the costs Bc
ij follow the triangular inequality, as a

result of which a route involving more than two hubs does not generate any additional benefit, and
hence the above restriction of a maximum of two hubs on any path between an origin-destination pair.
Therefore, a path between an origin i and destination j can always be denoted using four ordered
indices (i, j, k, l), where k and l are the hubs along the path (iÑ k Ñ lÑ j).

A new airline, hereafter referred to as an entrant, aims to capture a portion of this market by
opening a set (He P N) of p hubs. As a newcomer to the market, the entrant focuses on maximizing
its market share. It also enjoys the same discount factor α, as does its competitors, for any inter-hub
transportation. Hence, the cost per unit inter-hub traffic between hubs k and l is given by αBe

kl. The
proportion of the market share captured by any airline is commonly calculated in the extant literature
using the proximity rule (Drezner, 1994). The rule, as used in the competitive hub location literature,
suggests that for a given origin-destination pair (i, j), customers select the path (i Ñ k Ñ l Ñ j)
that minimizes either their total travel distance or time. As a result of this, all the passengers
traveling between any origin-destination pair will always traverse through the same sequence of hubs.
However, Alamdari and Black (1992) argue that “simple all or nothing models, which assume the
cheapest airline is chosen by all the passengers, are not suitable for determining airlines’ market share.
Passenger demand is influenced by a combination of fare and many other attributes that make up
the quality of service provided”. The drawback of the proximity rule is addressed by the probabilistic
choice model, which proposes that market share captured by a player is proportional to the utility
that customers derive from using its product/service vis-a-vis that derived from using the competitors’
product/service (Leeflang et al., 2013; Bell et al., 1975). Mathematically, the proportion of market
share (ρeijkl) between any city pair (i, j) via hubs k and l captured by the entrant is given by:

ρeijkl “
ueijkl

ř

kPHe

ř

lPHe ueijkl `
ř

kPHc

ř

lPHc ucijkl
(1)

For customers choosing between airlines, the utility derived often depends on various factors like cost
of travel, travel time and attractiveness of the airline (safety record, mileage points provided, in-
flight entertainment, quality of food & service, the number of hubs on the route, their location, the
convenience they offer to passengers, among other factors) (Eiselt and Marianov, 2009). Using the
gravity model (Huff, 1964, 1966), the utility (ueijkl) that the customers derive from the entrant airline
e is modelled as follows :

ueijkl “
Aekl

γ
`

T eijkl
˘β
` p1´ γq

`

Be
ijkl

˘δ
(2)

where Aekl is the basic attractiveness index of a pair of hubs (k,l) used for the trip, Be
ijkl and T eijkl

denotes the the cost and the total time required by the flight respectively for traveling along the route
(iÑ k Ñ lÑ j), parameters β and δ denote the attraction decay of travel time and cost, respectively.
The customers’ utility from choosing a competing airline c, ucijkl, can be similarly computed.

The total capture of passengers using the route piÑ k Ñ lÑ jq offered by the entrant is denoted
by fijρ

e
ijkl. The objective of the airline is to capture as large a market share as possible, by locating a

fixed p number of hubs. There is a set of binary location variable yk, which is 1 if a hub is located at
node k, and zero otherwise. Also there is a set of binary hub pair location variable wkl, which is 1 if
hubs are located at both the nodes k and l. We assume that each competitor can have multiple routes
between nodes i and j, going through different hubs or pairs of hubs. All competitors in the market
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have same information of the demand structure. Airfares are proportional to the costs incurred by
the airlines.

To mathematically describe the entrant airline’s problem, let us define a decision variable yk “ 1
if it locates a hub at node k, 0 otherwise. Further, let wkl “ 1 if the entrant airline locates its hubs at
both the nodes k and l. To state the entrant airline’s problem, we first summarize the notation used.

3.1 Notation

i : Index for source nodes, i P N ;
j : Index for destination nodes, j P N ;
k : Index for first hub, k P N ;
l : Index for second hub, l P N ;
α ; Discount factor for trans-shipment (hub to hub), pk Ñ lq
H : set of all hubs, H Ď N ;
Hc : set of hubs for competing airlines;
He : set of potential hubs of entrant airline;
fij : Flow from origin i to destination j;
T cijkl : Time taken by any passenger for travelling from i Ñ k Ñ l Ñ j using any

competing airline c;
T eijkl : Time taken by any passenger for travelling from i Ñ k Ñ l Ñ j using the

entrant airline c;
Bc
ijkl : Transportation cost incurred by any competing airline c for flying any passenger

from iÑ k Ñ l Ñ j;
Be
ijkl : Transportation cost incurred by the entrant airline e for flying any passenger

from iÑ k Ñ l Ñ j;
ucijkl : The utility of any passenger for travelling from i Ñ k Ñ l Ñ j using any

competing airline c;
ueijkl : The utility of any passenger for travelling from iÑ kÑ lÑ j using the entrant

airline e;
Ackl : Basic attractiveness index of a pair of hubs pk, lq for any competing airline c ;
Aekl : Basic attractiveness index of a pair of hubs pk, lq for the entrant airline e ;
ρeijkl : The proportion of market share captured by the entrant airline e between any

city pair pi, jq via hubs k and l ;
p : No. of hubs to be located;
yk : 1, if hub is located, 0 otherwise.
wkl : 1, if hubs are located at k and l, 0 otherwise.

3.2 Model

Using the above notation, the entrant airline’s problem can be mathematically described as:

[COHLP s :

θpy, wq “ max
ÿ

i

ÿ

j

fij

#

ř

kPHe

ř

lPHe ueijklwkl
ř

kPHe

ř

lPHe ueijklwkl `
ř

kPHc

ř

lPHc ucijkl

+

(3)

s.t. wkl ď yk @ k, l P He (4)
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wkl ď yl @ k, l P He (5)
ÿ

k

yk “ p (6)

yk P t0, 1u @ k P He (7)

wkl P t0, 1u @ k, l P He (8)

The objective function (3) maximizes the total demand captured by the entering airline, given the
competitors’ hub locations. Constraint sets (4) and (5) are the linking constraints between w and y
variables. Constraint (6) enforces p hubs to be open. Constraint sets (7) and (8) are the binary con-
straints on y and w variables, respectively. COHLP is an NLIP, which off-the-shelf solvers like CPLEX
and Gurobi cannot handle (since they cannot handle non-linear problems that are non-quadratic).

Please note that COHLP can be transformed into a non-linear mixed integer program by relaxing
the binary variables wkl to take continuous values in r0, 1s using the following argument: whenever
both yk and yl, which are binary, take a value 1, wkl will always assume a value of 1 (due to (3)). On
the other hand, when one of yk or yl is 0, wkl takes a value 0. Therefore, (8) can be relaxed as:

wkl P r0, 1s (9)

However, the resulting non-linear mixed integer program is still difficult for off-the-shelf solvers. Next,
we discuss alternate solution methods to solve the problem efficiently, exploiting (9) wherever possible.

4 Solution Methods

In this section, we propose four alternate approaches to solve COHLP . The first approach is based
on the linearization of the non-linear term in (3) using Kelly’s cutting plane approach (CPA) (Kelley,
1960). In the second approach, we reformulate COHLP into a mixed integer second order conic
program (MISOCP), which can be solved efficiently using an off-the-shelf solver (Alizadeh and Gold-
farb, 2003). The third and fourth approaches are based on Lagrangian relaxation of COHLP , which
separates the resulting problem into a linear integer program and a non-linear program (NLP) with
continuous variables. The third approach solves the resulting NLP using CPA, whereas the fourth
approach reformulates it as a second order conic program (SOCP).

4.1 Cutting Plane Algorithm

This method exploits the special structure of the non-linear term in the objective function through a
transformation, followed by a piece-wise linear approximation, which results in a mixed integer linear
program (MILP). The constraints required for piece-wise linear approximation are generated using
Kelly’s Cutting Plane approach. To describe the approach, let us define the following non-negative
variables:

Rij “
ÿ

kPHe

ÿ

lPHe

wklu
e
ijkl (10)

ZijpRijq “
Rij

ř

k,lPHc ucijkl `Rij
@ i, j

Clearly, Zij is concave in Rij (since
B2Zij

BR2
ij
ď 0). The concavity of Zij implies that for a given set of

points, indexed by g P G, Zij can be approximated arbitrarily closely by a set of piece-wise linear
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functions that are tangents to Zij at a set of points G “ tRgijugPG, such that

Z 1ijpRijq “ min
gPG

"

ZpRgijq `
Rij ´R

g
ij

p
ř

kPHc

ř

lPHc ucijkl `R
g
ijq

2

*

@ i, j,

which is equivalent to the following constraint set:

Z 1ijpRijq ď ZpRgijq `
Rij ´R

g
ij

p
ř

kPHc

ř

lPHc ucijkl `R
g
ijq

2
@ i, j, g (11)

Using the above transformations, COHLP can be approximated using the following MILP:

rCOHLPMILP pGqs : (12)

max
ÿ

i

ÿ

j

fijZ
1
ij

s.t.(4)´ (7), (9), (11)

Z 1ij P r0, 1s @ i, j (13)

Rij ě 0 @ i, j (14)

In COHLPMILP , we have used wkl as continuous variables (9) instead of binary (8), which obviates
any branching on the wkl variables in the branch-and-bound tree. COHLPMILP is a linear mixed
integer program with two additional sets of continuous variables Rij and Z 1ij , and a large set of
linear constraints (11). Adding a large set of constraints (11) a priori can provide an arbitrarily
close approximation of COHLP ; however, many of these constraints may be redundant, which may
adversely affect the computational performance. Hence, a more prudent way to solve the problem is
to add constraints (11) on the fly. Such an approach of adding the constraints on the fly is called
a cutting plane algorithm (CPA), the steps of which, as applied to COHLPMILP , are described in
Algorithm 1.

Algorithm 1 Cutting Plane Algorithm for COHLPMILP

1: q Ð 1; UBq Ð8; LBq Ð ´8; Gq Ð Φ; Gq Ð Φ
2: do
3: Solve COHLPMILP pGqq, and obtain its solution as pyqk, w

q
kl, Z

1q
ij , R

q
ijq

4: Update the UBq`1 Ð
ř

i

ř

j fijZ
1q
ij

5: Update the LBq`1 Ð maxtLBq, θpyq, wqqu.
6: Gq`1 Ð Gq Y tq ` 1u; Gq`1 “ tRgijugPG
7: q Ð q ` 1
8: while (UBq ´ LBqq{UBq ą ε

CPA is known to converge, within a given tolerance ε, in a finite number of iterations (Elhedhli,
2005; Vidyarthi and Jayaswal, 2014; Vidyarthi et al., 2016; Jayaswal et al., 2017). Although in Al-
gorithm 1, the set G0 is empty, it is suggested in the literature that the algorithm can be speeded
up by initializing G0 with a carefully chosen set of points. The constraints of the form (11) that
are generated from the points in G0 are called a priori cuts (Vidyarthi and Jayaswal, 2014). In our
numerical experiments in Section 5, we set G0 so as to approximate ZijpRijq within a gap of 0.1%.
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4.2 Mixed Integer Second Order Conic Program (MISOCP)

Second order conic programs (SOCPs) are of particular interest as they can be solved efficiently with
widely available commercial solvers, like CPLEX and Gurobi. Hence, SOCPs have recently been
employed to a variety of problems, like portfolio optimization, value-at-risk minimization, machine
scheduling, supply chain network design and airline rescheduling with speed control (Vielma et al.
(2008); Aktürk et al. (2014); Antoniou and Lu (2007)). Mixed Integer second order comic programs
(MISOCPs) have also been studied in a variety of problems like hub location problems with congestion
and assortment problems (Sen et al., 2017) among many others. COHLP , as discussed in Section 3.2,
is an NLIP, which cannot be solved using off-the-self solvers. Therefore, in this section, we reformulate
COHLP as a mixed integer second order conic program (MISOCP). To convert the COHLP into an
MISOCP, we introduce the following sets of variables:

Qij “ 1{
´

ÿ

kPHe

ÿ

lPHe

ueijklwkl `
ÿ

kPHc

ÿ

lPHc

ucijkl

¯

(15)

rij “
ÿ

k,lPHe

ÿ

lPHe

ueijklwkl `
ÿ

kPHc

ÿ

lPHc

ucijkl (16)

Vij “ Qij
ÿ

kPHe

ÿ

lPHe

ueijklwkl (17)

The objective function (3) in COHLP can be rewritten as :

θpy, wq “
ÿ

i

ÿ

j

f̂i ´
ÿ

i

ÿ

j

f̂i `
ÿ

i

ÿ

j

fij

#

ř

kPHe

ř

lPHe ueijklwkl
ř

kPHe

ř

lPHe ueijklwkl `
ř

kPHc

ř

lPHc ucijkl

+

, (18)

where f̂i “ maxj fij . Further, using the newly defined sets of variables, (18) can be restated as:

θpV q “
ÿ

i,j

f̂i ´
ÿ

i,j

f̂i `
ÿ

i

ÿ

j

fijVij (19)

From (15) & (17), we can conclude that:

Vij `
ÿ

kPHc

ÿ

lPHc

ucijklQij “ 1 (20)

Introducing the relation (20) in (19), we get:

θpQ,V q “
ÿ

i

ÿ

j

f̂i ´
ÿ

i

ÿ

j

f̂i

´

Vij `
ÿ

kPHc

ÿ

lPHc

ueijklQij

¯

`
ÿ

i

ÿ

j

fijVij (21)

On rearranging the terms, (21), can be restated as:

θpQ,V q “
ÿ

i

ÿ

j

f̂i ´
ÿ

i

#

ÿ

j

ÿ

kPHc

ÿ

lPHc

ucijklf̂iQij `
ÿ

j

pf̂i ´ fijqVij

+

Using the above form of the objective function, COHLP can be restated as:

max
ÿ

i

ÿ

j

f̂i ´
ÿ

i

#

ÿ

j

ÿ

kPHc

ÿ

lPHc

ucijklf̂iQij `
ÿ

j

pf̂i ´ fijqVij

+

(22)

s.t.p4q ´ p8q, (16)

Qijrij ě 1 @ i, j P N (23)

Vijrij ě
ÿ

kPHe

ÿ

lPHe

ueijklwkl @ i, j P N (24)

Qij , Vij , rij ě 0 @ i, j P N (25)
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In (22)-(25), the constraint set (23) is derived using (15) and (16). Constraint set (24) is derived using
(15) and (17). Also, since wkl P t0, 1u, (24) can be rewritten as Vijrij ě

ř

kPHe

ř

lPHe ueijklw
2
kl @ i, j P

N , which is a rotated second order conic constraint. The rotated second order cone (SOC) can be
transformed to a standard SOC as follows (Alamdari and Black, 1992):

pVij ` rijq
2 ě 2

ÿ

kPHe

ÿ

lPHe

ueijklw
2
kl ` V

2
ij ` r

2
ij @ i, j P N (26)

Similarly, (23), which is also a rotated SOC constraint, can be transformed to a standard SOC as
follows:

pQij ` rijq
2 ě 2`Q2

ij ` r
2
ij @ i, j P N (27)

The above transformations result in the following MISOCP based reformulation of COHLP :

rCOHLPMISOCP s : (28)

max
ÿ

i

ÿ

j

f̂i ´
ÿ

i

#

ÿ

j

ÿ

kPHc

ÿ

lPHc

ucijklf̂iQij `
ÿ

j

pf̂i ´ fijqVij

+

s.t. p4q ´ p7q, p9q, (16), p26q ´ p27q

In COHLPMISOCP , similar to COHLPMILP pGq, we have used wkl as continuous variables (9) in-
stead of binary (8), which obviates any branching on the wkl variables in the branch-and-bound tree.
COHLPMISOCP has 3N2 additional variables and 5N2 additional constraints, out of which 2N2 are
SOC constraints. The program can be solved directly by CPLEX using either of the two parameter
settings; miqcpstrat 1 and miqcpstrat 2. In miqcpstrat 1, it uses an SOCP based branch-and-bound
algorithm, wherein at each node, the continuous relaxation is solved using an interior point algorithm
specifically designed for SOCPs. In miqcpstrat 2, CPLEX uses outer approximation of the MISOCP,
which produces an LP at each node of the branch-and-bound tree. In our numerical experiments,
reported in Section 5, we use the default setting of CPLEX, which is miqcpstrat 0 to allow CPLEX
to choose the best strategy, depending on the problem structure.

4.3 Lagrangian Relaxation with CPA

Lagrangian relaxation (LR) is a popular technique that has been used to solve a wide variety of integer/
mixed integer linear and non-linear programs (Narula et al., 1977; Mirchandani et al., 1985; Aykin,
1994; Pirkul and Schilling, 1998, 1991). In this section, we apply LR to COHLP . The challenge with
LR method is to correctly identify the constraints to be relaxed. For this particular work, we relax
(4) and (5) using αkl and βkl as their respective Lagrange multipliers, which produces the following
Lagrangian sub-problem:

rCOHLPSUBs :

θSUBpα, βq “ max
ÿ

i

ÿ

j

fij

ř

kPHe

ř

lPHe wklu
e
ijkl

ř

kPHe

ř

lPHe wklu
e
ijkl `

ř

kPHc

ř

lPHc ucijkl
`

ÿ

kPHe

ÿ

lPHe

αklpyk ´ wklq

`
ÿ

kPHe

ÿ

lPHe

βklpyl ´ wklq (29)

s.t. p6q ´ p8q

αkl, βkl P r0,8s (30)
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For a given set of pα, βq, the Lagrangian sub-problem provides an upper bound (UB) to COHLP .
The tightest (smallest) UB is obtained by solving the following Lagrangian dual problem:

min
αě0,βě0

θSUBpα, βq (31)

(31) is non-linear optimization problem, which is popularly solved using the sub-gradient algorithm
(Held et al., 1974; Fisher, 1981) as elaborated in Algorithm (4). A feasible solution to COHLP can
be obtained by turning the (infeasible) solution obtained from Lagrangian sub-problem into a feasible
solution, which provides a lower bound (LB) to COHLP . The best feasible solution (maximum of the
known LBs) is reported, and the relative optimality gap is calculated at every iteration as 1-(LB/UB),
which is used as a termination criterion for the sub-gradient algorithm.

For a given set of Lagrange multipliers (α, β), the sub-problem (31) decomposes into the following
two independent sub-problems, with one involving only yk variables, while the other involving only
wkl variables.

rSUB1s :

θSUB1 “ max
ÿ

k

ÿ

l

pαklyk ` βklylq (32)

s.t.
ÿ

kPHe

yk “ p

yk P t0, 1u @ k P He

rSUB2s :

θSUB2 “ max
ÿ

i

ÿ

j

fij

ř

kPHe

ř

lPHe wklu
e
ijkl

ř

kPHe

ř

lPHe wklu
e
ijkl `

ř

kPHc

ř

lPHc ucijkl
´
ÿ

k

ÿ

l

!

αkl ` βkl

)

wkl (33)

s.t. (8)

SUB1 can be solved optimally for a given set of pα, βq by locating p hubs with the maximum contribu-
tion to objective function (32). The steps of the method to solve SUB1 are summarized in Algorithm
(2)

Algorithm 2 Optimal Solution for SUB1

1: Define an ordered set S=ti : ζi ě ζi`1, ζi P tαkl, βkl : k, l P Heuu. Let Sj denote an element in S,
j P 1, . . . , |S|.

2: Set yj “ 1 @ j “ S1, . . . , Sp; yj “ 0 @ j “ Sp`1, . . . , S|S|

SUB2 is an unconstrained non-linear binary program, which can be solved using Kelly’s cutting
plane approach, as explained in Section (4.1). The linear approximation of SUB2, which is solved at
every iteration in Kelly’s cutting plane method, is provided below as SUB12. However, we introduce
the following modifications in SUB12 to solve it more efficiently. First, (8) can be replaced by (9),
although this may not guarantee binary values for wkl variables, and therefore, may result in a relatively
weaker Lagrangian UB. Nonetheless, we still prefer to use (9) since it makes SUB12 a linear program
(LP). Second, we add

ř

kPHe

ř

lPHe wkl “ p2 to SUB12, which is redundant to COHLP , but helps to
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strengthen the Lagrangian UB.

rSUB12s :

θSUB1
2
“ max

ÿ

i

ÿ

j

fijZ
1
ij ´

ÿ

k

ÿ

l

!

αkl ` βkl

)

wkl (34)

s.t.
ÿ

kPHe

ÿ

lPHe

wkl “ p2 (35)

(9), (11), (13)´ (14)

We now state the following two propositions, which are used in the development of the complete
sub-gradient algorithm.

Proposition 1. For any given set of pαq, βqq, (36) provides an UB on the optimal objective function
value of COHLP, where (yqk), pw

q
kl, Z

1q
ij q are the optimal solutions to SUB1 and SUB

1
2 with the objective

function values θqSUB1
and θq

SUB1
2
, respectively.

UBq “ θqSUB1
` θq

SUB1
2
“

ÿ

k

ÿ

l

pαqkly
q
k ` β

q
kly

q
l q `

ÿ

i

ÿ

j

fijZ
1q
ij ´

ÿ

k

ÿ

l

#

αqkl ` β
q
kl

+

wqkl (36)

Proof. Since COHLPSUB is a Lagrangian relaxation of the full problem COHLP, the objective function
value of COHLPSUB, given by θSUB, provides an UB on the optimal objective function value of
COHLP .

Proposition 2. For any given set of pαq, βqq, (37) provides a LB to the optimal objective function
value of COHLP , where pyqkq is an optimal solution to SUB1.

LBq “ θpyq, yqky
q
l q “

ÿ

i,jPN

fij

ř

k,lPHe y
q
l y
q
l u

c
ijkl

ř

k,lPHeyql y
q
l uijkl`

ř

k,lPHc ucijkl

(37)

Proof. If pyqkq is an optimal solution to SUB1, then (yqk, w
q
kl), where wqkl “ yql y

q
l , is a feasible solution

to COHLP (since it satisfies constraints (4)-(5), which were relaxed in the Langrangian relaxation)
as also illustrated in Algorithm 3. Hence, the objective function of COHLP evaluated at (yqk, y

q
ky
q
l ),

given by (37), provides a LB on the optimal objective of COHLP .

A good, but not necessarily optimal, set of Lagrange multipliers to COHLP is obtained using the
standard sub-gradient optimization, as summarized in Algorithm 4. At each iteration, the algorithm
also produces a feasible solution, the best among which is reported as the final solution once the
algorithm terminates, which happens either on reaching the specified maximum time limit pMq or
upon reaching an optimality gap of ε.

Algorithm 3 Feasible

1: Set yk using optimal y from Algorithm (2) @ k.
2: Set wkl “ yk ˚ yl @ k, l.
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Algorithm 4 Sub-Gradient Optimisation Algorithm

1: q Ð 1, αq Ð 0, βq Ð 0, UBq Ð8, LBq Ð ´8, UB Ð UBq and LB Ð LBq, tq Ð 0.
2: Initialise ∆ (the step-size multiplier), NI (maximum iterations with no improvement in UB), ε

(optimality gap), M (maximum CPU time limit).
3: do
4: Solve SUB1, SUB2, and obtain UBq, LBq from (36), (37), respectively.
5: UB Ð UBq, LB Ð maxtLB,LBqu.
6: py˚, w˚q Ð arg maxy,wtLBu and pα˚, β˚q be the corresponding lagrange multipliers.
7: Find a feasible solution using Algorithm (3).
8: Adjust the multipliers as :

αq`1kl Ð αqkl ` t
qpyqk ´ w

q
klq @ k, l

βq`1kl Ð βqkl ` t
qpyql ´ w

q
klq @ k, l

where, tq`1 Ð ∆

#

UB ´ LB
ř

k

ř

l

!

pyqk ´ w
q
klq

2 ` pyql ´ w
q
klq

2
)

+

.

9: If no improvement in UB in NI consecutive iterations, ∆ Ð ∆{2 and (α, βq Ð pα˚, β˚)
10: q Ð q ` 1.
11: while (1´ LBq{UBq ď ε_ CPU Time ďM)

4.4 Lagrangian relaxation with SOCP

In this section, like in Section 4.3, we use the sub-gradient algorithm (refer to Algorithm 4) to solve
COHLP . However, the UB to COHLP is computed by solving SUB2 in a different way, as opposed
to using CPA. For this, we exploit the fact that SUB2, given by (33), can be reformulated as the
following MISCOP, using the transformations (15), (16) and (17) from Section 4.2. We also include
(35), which we used in SUB12 in Section 4.3, to obtain a tighter Lagrangian UB.

rSUB22s :

θ2SUB2
“ max

ÿ

i

ÿ

j

f̂i ´
ÿ

i

#

ÿ

j

ÿ

k

ÿ

l

ucijklf̂iQij `
ÿ

j

pf̂i ´ fijqVij

+

´
ÿ

k

ÿ

l

#

αkl ` βkl

+

wkl (38)

s.t. rij “
ÿ

kPHe

ÿ

lPHe

ueijklwkl `
ÿ

kPHc

ÿ

lPHc

ucijkl @i, j P N

pVij ` rijq
2 ě 2

ÿ

kPHe

ÿ

lPHe

ueijklw
2
kl ` V

2
ij ` r

2
ij @i, j P N

pQij ` rijq
2 ě 2`Q2

ij ` r
2
ij @i, j P N

ÿ

kPHe

ÿ

lPHe

wkl “ p2

wkl P r0, 1s @k, l P He

Qij , Vij , rij ě 0 @ i, j P N

The above model is an SOCP, which has a polynomial time complexity, and hence can be solved
efficiently using off-the-shelf solvers (Andersen et al., 2003; Monteiro and Tsuchiya, 2000) . It is worth
noting that in COHLP (3)-(8), wkl is binary. One could have chosen to retain wkl as binary variables
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in SUB”2, which would have produced a tighter Lagrangian UB. However, this would have resulted
in an MISOCP model for SUB”2, which is not polynomial time solvable.

With the above transformation, COHLP can be solved using a sub-gradient algorithm, similar
to Algorithm 4, with the exception that SUB2 is solved as an SOCP pSUB22q. The lower and upper
bounds (LBq and UBq) are updated accordingly.

5 Numerical Experiments

We first describe in Section 5.1 the relevant data used in our experiments, followed by a discussion of
our results in Section 5.2.

5.1 Data Generation

All our computational experiments are based on the following two popular data sets from the HLP
literature: Civil Aeronautics Board (CAB) and Australian Post (AP) data-set. The CAB data-set
introduced by O’kelly (1987) consists of data on passenger flow volumes and distances among 25
US cities. The AP data-set, introduced by Ernst and Krishnamoorthy (1996), consists of nodes
representing district postcodes, along with their coordinates and mail flow volumes. In the context
of competitive HLP, the AP data-set has been used by Eiselt and Marianov (2009); Marianov et al.
(1999), which are the closest to our work. However, there is no information available on computation
of customers’ utility in either of the data-sets, and hence we provide below the scheme used in this
paper to generate them.

In all our experiments, we assume there is only one incumbent player, denoted by c, operating with
a set of hubs in the network, and the entrant, denoted by e, intends to capture a part of its market
by locating its own set of p hubs. As discussed in Section 3, the share of the market captured by the
entrant is given by (1), wherein the customer utility appearing in (1) are given by (2). The parameters
used in (2) are set as follows: β “ 1, δ “ 1, γ “ 0.75, and Aakl “ 1.25 @ k, l : l “ k, a P tc, eu; 1 otherwise.
The attractiveness index Aakl @ a P tc, eu is set 25% higher when l “ k to capture the fact that single
hub routes are more attractive to customers than multiple hub routes. We assume that the the travel
time for the same route pi Ñ k Ñ l Ñ jq is the same for both the airlines, which is computed as
T aijkl “ T aik ` T akl ` T alj @ a P tc, eu. The travel time (in minutes) between any two cities i and k is
given by 30 ` 0.12dik, where dik is the distance (in miles) between the cities i and k, and 30 is an
approximation for the layover time (in minutes) at the two cities (Grove and O’Kelly, 1986). The
transportation cost per unit volume is also assumed to be the same for a given route piÑ k Ñ lÑ jq,
which is computed as Ba

ijkl “ χT aik`αT
a
kl`ηT

a
lj @ a P tc, eu, where χ and η are the transportation costs

per unit volume on the collection and distribution legs, respectively. All the parameter values used
in our experiments are summarized in Table 2. All the experiments are run on a personal computer

Table 2: Parameters

Common Parameters Entrant’s Parameters

N p α γ β δ Aa

t10, 15, 20, 25u t2, 3, 4u t.1, .2, .3, .4, .5, .6, .7, .8, .9, 1u .75 1 1 1

with 2.20 GHz Intel(R) Xenon(R) E5-2630 CPU and 64 GB RAM. The four solution methods, as
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described in Section 4, are coded in C++, and ILOG CPLEX 12.7.1 is used as the default solver. The
optimality gap pUB ´ LBq{LB for all the iterative algorithms is set at ε “ .01, and the maximum
CPU time limit pMq of 4 hours is used for each instance. For MISOCP in Section 4.2, we use the
default value of 0 for the CPLEX parameter miqcpstrat, as discussed earlier in Section 4.2. For the
Lagrangian based methods (LR-CPA and LR-SOCP), the parameters in the sub-gradient algorithm
are initialized as: ∆ “ 6 and NI “ 50.

5.2 Results and Analysis

Tables 3 and 4 present the computational performances (in terms of CPU time) of the four alternate
solution approaches corresponding to different combinations of |N |, p, α for the CAB and AP datasets,
respectively. In each of these tables, the column “CPU Time” reports the time required to reach the
final solution, while the column “Gap%” reports the optimality gap (in %) at algorithm termination.
For the iterative methods (CPA, LR-CPA, LR-SOCP), the termination criterion used is: 1% optimality
gap or 4 hours of CPU time. For MISOCP, which is directly solved using the CPLEX solver, we use
the default termination criteria of CPLEX or 4 hours of CPU time.

As obvious from Table 3, for all the instances that CPA could solve, it was consistently the worst
in terms of CPU time. There are other instances, particularly for |N | ě 15, for which CPA runs
out of memory, which are indicated using **. For smaller instances, especially with |N | “ 10, 15,
MISOCP outperforms all the other methods. For |N | ě 20, it performs well for few instances, but
consistently goes out of memory for most of the other instances. On the other hand, the Lagrangian
relaxation based extensions, i.e., LR-CPA and LR-SOCP are able to solve all the instances within 1%
optimality gap. Between LR-CPA and LR-SOCP, the latter consistently outperforms the former in
terms of CPU time. Therefore, for larger instances, LR-SOCP turns out to be the best, and for smaller
instances, the CPU time required by it is comparable to the best performing method (MISOCP). The
above observations are also true for the AP dataset, the results for which are provided in Table 4.
Interestingly, while LR-SOCP outperforms all the other method on larger instances, it also performs
the best on certain smaller instances. Also, the computational performances (in terms of CPU time)
of the three iterative solution approaches; namely CPA, LR-CPA, LR-SOCP to reach optimality gaps
of 5%, 2%, 1% are presented in the Appendix (refer Table 6, 7).

To further tease out the difference in the performances of the four different methods, we show their
performance profiles (Dolan and Moré, 2002) through Figures 1a-1b. For this, let tp,s be the CPU
time taken to solve the instance p P P using method s P S. Then, performance ratio rp,s is calculated
as:

rp.s “
tp,s

minsPS tp,s

Treating rp,s as a random variable, a performance profile ρspτq “ P prp,s ď 2τ q gives its cumulative
probability distribution. In other words, it gives the probability with which the CPU time taken by a
given approach s does not exceed 2τ times the CPU time required by the best among all the approaches
under study. Specifically, the intercept on the y-axis for a given approach s gives the proportion of
instances for which it is the best. As clear from Figure 1a, LR-SOCP is the best for 45% of the 30ˆ 4
instances in CAB dataset and from Figure 1b that LR-SOCP is the best for 54% of the 30ˆ4 instances
in AP dataset. Further, LR-SOCP is able to solve 100% of the instances at τ “ .85 for CAB dataset
and at τ “ .5 for AP dataset, whereas CPA is able to solve only 47.5% of the 30ˆ 4 instances in both
CAB and AP datasets even at τ “ 4.
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Figure 1: Performance Profile of proposed exact solution methods for CAB and AP dataset

5.3 Further Refinement

As witnessed in the previous section, LR-SOCP is the best performing method for most of the test
instances. In this section, we explore the possibility of further improving upon this method. For this,
recall from Algorithm 4 that LR-SOCP requires solving SUB1 and SUB22 to compute an UB, while it
uses the solution only from SUB1 to compute an LB, at each iteration of the sub-gradient algorithm.
Further, an UB is useful only to the extent of identifying when to terminate the algorithm. Hence,
computing an UB, which requires solving an expensive SUB22 , at every iteration of the sub-gradient
algorithm can be avoided. We exploit this idea to further improve upon the computational efficiency
of LR-SOCP by solving SUB22 only after a fixed number, say ψ, of iterations of the sub-gradient
algorithm. The drawback of this proposal is that it misses the UBs from the intermediate iterations,
one of which could have terminated the algorithm. As a result of this, the modified algorithm may
take more iterations to terminate, which may offset the computational savings from avoiding solving
SUB22 . Hence, the value of ψ needs to be carefully chosen. Our limited experiments suggested ψ “ 50
to be a good choice.

The results obtained with the above proposed refinement are reported in Table 5, where we show
a comparison between the computational performances of MISOCP, LR-SOCP (original), and LR-
SOCP˚ (with refinement) for CAB data-set. Clearly, with this refinement, the computational time
further improves, and LR-SCOP˚ consistently outperforms all the other methods across all the test
instances, including those for which LR-SOCP was outperformed by MISOCP.

6 Conclusions and Directions for Future Research

In this paper, we studied a competitive hub location problem (COHLP ), wherein an entrant is
making a strategic decision of locating its hubs in a market with already existing competing players.
The entrant tries to maximize its market share, which is a function of the utility that customers get
from using its services. The resulting problem is an NLIP, which is computationally intractable for off-
the-shelf solvers. Hence, papers that have studied similar problems (Marianov et al., 1999; Eiselt and
Marianov, 2009) have resorted to metaheuristics. In this paper, we proposed four alternate solution
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Table 3: Comparison of computational performance for all solution approaches (CAB dataset)

p
CPU Time Gap % CPU Time Gap %

CPA MISOCP LR-CPA LR-SOCP CPA MISOCP LR-CPA LR-SOCP CPA MISOCP LR-CPA LR-SOCP CPA MISOCP LR-CPA LR-SOCP

N=10
α “ .1 α “ .2

2 254.40 98.40 218.40 123.60 0.00 0.00 0.00 0.00 266.01 108.82 220.05 128.47 0.00 0.00 0.00 0.00
3 454.80 241.20 440.40 256.80 0.00 0.00 0.00 0.00 466.16 241.60 446.05 266.94 0.00 0.00 0.00 0.00
4 700.80 358.80 685.20 380.40 0.00 0.00 0.00 0.00 711.58 367.60 695.11 381.83 0.00 0.00 0.00 0.00

α “ .3 α “ .4
2 273.29 109.81 223.78 129.54 0.00 0.00 0.00 0.00 275.44 116.91 226.14 138.82 0.00 0.00 0.00 0.00
3 477.12 242.86 453.38 271.29 0.00 0.00 0.00 0.00 486.05 245.64 461.17 281.53 0.00 0.00 0.00 0.00
4 723.19 375.59 705.56 387.61 0.00 0.00 0.00 0.00 732.00 380.82 713.16 387.71 0.00 0.00 0.00 0.00

α “ .5 α “ .6
2 283.12 119.80 231.32 144.67 0.00 0.00 0.00 0.00 279.09 108.70 219.86 143.70 0.00 0.00 0.00 0.00
3 493.74 250.56 461.26 283.26 0.00 0.00 0.00 0.00 490.13 244.94 458.63 281.66 0.00 0.00 0.00 0.00
4 738.77 391.37 718.08 392.38 0.00 0.00 0.00 0.00 732.44 381.77 713.93 386.89 0.00 0.00 0.00 0.00

α “ .7 α “ .8
2 278.57 96.82 212.40 142.70 0.00 0.00 0.00 0.00 278.22 93.88 201.74 142.05 0.00 0.00 0.00 0.00
3 483.83 237.69 450.81 277.65 0.00 0.00 0.00 0.00 482.01 237.36 450.18 274.03 0.00 0.00 0.00 0.00
4 723.78 375.43 704.59 383.81 0.00 0.00 0.00 0.00 711.91 374.70 699.10 380.89 0.00 0.00 0.00 0.00

α “ .9 α “ 1
2 268.14 83.50 192.66 133.47 0.00 0.00 0.00 0.00 263.16 73.25 181.91 132.02 0.00 0.00 0.00 0.00
3 474.81 234.34 449.14 265.81 0.00 0.00 0.00 0.00 473.82 222.93 442.83 261.99 0.00 0.00 0.00 0.00
4 704.49 364.13 695.72 373.71 0.00 0.00 0.00 0.00 694.66 360.53 685.76 372.73 0.00 0.00 0.00 0.00

N=15
α “ .1 α “ .2

2 2410.80 1057.74 2090.40 1124.04 0.00 0.00 0.00 0.00 2422.77 1060.81 2101.86 1131.62 0.00 0.00 0.00 0.00
3 2876.40 1266.84 2552.40 1455.54 0.00 0.00 0.00 0.00 2879.81 1273.75 2554.30 1463.24 0.00 0.00 0.00 0.00
4 3711.60 2138.94 3375.60 2869.26 0.00 0.00 0.00 0.00 3721.19 2148.03 3385.93 2875.33 0.00 0.00 0.00 0.00

α “ .3 α “ .4
2 2424.86 1060.99 2109.82 1133.79 0.00 0.00 0.00 0.00 2432.79 1065.20 2113.56 1134.25 0.00 0.00 0.00 0.00
3 2881.25 1277.88 2558.78 1469.22 0.00 0.00 0.00 0.00 2887.77 1282.45 2565.74 1476.95 0.00 0.00 0.00 0.00
4 3727.29 2156.37 3387.74 2875.91 0.00 0.00 0.00 0.00 3732.15 2162.27 3391.26 2879.45 0.00 0.00 0.00 0.00

α “ .5 α “ .6
2 2436.60 1070.10 2124.44 1139.36 0.00 0.00 0.00 0.00 2431.10 1064.96 2124.09 1131.84 0.00 0.00 0.00 0.00
3 2899.46 1292.32 2570.98 1486.02 0.00 0.00 0.00 0.00 2890.56 1282.73 2560.33 1482.60 0.00 0.00 0.00 0.00
4 ** 2172.13 3400.30 2881.75 0.00 0.00 0.00 0.00 ** 2168.41 3399.01 2872.54 0.00 0.00 0.00 0.00

α “ .7 α “ .8
2 2422.60 1062.55 2113.51 1122.18 0.00 0.00 0.00 0.00 2422.07 1060.01 2108.33 1117.67 0.00 0.00 0.00 0.00
3 2880.59 1280.49 2555.50 1481.00 0.03 0.00 0.00 0.00 ** 1272.10 2554.79 1472.99 0.00 0.00 0.00 0.00
4 ** 2162.41 3390.70 2869.19 0.00 0.00 0.00 0.00 ** 2160.24 3388.04 2865.93 0.00 0.00 0.13 0.13

α “ .9 α “ 1
2 2421.99 1059.42 2097.56 1111.44 0.00 0.00 0.00 0.00 2419.63 1052.24 2096.78 1105.63 0.00 0.00 0.00 0.00
3 ** 1270.28 2548.33 1472.80 0.00 0.00 0.00 0.00 ** 1264.82 2547.27 1471.32 0.00 0.00 0.10 0.10
4 ** 2152.16 3380.02 2860.33 0.00 0.00 0.56 0.54 ** 2148.04 3377.80 2860.07 0.00 0.00 0.38 0.38

N=20
α “ .1 α “ .2

2 7462.80 4962.30 6627.60 5099.52 0.00 0.00 0.00 0.00 7464.46 4964.86 6635.39 5102.58 0.00 0.00 0.00 0.00
3 7840.80 5265.24 6826.80 5277.12 0.00 0.00 0.19 0.22 7842.43 5270.84 6828.94 5282.76 0.00 0.00 0.52 0.46
4 8204.40 5305.02 7438.80 5496.96 0.00 0.00 0.89 0.88 ** ** 7442.65 5505.88 0.00 0.00 0.91 0.90

α “ .3 α “ .4
2 7469.40 4968.30 6643.19 5110.69 0.00 0.00 0.00 0.00 ** ** 6649.73 5112.93 0.00 0.00 0.67 0.67
3 ** ** 6835.76 5286.14 0.00 0.00 0.81 0.74 ** ** 6847.27 5289.02 0.00 0.00 0.43 0.36
4 ** ** 7446.61 5506.74 0.00 0.00 0.52 0.45 ** ** 7448.31 5516.05 0.00 0.00 0.46 0.44

α “ .5 α “ .6
2 ** ** 6650.83 5117.93 0.00 0.00 0.53 0.54 ** ** 6642.90 5116.91 0.00 0.00 0.28 0.98
3 ** ** 6853.44 5291.36 0.00 0.00 0.76 0.74 ** ** 6848.21 5284.49 0.00 0.00 0.59 0.54
4 ** ** 7453.64 5523.93 0.00 0.00 0.72 0.93 ** ** 7442.10 5515.32 0.00 0.00 0.39 0.20

α “ .7 α “ .8
2 ** ** 6637.00 5115.88 0.00 0.00 0.75 0.75 ** ** 6634.03 5113.13 0.00 0.00 0.54 0.54
3 ** ** 6845.88 5276.97 0.00 0.00 0.58 0.42 ** ** 6842.48 5272.00 0.00 0.00 0.82 0.79
4 ** ** 7439.47 5514.52 0.00 0.00 0.36 0.06 ** ** 7438.56 5510.01 0.00 0.00 0.43 0.37

α “ .9 α “ 1
2 ** ** 6623.62 5110.39 0.00 0.00 0.29 0.13 ** ** 6620.73 5106.52 0.00 0.00 0.46 0.44
3 ** ** 6839.70 5266.14 0.00 0.00 0.75 0.73 ** ** 6837.70 5264.47 0.00 0.00 0.42 0.43
4 ** ** 7438.26 5501.67 0.00 0.00 0.59 0.48 ** ** 7435.44 5498.18 0.00 0.00 0.29 0.14

N=25
α “ .1 α “ .2

2 ** 9181.80 9858.00 7433.28 0.00 0.00 0.55 0.53 ** ** 9863.50 7441.90 0.00 0.00 0.13 0.11
3 ** 10547.10 13537.20 7515.84 0.00 0.00 0.62 0.37 ** ** 13546.48 7524.78 0.00 0.00 0.67 0.65
4 ** ** 14384.40 9814.08 0.00 0.00 0.49 0.48 ** ** 14394.77 9817.81 0.00 0.00 0.96 0.97
p α “ .3 α “ .4
2 ** ** 9866.01 7442.82 0.00 0.00 0.43 0.38 ** ** 9868.86 7452.03 0.00 0.00 0.92 0.87
3 ** ** 13547.74 7527.01 0.00 0.00 0.32 0.30 ** ** 13556.54 7534.32 0.00 0.00 0.88 0.89
4 ** ** 14044.10 9823.65 0.00 0.00 0.19 0.12 ** ** 14052.05 9832.41 0.00 0.00 0.62 0.60
p α “ .5 α “ .6
2 ** ** 9873.72 7453.63 0.00 0.00 0.17 0.12 ** ** 9863.95 7447.83 0.00 0.00 0.61 0.56
3 ** ** 13558.51 7542.03 0.00 0.00 0.16 0.19 ** ** 13546.79 7536.04 0.00 0.00 0.32 0.34
4 ** ** 14063.25 9841.30 0.00 0.00 0.71 0.75 ** ** 14058.07 9836.10 0.00 0.00 0.35 0.37
p α “ .7 α “ .8
2 ** ** 9858.28 7444.49 0.00 0.00 0.41 0.37 ** ** 9855.48 7443.25 0.00 0.00 0.34 0.01
3 ** ** 13538.87 7531.64 0.00 0.00 0.19 0.16 ** ** 13537.30 7527.37 0.00 0.00 0.72 0.65
4 ** ** 14054.51 9834.78 0.00 0.00 0.38 0.35 ** ** 14045.84 9826.11 0.00 0.00 0.63 0.67
p α “ .9 α “ 1
2 ** ** 9853.12 7434.66 0.00 0.00 0.52 0.51 ** ** 9848.51 7425.66 0.00 0.00 0.19 0.25
3 ** ** 13528.94 7521.18 0.00 0.00 0.68 0.66 ** ** 13526.34 7519.01 0.00 0.00 0.29 0.17
4 ** ** 14039.29 9816.75 0.00 0.00 0.35 0.34 ** ** 14031.71 9807.41 0.00 0.00 0.57 0.56
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Table 4: Comparison of computational performance for all solution approaches (AP dataset)

p
CPU Time Gap % CPU Time Gap %

CPA MISOCP LR-CPA LR-SOCP CPA MISOCP LR-CPA LR-SOCP CPA MISOCP LR-CPA LR-SOCP CPA MISOCP LR-CPA LR-SOCP

N=10
α =.1 α “ .2

2 256.80 100.80 218.40 128.40 0.00 0.00 0.00 0.00 260.79 103.05 229.74 131.41 0.00 0.00 0.00 0.00
3 457.20 300.00 440.40 262.80 0.00 0.00 0.00 0.00 460.68 303.44 447.80 273.62 0.00 0.00 0.00 0.00
4 703.20 361.20 685.20 393.60 0.00 0.00 0.00 0.00 714.63 368.45 687.12 404.25 0.00 0.00 0.00 0.00

α “ .3 α “ .4
2 267.34 112.15 231.67 133.52 0.00 0.00 0.00 0.00 273.01 116.28 242.92 134.77 0.00 0.00 0.00 0.00
3 467.30 311.88 455.38 284.63 0.00 0.00 0.00 0.00 470.67 316.66 463.73 285.75 0.00 0.00 0.00 0.00
4 725.61 368.72 693.93 415.30 0.00 0.00 0.00 0.00 734.27 373.32 699.24 426.35 0.00 0.00 0.00 0.00

α “ .5 α “ .6
2 283.93 126.88 251.27 140.86 0.00 0.00 0.00 0.00 281.58 124.00 250.56 137.57 0.00 0.00 0.00 0.00
3 474.69 328.10 469.92 294.81 0.00 0.00 0.00 0.00 471.75 323.44 463.08 284.67 0.00 0.00 0.00 0.00
4 735.65 382.07 703.26 437.40 0.00 0.00 0.00 0.00 733.32 379.67 696.32 432.22 0.00 0.00 0.00 0.00

α “ .7 α “ .8
2 281.52 119.77 242.17 131.33 0.00 0.00 0.00 0.00 279.45 112.54 230.67 120.68 0.00 0.00 0.00 0.00
3 469.22 320.35 452.59 280.76 0.00 0.00 0.00 0.00 462.25 319.85 450.42 271.34 0.00 0.00 0.00 0.00
4 727.71 374.89 685.92 425.38 0.00 0.00 0.00 0.00 725.11 372.51 683.72 423.18 0.00 0.00 0.00 0.00

α “ .9 α “ 1
2 271.56 100.66 224.46 111.10 0.00 0.00 0.00 0.00 264.17 97.46 216.35 102.55 0.00 0.00 0.00 0.00
3 451.01 314.80 440.83 259.44 0.00 0.00 0.00 0.00 441.76 306.45 437.32 256.15 0.00 0.00 0.00 0.00
4 723.82 370.44 674.12 419.69 0.00 0.00 0.00 0.00 715.89 361.34 664.54 417.06 0.00 0.00 0.00 0.00

N=15
α “ .1 α “ .2

2 2413.20 1062.84 2090.40 1131.18 0.00 0.00 0.00 0.00 2420.69 1064.94 2101.80 1132.24 0.00 0.00 0.00 0.00
3 2882.40 1301.52 1712.40 1459.62 0.00 0.00 0.00 0.00 2882.65 1309.69 1715.60 1464.81 0.00 0.00 0.00 0.00
4 3716.40 2140.98 3375.60 2878.44 0.00 0.00 0.00 0.00 3726.99 2141.94 3380.85 2882.25 0.00 0.00 0.00 0.00

α “ .3 α “ .4
2 2428.32 1066.15 2108.64 1142.19 0.00 0.00 0.00 0.00 2431.29 1072.30 2120.64 1149.88 0.00 0.00 0.00 0.00
3 2885.34 1316.38 1725.36 1471.40 0.00 0.00 0.00 0.00 2891.17 1317.60 1736.68 1480.43 0.00 0.00 0.00 0.00
4 3734.91 2151.67 3391.80 2886.56 0.00 0.00 0.00 0.00 3740.35 2152.05 3398.68 2893.28 0.00 0.00 0.00 0.00

α “ .5 α “ .6
2 2442.35 1077.48 2126.43 1153.84 0.00 0.00 0.00 0.00 2438.24 1076.36 2115.09 1144.98 0.00 0.00 0.00 0.00
3 2895.93 1325.21 1739.86 1482.54 0.00 0.00 0.00 0.00 2884.95 1319.48 1734.61 1475.46 0.00 0.00 0.00 0.00
4 ** 2154.76 3404.09 2895.82 0.00 0.00 0.00 0.00 ** 2149.70 3397.24 2889.19 0.00 0.00 0.00 0.00

α “ .7 α “ .8
2 2430.70 1067.07 2107.37 1144.18 0.00 0.00 0.00 0.00 2424.40 1058.71 2102.39 1143.20 0.00 0.00 0.00 0.00
3 2873.91 1314.65 1726.42 1475.23 0.03 0.00 0.00 0.00 ** 1306.82 1716.93 1474.96 0.00 0.00 0.00 0.00
4 ** 2148.00 3392.79 2882.19 0.00 0.00 0.00 0.00 ** 2142.94 3390.24 2874.15 0.00 0.00 0.13 0.13

α “ .9 α “ 1
2 2414.92 1055.44 2099.57 1136.75 0.00 0.00 0.00 0.00 2408.49 1050.96 2098.97 1129.51 0.00 0.00 0.00 0.00
3 ** 1304.99 1708.89 1472.50 0.00 0.00 0.00 0.00 ** 1297.00 1706.02 1465.48 0.00 0.00 0.10 0.10
4 ** 2139.80 3379.60 2872.03 0.00 0.00 0.56 0.54 ** 2131.36 3371.93 2864.35 0.00 0.00 0.38 0.38

N=20
α “ .1 α “ .2

2 7465.20 4978.62 6627.60 5104.32 0.00 0.00 0.00 0.00 7468.53 4981.23 6635.85 5111.62 0.00 0.00 0.00 0.00
3 7855.20 5272.38 6826.80 5291.52 0.00 0.00 0.19 0.22 7866.94 5281.81 6828.37 5296.17 0.00 0.00 0.52 0.46
4 8269.20 5359.08 7438.80 5501.76 0.00 0.00 0.89 0.88 ** ** 7448.19 5506.48 0.00 0.00 0.91 0.90

α “ .3 α “ .4
2 7480.43 4986.02 6643.10 5112.35 0.00 0.00 0.00 0.00 ** ** 6649.51 5119.64 0.00 0.00 0.67 0.67
3 ** ** 6838.54 5299.75 0.00 0.00 0.81 0.74 ** ** 6843.04 5307.08 0.00 0.00 0.43 0.36
4 ** ** 7450.76 5510.76 0.00 0.00 0.52 0.45 ** ** 7453.28 5517.43 0.00 0.00 0.46 0.44

α “ .5 α “ .6
2 ** ** 6649.83 5125.42 0.00 0.00 0.53 0.54 ** ** 6638.98 5117.04 0.00 0.00 0.28 0.98
3 ** ** 6851.71 5308.20 0.00 0.00 0.76 0.74 ** ** 6848.75 5304.85 0.00 0.00 0.59 0.54
4 ** ** 7454.81 5518.91 0.00 0.00 0.72 0.93 ** ** 7452.25 5518.44 0.00 0.00 0.39 0.20

α “ .7 α “ .8
2 ** ** 6627.45 5110.62 0.00 0.00 0.75 0.75 ** ** 6625.53 5106.12 0.00 0.00 0.54 0.54
3 ** ** 6848.73 5303.42 0.00 0.00 0.58 0.42 ** ** 6845.16 5297.81 0.00 0.00 0.82 0.79
4 ** ** 7441.91 5509.63 0.00 0.00 0.36 0.06 ** ** 7439.64 5500.72 0.00 0.00 0.43 0.37

α “ .9 α “ 1
2 ** ** 6623.44 5104.45 0.00 0.00 0.29 0.13 ** ** 6621.47 5096.46 0.00 0.00 0.46 0.44
3 ** ** 6840.24 5292.39 0.00 0.00 0.75 0.73 ** ** 6840.18 5286.16 0.00 0.00 0.42 0.43
4 ** ** 7433.56 5497.01 0.00 0.00 0.59 0.48 ** ** 7425.33 5494.90 0.00 0.00 0.29 0.14

N=25
α “ .1 α “ .2

2 ** 9212.40 9858.00 7437.12 0.00 0.00 0.55 0.53 ** ** 9867.18 7439.19 0.00 0.00 0.13 0.11
3 ** 10611.90 13537.20 7518.72 0.00 0.00 0.62 0.37 ** ** 13546.20 7519.15 0.00 0.00 0.67 0.65
4 ** ** 14384.40 9860.16 0.00 0.00 0.49 0.48 ** ** 14394.47 9865.79 0.00 0.00 0.96 0.97
p α “ .3 α “ .4
2 ** ** 9878.69 7447.15 0.00 0.00 0.43 0.38 ** ** 9878.93 7456.55 0.00 0.00 0.92 0.87
3 ** ** 13553.44 7528.02 0.00 0.00 0.32 0.30 ** ** 13557.71 7534.88 0.00 0.00 0.88 0.89
4 ** ** 14045.58 9868.68 0.00 0.00 0.19 0.12 ** ** 14053.29 9871.96 0.00 0.00 0.62 0.60
p α “ .5 α “ .6
2 ** ** 9880.78 7464.29 0.00 0.00 0.17 0.12 ** ** 9880.08 7460.62 0.00 0.00 0.61 0.56
3 ** ** 13569.18 7541.57 0.00 0.00 0.16 0.19 ** ** 13561.40 7535.74 0.00 0.00 0.32 0.34
4 ** ** 14053.49 9879.33 0.00 0.00 0.71 0.75 ** ** 14051.54 9872.01 0.00 0.00 0.35 0.37
p α “ .7 α “ .8
2 ** ** 9875.10 7459.17 0.00 0.00 0.41 0.37 ** ** 9868.34 7453.98 0.00 0.00 0.34 0.01
3 ** ** 13560.47 7529.59 0.00 0.00 0.19 0.16 ** ** 13554.34 7522.31 0.00 0.00 0.72 0.65
4 ** ** 14041.42 9867.35 0.00 0.00 0.38 0.35 ** ** 14040.53 9861.10 0.00 0.00 0.63 0.67
p α “ .9 α “ 1
2 ** ** 9860.44 7444.39 0.00 0.00 0.52 0.51 ** ** 9856.14 7437.85 0.00 0.00 0.19 0.25
3 ** ** 13551.50 7514.02 0.00 0.00 0.68 0.66 ** ** 13548.45 7508.89 0.00 0.00 0.29 0.17
4 ** ** 14038.73 9857.57 0.00 0.00 0.35 0.34 ** ** 14038.32 9849.29 0.00 0.00 0.57 0.56
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Table 5: Comparison of computational performance with modified LR-SOCP method (CAB dataset)

p
CPU Time Gap % CPU Time Gap %

MISOCP LR-SOCP LR-SOCP* MISOCP LR-SOCP LR-SOCP* MISOCP LR-SOCP LR-SOCP* MISOCP LR-SOCP LR-SOCP*

N=10
α “ .1 α “ .2

2 98.40 123.60 82.01 0.00 0.00 0.00 108.82 128.47 86.03 0.00 0.00 0.00
3 241.20 256.80 185.41 0.00 0.00 0.00 241.60 266.94 204.75 0.00 0.00 0.00
4 358.80 380.40 334.25 0.00 0.00 0.00 367.60 381.83 335.33 0.00 0.00 0.00

α “ .3 α “ .4
2 109.81 129.54 96.30 0.00 0.00 0.00 116.91 138.82 103.40 0.00 0.00 0.00
3 242.86 271.29 238.28 0.00 0.00 0.00 245.64 281.53 237.11 0.00 0.00 0.00
4 375.59 387.61 340.89 0.00 0.00 0.00 380.82 387.71 340.58 0.00 0.00 0.00

α “ .5 α “ .6
2 119.80 144.67 108.08 0.00 0.00 0.00 108.70 143.70 107.22 0.00 0.00 0.00
3 250.56 283.26 248.71 0.00 0.00 0.00 244.94 281.66 237.20 0.00 0.00 0.00
4 391.37 392.38 344.87 0.00 0.00 0.00 381.77 386.89 340.18 0.00 0.00 0.00

α “ .7 α “ .8
2 96.82 142.70 91.82 0.00 0.00 0.00 93.88 142.05 77.33 0.00 0.00 0.00
3 237.69 277.65 214.02 0.00 0.00 0.00 237.36 274.03 230.32 0.00 0.00 0.00
4 375.43 383.81 337.39 0.00 0.00 0.00 374.70 380.89 334.50 0.00 0.00 0.00

α “ .9 α “ 1
2 83.50 133.47 81.57 0.00 0.00 0.00 73.25 132.02 72.24 0.00 0.00 0.00
3 234.34 265.81 233.45 0.00 0.00 0.00 222.93 261.99 220.50 0.00 0.00 0.00
4 364.13 373.71 328.08 0.00 0.00 0.00 360.53 372.73 327.06 0.00 0.00 0.00

N=15
α “ .1 α “ .2

2 1057.74 1124.04 989.11 0.00 0.00 0.00 1060.81 1131.62 995.75 0.00 0.00 0.00
3 1266.84 1455.54 1180.21 0.00 0.00 0.00 1273.75 1463.24 1287.50 0.00 0.00 0.00
4 2138.94 2869.26 2024.21 0.00 0.00 0.00 2148.03 2875.33 2530.23 0.00 0.00 0.00

α “ .3 α “ .4
2 1060.99 1133.79 997.64 0.00 0.00 0.00 1065.20 1134.25 997.53 0.00 0.00 0.00
3 1277.88 1469.22 1262.38 0.00 0.00 0.00 1282.45 1476.95 1278.84 0.00 0.00 0.00
4 2156.37 2875.91 2030.29 0.00 0.00 0.00 2162.27 2879.45 2133.20 0.00 0.00 0.00

α “ .5 α “ .6
2 1070.10 1139.36 1002.38 0.00 0.00 0.00 1064.96 1131.84 995.57 0.00 0.00 0.00
3 1292.32 1486.02 1286.74 0.00 0.00 0.00 1282.73 1482.60 1263.80 0.00 0.00 0.00
4 2172.13 2881.75 2035.82 0.00 0.00 0.00 2168.41 2872.54 2127.27 0.00 0.00 0.00

α “ .7 α “ .8
2 1062.55 1122.18 987.16 0.00 0.00 0.00 1060.01 1117.67 982.96 0.00 0.00 0.00
3 1280.49 1481.00 1278.29 0.00 0.00 0.00 1272.10 1472.99 1255.44 0.00 0.00 0.00
4 2162.41 2869.19 2124.07 0.00 0.00 0.00 2160.24 2865.93 2102.01 0.00 0.13 0.13

α “ .9 α “ 1
2 1059.42 1111.44 977.73 0.00 0.00 0.00 1052.24 1105.63 972.51 0.00 0.00 0.00
3 1270.28 1472.80 1265.77 0.00 0.00 0.00 1264.82 1471.32 1234.69 0.00 0.10 0.10
4 2152.16 2860.33 2106.22 0.00 0.54 0.56 2148.04 2860.07 2126.04 0.00 0.38 0.38

N=20
α “ .1 α “ .2

2 4962.30 5099.52 4486.71 0.00 0.00 0.00 4964.86 5102.58 4489.29 0.00 0.00 0.00
3 5265.24 5277.12 4643.58 0.00 0.22 0.11 5270.84 5282.76 4647.93 0.00 0.46 0.37
4 5305.02 5496.96 4836.98 0.00 0.88 0.71 ** 5505.88 4844.65 0.00 0.90 0.72

α “ .3 α “ .4
2 4968.30 5110.69 4496.98 0.00 0.00 0.00 ** 5112.93 4498.79 0.00 0.67 0.51
3 ** 5286.14 4650.84 0.00 0.74 0.41 ** 5289.02 4653.97 0.00 0.36 0.40
4 ** 5506.74 4845.77 0.00 0.45 0.31 ** 5516.05 4853.58 0.00 0.44 0.28

α “ .5 α “ .6
2 ** 5117.93 4503.21 0.00 0.54 0.47 ** 5116.91 4502.63 0.00 0.98 0.20
3 ** 5291.36 4656.12 0.00 0.74 0.71 ** 5284.49 4649.88 0.00 0.54 0.27
4 ** 5523.93 4861.00 0.00 0.93 0.65 ** 5515.32 4852.90 0.00 0.20 0.98

α “ .7 α “ .8
2 ** 5115.88 4501.00 0.00 0.75 0.61 ** 5113.13 4498.59 0.00 0.54 0.09
3 ** 5276.97 4643.19 0.00 0.42 0.39 ** 5272.00 4639.28 0.00 0.79 0.92
4 ** 5514.52 4852.49 0.00 0.06 0.27 ** 5510.01 4848.66 0.00 0.37 0.76

α “ .9 α “ 1
2 ** 5110.39 4496.23 0.00 0.13 0.22 ** 5106.52 4493.01 0.00 0.44 0.44
3 ** 5266.14 4633.29 0.00 0.73 0.43 ** 5264.47 4632.13 0.00 0.43 0.28
4 ** 5501.67 4841.07 0.00 0.48 0.59 ** 5498.18 4837.95 0.00 0.14 0.99

N=25
α “ .1 α “ .2

2 9181.80 7433.28 6540.75 0.00 0.53 0.14 ** 7441.90 6548.05 0.00 0.11 0.23
3 10547.10 7515.84 6613.91 0.00 0.37 0.57 ** 7524.78 6620.97 0.00 0.65 0.69
4 ** 9814.08 7135.84 0.00 0.48 0.37 ** 9817.81 7038.91 0.00 0.97 0.27

α “ .3 α “ .4
2 ** 7442.82 6549.45 0.00 0.38 0.77 ** 7452.03 6556.98 0.00 0.87 0.81
3 ** 7527.01 6622.93 0.00 0.30 0.50 ** 7534.32 6629.84 0.00 0.89 0.79
4 ** 9823.65 7136.09 0.00 0.12 0.74 ** 9832.41 7039.68 0.00 0.60 0.41

α “ .5 α “ .6
2 ** 7453.63 6558.22 0.00 0.12 0.22 ** 7447.83 6553.78 0.00 0.56 0.57
3 ** 7542.03 6636.54 0.00 0.19 0.87 ** 7536.04 6630.72 0.00 0.34 0.91
4 ** 9841.30 7136.74 0.00 0.75 0.64 ** 9836.10 7040.30 0.00 0.37 0.29

α “ .7 α “ .8
2 ** 7444.49 6550.84 0.00 0.37 0.98 ** 7443.25 6549.33 0.00 0.01 0.47
3 ** 7531.64 6627.18 0.00 0.16 0.54 ** 7527.37 6623.13 0.00 0.65 0.61
4 ** 9834.78 7136.92 0.00 0.35 0.13 ** 9826.11 7040.60 0.00 0.67 0.85

α “ .9 α “ 1
2 ** 7434.66 6541.74 0.00 0.51 0.87 ** 7425.66 6534.48 0.00 0.25 0.24
3 ** 7521.18 6618.32 0.00 0.66 0.95 ** 7519.01 6616.04 0.00 0.17 0.17
4 ** 9816.75 7137.91 0.00 0.34 0.43 ** 9807.41 7040.92 0.00 0.56 0.79
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approaches, namely, CPA, MISOCP, LR-CPA, LR-SOCP. Besides proposing various reformulations for
the problem, our primary contribution lied in using second order cone programming within Lagrangian
relaxation to solve the problem efficiently. The LR-SOCP method along with its refinement, which
relied on this idea, was able to solve all the problem instances within 1% optimality gap in less than
2 hours of CPU time.

There are several directions in which the current work can be extended. First, prompted by our
success in the current study, we foresee the application of SOCP within Lagrangian relaxation in
similar classes of problems, where non-linearity may arise due to competition, congestion, economies
of scale, uncertainties, etc. Second, the problem studied in this paper does not take into account the
response of the competing firms to the entrant’s actions. One possible extension of COHLP could be
to model it as a leader-follower game, wherein the entrant takes into account the follower’s response
while solving its problem.
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Table 6: Comparison of computation time for various optimality tolerance across approaches (CAB
dataset)

p % Gap
CPU Time

CPA LR-CPA LR-SOCP CPA LR-CPA LR-SOCP CPA LR-CPA LR-SOCP CPA LR-CPA LR-SOCP CPA LR-CPA LR-SOCP

N=10
α “ .1 α “ .2 α “ .3 α “ .4 α “ .5

2
5 93.83 72.53 54.64 94.19 78.00 56.92 87.92 81.46 53.04 95.07 81.84 54.77 94.01 76.00 56.99
2 173.31 147.59 59.74 178.02 151.19 60.03 185.84 148.68 66.42 185.25 156.51 62.99 196.80 158.39 80.24
1 254.40 218.40 123.60 266.01 220.05 128.47 273.29 223.78 129.54 275.44 226.14 138.82 283.12 231.32 144.67

3
5 154.46 146.67 100.83 157.65 151.94 103.07 149.63 148.07 118.10 157.34 157.17 113.22 158.89 163.17 112.15
2 305.12 288.66 134.43 309.48 305.98 134.09 304.27 306.32 135.56 323.90 309.47 141.19 323.35 320.85 143.13
1 454.80 440.40 256.80 466.16 446.05 266.94 477.12 453.38 271.29 486.05 461.17 281.53 493.74 461.26 283.26

4
5 228.88 225.76 153.39 241.13 226.84 155.68 237.25 229.49 164.68 243.01 231.14 159.71 239.17 242.14 159.61
2 471.90 459.07 194.40 483.91 462.18 193.82 489.83 460.47 199.05 481.53 463.00 197.88 486.50 476.14 205.13
1 700.80 685.20 380.40 711.58 695.11 381.83 723.19 705.56 387.61 732.00 713.16 387.71 738.77 718.08 392.38

α “ .6 α “ .7 α “ .8 α “ .9 α “ 1

2
5 97.77 80.50 63.83 97.10 1404.09 64.60 90.70 70.45 55.56 88.27 75.44 55.56 83.50 72.93 57.39
2 188.47 147.87 76.48 181.36 2095.62 74.68 175.64 144.23 70.13 179.35 166.41 70.13 178.28 134.74 65.27
1 279.09 219.86 143.70 278.57 212.40 142.70 278.22 201.74 142.05 268.14 192.66 133.47 263.16 181.91 132.02

3
5 163.56 150.63 113.72 156.54 114.94 109.82 155.82 155.88 99.46 159.95 115.12 99.46 156.41 149.62 105.38
2 318.86 304.31 145.87 313.47 173.59 133.28 314.02 302.58 127.08 307.84 170.03 127.08 304.45 290.97 128.02
1 490.13 458.63 281.66 483.83 450.81 277.65 482.01 450.18 274.03 474.81 449.14 265.81 473.82 442.83 261.99

4
5 241.09 239.56 157.82 245.36 2269.27 161.43 235.95 230.45 148.50 247.34 2268.75 148.50 237.76 221.40 142.99
2 486.47 474.83 200.80 486.98 3382.36 195.11 480.06 463.45 187.93 485.51 3372.51 187.93 478.34 451.50 180.56
1 732.44 713.93 386.89 723.78 704.59 383.81 711.91 699.10 380.89 704.49 695.72 373.71 694.66 685.76 372.73

N=15
α “ .1 α “ .2 α “ .3 α “ .4 α “ .5

2
5 801.86 689.13 528.22 804.58 692.09 536.06 806.08 691.28 544.43 814.88 700.19 542.19 811.29 707.38 546.68
2 1618.58 1402.40 664.98 1619.55 1407.64 668.33 1627.14 1403.32 676.39 1642.46 1406.14 678.87 1645.38 1422.33 675.85
1 2410.80 2090.40 1124.04 2422.77 2101.86 1131.62 2424.86 2109.82 1133.79 2432.79 2113.56 1134.25 2436.60 2124.44 1139.36

3
5 955.58 573.95 686.94 949.74 574.82 684.83 950.72 573.31 696.70 956.81 576.88 690.13 961.24 582.77 692.47
2 1929.29 1143.09 855.76 1929.07 1150.67 858.81 1932.82 1152.99 866.08 1929.68 1168.36 867.81 1946.97 1162.39 871.25
1 2876.40 2552.40 1455.54 2879.81 2554.30 1463.24 2881.25 2558.78 1469.22 2887.77 2565.74 1476.95 2899.46 2570.98 1486.02

4
5 1232.99 1118.30 1351.51 1222.98 1116.99 1353.38 1235.78 1115.17 1353.51 1237.51 1129.34 1359.37 1328.00 1127.46 1359.70
2 2488.06 2262.19 1696.03 2483.11 2261.35 1693.75 2501.83 2266.78 1692.54 2502.54 2282.71 1699.34 2527.70 2280.60 1701.32
1 3711.60 3375.60 2869.26 3721.19 3385.93 2875.33 3727.29 3387.74 2875.91 3732.15 3391.26 2879.45 ** 3400.30 2881.75

α “ .6 α “ .7 α “ .8 α “ .9 α “ 1

2
5 814.90 693.25 546.25 813.65 699.82 546.25 809.12 697.39 540.37 806.85 697.22 534.80 795.27 694.13 534.94
2 1642.94 1413.91 676.86 1633.41 1404.09 672.30 1626.98 1402.32 675.69 1629.76 1407.44 666.75 1620.48 1403.70 666.09
1 2431.10 2124.09 1131.84 2422.60 2113.51 1122.18 2422.07 2108.33 1117.67 2421.99 2097.56 1111.44 2419.63 2096.78 1105.63

3
5 958.68 572.43 699.23 951.30 568.30 696.14 881.74 571.61 694.61 860.53 563.89 685.52 851.73 564.68 691.29
2 1925.49 1159.98 865.44 1937.01 1158.94 870.37 1919.14 1157.58 866.74 1850.97 1145.12 855.89 1758.10 1151.18 857.28
1 2890.56 2560.33 1482.60 2880.59 2555.50 1481.00 ** 2554.79 1472.99 ** 2548.33 1472.80 ** 2547.27 1471.32

4
5 1334.88 1125.79 1357.43 1400.08 1117.63 1362.30 1468.80 1115.76 1350.63 1485.81 1120.86 1357.55 1504.70 1113.48 1354.39
2 2576.35 2270.12 1699.11 ** 2269.27 1698.80 ** 2269.90 1697.38 ** 2268.75 1699.00 ** 2266.69 1692.04
1 ** 3399.01 2872.54 ** 3390.70 2869.19 ** 3388.04 2865.93 ** 3380.02 2860.33 ** 3377.80 2860.07

N=20
α “ .1 α “ .2 α “ .3 α “ .4 α “ .5

2
5 2462.61 2192.99 2560.20 2474.30 2188.18 2556.31 3366.79 2188.65 2561.07 3390.42 2197.69 2560.29 3420.02 2194.62 2554.01
2 5001.67 4436.82 3197.86 5013.06 4441.28 3186.75 5021.27 4443.29 3197.96 5052.18 4448.79 3197.18 5098.68 4444.78 3190.47
1 7462.80 6627.60 5099.52 7464.46 6635.39 5102.58 7469.40 6643.19 5110.69 ** 6649.73 5112.93 ** 6650.83 5117.93

3
5 2590.43 2256.29 2637.88 2595.45 2260.06 2642.16 3520.78 2257.65 2644.52 3468.83 2261.56 2650.73 3431.78 2258.10 2649.95
2 5253.68 4570.42 3301.60 5266.89 4568.35 3305.84 5246.21 4581.17 3305.55 5169.59 4582.34 3311.21 5111.45 4590.46 3313.15
1 7840.80 6826.80 5277.12 7842.43 6828.94 5282.76 ** 6835.76 5286.14 ** 6847.27 5289.02 ** 6853.44 5291.36

4
5 2714.77 2456.25 2747.65 3690.91 2459.39 2751.15 3663.41 2462.12 2750.25 3641.69 2469.07 2758.12 3612.33 2467.44 2750.88
2 5506.05 4990.55 3441.11 5496.66 4991.21 3432.61 5467.76 5005.02 3436.36 5433.35 5001.48 3439.11 ** 5006.78 3445.15
1 8204.40 7438.80 5496.96 ** 7442.65 5505.88 ** 7446.61 5506.74 ** 7448.31 5516.05 ** 7453.64 5523.93

α “ .6 α “ .7 α “ .8 α “ .9 α “ 1

2
5 3381.43 2196.56 2559.70 3369.91 2192.08 2551.26 3334.73 2183.62 2551.01 3312.95 2181.46 2547.86 3298.19 2187.25 2536.78
2 5036.81 4445.66 3203.22 5015.28 4445.34 3190.68 4970.61 4432.81 3185.43 4937.24 4427.31 3189.31 4918.96 4422.86 3175.99
1 ** 6642.90 5116.91 ** 6637.00 5115.88 ** 6634.03 5113.13 ** 6623.62 5110.39 ** 6620.73 5106.52

3
5 3418.95 2261.84 2655.91 3364.15 2252.00 2655.69 3358.66 2257.61 2651.40 3299.10 2255.23 2650.84 3283.99 2253.38 2642.89
2 5093.73 4583.49 3318.28 5017.58 4572.45 3313.46 4999.96 4581.21 3311.04 4922.42 4576.70 3314.90 4883.78 4578.20 3305.85
1 ** 6848.21 5284.49 ** 6845.88 5276.97 ** 6842.48 5272.00 ** 6839.70 5266.14 ** 6837.70 5264.47

4
5 3575.41 2463.34 2757.65 3556.21 2470.62 2745.60 3542.07 2466.27 2740.48 3529.40 2460.72 2747.58 3496.04 2451.66 2738.44
2 5330.41 5001.42 3434.32 5297.87 4993.01 3432.78 5277.77 4991.86 3423.92 5255.13 4991.31 3424.54 5208.15 4980.50 3425.38
1 ** 7442.10 5515.32 ** 7439.47 5514.52 ** 7438.56 5510.01 ** 7438.26 5501.67 ** 7435.44 5498.18

N=25
α “ .1 α “ .2 α “ .3 α “ .4 α “ .5

2
5 2714.77 2456.25 2747.65 3690.91 2459.39 2751.15 3663.41 2462.12 2750.25 3641.69 2469.07 2758.12 3612.33 2467.44 2750.88
2 5506.05 4990.55 3441.11 5496.66 4991.21 3432.61 5467.76 5005.02 3436.36 5433.35 5001.48 3439.11 ** 5006.78 3445.15
1 ** 9858.00 7433.28 ** 9863.50 7441.90 ** 9866.01 7442.82 ** 9868.86 7452.03 ** 9873.72 7453.63

3
5 8291.04 3257.23 3715.00 8326.63 3263.12 3719.91 8406.48 3260.43 3722.02 8479.43 3257.99 3719.35 8514.11 3271.50 3733.07
2 10671.60 6612.57 4651.08 ** 6610.64 4649.01 ** 6613.37 4652.39 ** 6612.21 4649.05 ** 6625.89 4654.93
1 ** 13537.20 7515.84 ** 13546.48 7524.78 ** 13547.74 7527.01 ** 13556.54 7534.32 ** 13558.51 7542.03

4
5 8459.00 4468.41 3764.54 8580.14 4471.56 3768.16 8457.82 4473.10 3765.11 8783.84 4475.39 3763.38 8579.26 4474.82 3769.95
2 ** 9073.15 4702.79 ** 9080.39 4699.12 ** 9081.00 4700.63 ** 9086.17 4702.40 ** 9085.90 4709.75
1 ** 14384.40 9814.08 ** 14394.77 9817.81 ** 14044.10 9823.65 ** 14052.05 9832.41 ** 14063.25 9841.30

α “ .6 α “ .7 α “ .8 α “ .9 α “ 1

2
5 3575.41 2463.34 2757.65 3556.21 2470.62 2745.60 3542.07 2466.27 2740.48 3529.40 2460.72 2747.58 3496.04 2451.66 2738.44
2 5330.41 5001.42 3434.32 5297.87 4993.01 3432.78 5277.77 4991.86 3423.92 5255.13 4991.31 3424.54 5208.15 4980.50 3425.38
1 ** 9863.95 7447.83 ** 9858.28 7444.49 ** 9855.48 7443.25 ** 9853.12 7434.66 ** 9848.51 7425.66

3
5 8628.60 3268.02 3717.13 8488.47 3266.43 3723.02 8490.45 3262.60 3717.76 8598.02 3266.59 3707.63 8493.18 3262.01 3703.55
2 ** 6621.43 4653.14 ** 6616.07 4647.88 ** 6619.39 4649.40 ** 6616.93 4641.67 ** 6617.78 4637.53
1 ** 13546.79 7536.04 ** 13538.87 7531.64 ** 13537.30 7527.37 ** 13528.94 7521.18 ** 13526.34 7519.01

4

5 8715.25 4472.97 3761.69 8646.46 4473.90 3764.66 8749.77 4471.37 3761.37 8948.32 4466.46 3761.38 8704.08 4465.20 3752.83
2 ** 9079.27 4705.26 ** 9078.93 4702.12 ** 9078.23 4700.58 ** 9063.17 4696.48 ** 9068.92 4691.59
1 ** 14058.07 9836.10 ** 14054.51 9834.78 ** 14045.84 9826.11 ** 14039.29 9816.75 ** 14031.71 9807.41
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Table 7: Comparison of computation time for various optimality tolerance (AP dataset)

p % Gap
CPU Time

CPA LR-CPA LR-SOCP CPA LR-CPA LR-SOCP CPA LR-CPA LR-SOCP CPA LR-CPA LR-SOCP CPA LR-CPA LR-SOCP

N=10
α “ .1 α “ .2 α “ .3 α “ .4 α “ .5

2
5 89.34 71.18 54.39 92.37 86.33 52.21 89.29 73.86 58.09 90.69 88.32 57.31 95.82 85.11 66.65
2 176.71 144.54 65.37 177.40 160.86 64.07 179.27 157.67 69.99 182.97 164.65 76.17 192.28 170.84 79.29
1 256.80 218.40 128.40 260.79 229.74 131.41 267.34 231.67 133.52 273.01 242.92 134.77 283.93 251.27 140.86

3
5 150.55 150.51 104.25 156.90 155.53 112.77 152.15 150.23 118.40 156.83 159.07 117.63 162.28 156.61 118.28
2 313.25 297.88 137.58 311.37 304.45 144.00 313.29 301.55 140.70 323.93 307.28 145.52 323.43 313.29 156.44
1 457.20 440.40 262.80 460.68 447.80 273.62 467.30 455.38 284.63 470.67 463.73 285.75 474.69 469.92 294.81

4
5 240.51 230.07 155.04 233.52 230.74 166.02 239.63 233.64 165.52 242.16 235.85 172.34 241.99 233.05 182.12
2 468.38 463.18 201.73 474.20 455.78 211.39 488.25 465.23 207.14 500.49 467.11 212.46 492.76 471.71 213.19
1 703.20 685.20 393.60 714.63 687.12 404.25 725.61 693.93 415.30 734.27 699.24 426.35 735.65 703.26 437.40

α “ .6 α “ .7 α “ .8 α “ .9 α “ 1

2
5 98.24 90.08 59.83 101.72 93.02 52.48 98.58 76.22 53.47 98.87 79.60 53.47 95.95 71.27 44.81
2 198.08 172.53 68.30 183.87 183.52 62.33 193.63 151.69 63.32 181.82 179.95 63.32 177.00 149.02 47.64
1 281.58 250.56 137.57 281.52 242.17 131.33 279.45 230.67 120.68 271.56 224.46 111.10 264.17 216.35 102.55

3
5 165.69 155.45 121.41 161.34 151.73 118.80 152.58 150.00 107.57 152.96 138.24 107.57 156.60 150.13 102.85
2 321.60 306.80 143.56 317.01 283.89 137.91 313.38 307.59 134.61 299.49 1705.82 134.61 303.90 290.85 129.64
1 471.75 463.08 284.67 469.22 452.59 280.76 462.25 450.42 271.34 451.01 440.83 259.44 441.76 437.32 256.15

4
5 244.99 238.15 176.91 246.93 229.52 179.98 246.47 230.31 166.16 243.38 227.57 166.16 234.04 223.36 168.26
2 491.75 469.30 223.99 487.45 338.72 222.09 490.21 454.06 211.17 489.80 375.05 211.17 483.33 440.53 205.20
1 733.32 696.32 432.22 727.71 685.92 425.38 725.11 683.72 423.18 723.82 674.12 419.69 715.89 664.54 417.06

N=15
α “ .1 α “ .2 α “ .3 α “ .4 α “ .5

2
5 802.80 690.56 531.26 806.37 695.09 535.00 805.49 695.74 533.70 807.01 705.06 546.00 806.08 705.15 545.51
2 1613.45 1398.53 669.57 1626.38 1412.18 667.32 1635.31 1410.64 671.09 1636.66 1416.48 675.80 1645.89 1432.85 675.01
1 2413.20 2090.40 1131.18 2420.69 2101.80 1132.24 2428.32 2108.64 1142.19 2431.29 2120.64 1149.88 2442.35 2126.43 1153.84

3
5 954.45 570.41 692.30 952.15 568.57 685.68 952.96 571.25 688.70 964.05 580.67 702.66 963.49 581.43 701.49
2 1929.25 1148.48 864.94 1934.53 1154.68 865.10 1937.11 1153.14 862.54 1943.87 1164.13 874.82 1939.06 1164.41 875.08
1 2882.40 1712.40 1459.62 2882.65 1715.60 1464.81 2885.34 1725.36 1471.40 2891.17 1736.68 1480.43 2895.93 1739.86 1482.54

4
5 1232.66 1117.30 1360.91 1239.19 1122.81 1353.03 1233.25 1123.70 1367.17 1234.78 1122.67 1365.59 1328.00 1134.57 1366.79
2 2498.45 2258.48 1691.35 2507.70 2260.81 1693.07 2506.77 2273.50 1699.70 2500.79 2282.78 1706.22 2527.70 2281.49 1712.39
1 3716.40 3375.60 2878.44 3726.99 3380.85 2882.25 3734.91 3391.80 2886.56 3740.35 3398.68 2893.28 ** 3404.09 2895.82

α “ .6 α “ .7 α “ .8 α “ .9 α “ 1

2
5 815.88 702.16 543.81 800.32 705.90 546.06 804.61 701.06 545.67 798.40 699.20 535.87 801.89 701.61 537.72
2 1639.80 1421.44 680.81 1628.88 1413.02 675.81 1627.86 1417.00 673.27 1620.26 1409.60 666.14 1614.50 1416.93 672.90
1 2438.24 2115.09 1144.98 2430.70 2107.37 1144.18 2424.40 2102.39 1143.20 2414.92 2099.57 1136.75 2408.49 2098.97 1129.51

3
5 951.22 577.31 695.92 948.80 571.39 701.70 881.74 569.28 703.86 860.53 573.10 690.94 851.73 560.32 692.14
2 1939.17 1160.59 875.14 1926.24 1163.73 871.23 1919.14 1152.07 873.21 1850.97 1146.24 872.24 1758.10 1140.30 866.30
1 2884.95 1734.61 1475.46 2873.91 1726.42 1475.23 ** 1716.93 1474.96 ** 1708.89 1472.50 ** 1706.02 1465.48

4
5 1334.88 1126.35 1359.62 1400.08 1126.34 1365.38 1468.80 1118.48 1355.86 1485.81 1123.23 1358.79 1504.70 1115.74 1351.22
2 2576.35 2279.35 1701.11 ** 2281.52 1699.84 ** 2272.96 1694.16 ** 2271.57 1697.19 ** 2264.75 1691.86
1 ** 3397.24 2889.19 ** 3392.79 2882.19 ** 3390.24 2874.15 ** 3379.60 2872.03 ** 3371.93 2864.35

N=20
α “ .1 α “ .2 α “ .3 α “ .4 α “ .5

2
5 2469.13 2188.12 2554.46 2464.24 2197.22 2558.99 3363.92 2189.61 2555.62 3390.42 2198.33 2565.43 3420.02 2200.51 2565.48
2 5002.07 4441.97 3192.76 5006.18 4448.37 3192.31 5005.23 4453.69 3194.19 5052.18 4453.49 3196.34 5098.68 4456.70 3206.97
1 7465.20 6627.60 5104.32 7468.53 6635.85 5111.62 7480.43 6643.10 5112.35 ** 6649.51 5119.64 ** 6649.83 5125.42

3
5 2592.06 2254.91 2648.87 2600.14 2253.47 2654.25 3520.78 2255.73 2655.12 3468.83 2257.33 2656.57 3431.78 2262.62 2657.78
2 5268.57 4576.57 3310.07 5277.03 4568.08 3308.21 5246.21 4578.94 3320.39 5169.59 4587.31 3319.72 5111.45 4596.29 3323.18
1 7855.20 6826.80 5291.52 7866.94 6828.37 5296.17 ** 6838.54 5299.75 ** 6843.04 5307.08 ** 6851.71 5308.20

4
5 2729.50 2461.29 2755.46 3690.91 2455.92 2760.36 3663.41 2461.17 2766.54 3641.69 2464.00 2761.20 3612.33 2467.13 2761.61
2 5542.37 4988.35 3439.40 5496.66 4994.56 3448.75 5467.76 4992.72 3450.33 5433.35 5002.74 3453.20 ** 4993.50 3450.08
1 8269.20 7438.80 5501.76 ** 7448.19 5506.48 ** 7450.76 5510.76 ** 7453.28 5517.43 ** 7454.81 5518.91

α “ .6 α “ .7 α “ .8 α “ .9 α “ 1

2
5 3381.43 2196.81 2561.39 3369.91 2187.99 2563.57 3334.73 2191.17 2555.47 3312.95 2186.85 2556.74 3298.19 2185.78 2558.69
2 5036.81 4451.52 3205.66 5015.28 4443.13 3198.97 4970.61 4440.39 3196.64 4937.24 4435.10 3190.22 4918.96 4436.20 3193.58
1 ** 6638.98 5117.04 ** 6627.45 5110.62 ** 6625.53 5106.12 ** 6623.44 5104.45 ** 6621.47 5096.46

3
5 3418.95 2262.59 2657.95 3364.15 2261.88 2655.26 3358.66 2264.79 2650.94 3299.10 2257.18 2647.27 3283.99 2261.19 2652.81
2 5093.73 4587.72 3321.27 5017.58 4591.31 3313.50 4999.96 4584.38 3306.42 4922.42 4581.78 3309.19 4883.78 4585.34 3303.66
1 ** 6848.75 5304.85 ** 6848.73 5303.42 ** 6845.16 5297.81 ** 6840.24 5292.39 ** 6840.18 5286.16

4
5 3575.41 2467.53 2764.13 3556.21 2461.77 2755.10 3542.07 2452.70 2756.09 3529.40 2455.13 2746.81 3496.04 2453.12 2753.02
2 5330.41 4989.46 3447.28 5297.87 4995.66 3448.01 5277.77 4982.35 3446.74 5255.13 4981.52 3437.14 5208.15 4979.08 3445.96
1 ** 7452.25 5518.44 ** 7441.91 5509.63 ** 7439.64 5500.72 ** 7433.56 5497.01 ** 7425.33 5494.90

N=25
α “ .1 α “ .2 α “ .3 α “ .4 α “ .5

2
5 2729.50 2461.29 2755.46 3690.91 2455.92 2760.36 3663.41 2461.17 2766.54 3641.69 2464.00 2761.20 3612.33 2467.13 2761.61
2 5542.37 4988.35 3439.40 5496.66 4994.56 3448.75 5467.76 4992.72 3450.33 5433.35 5002.74 3453.20 ** 4993.50 3450.08
1 ** 9858.00 7437.12 ** 9867.18 7439.19 ** 9878.69 7447.15 ** 9878.93 7456.55 ** 7445.56 7464.29

3
5 8338.81 3260.35 3722.32 8390.04 3263.86 3719.23 8469.72 3260.64 3726.75 8489.18 3262.74 3730.09 8550.28 3264.26 3740.08
2 10671.60 6609.86 4646.16 ** 6608.91 4647.21 ** 6624.16 4658.06 ** 6615.77 4657.80 ** 6624.06 4668.20
1 ** 13537.20 7518.72 ** 13546.20 7519.15 ** 13553.44 7528.02 ** 13557.71 7534.88 ** 13569.18 7541.57

4
5 8555.15 4473.29 3764.59 8458.07 4477.10 3764.53 8480.50 4474.89 3770.22 8732.17 4483.44 3769.55 8881.35 4482.03 3777.81
2 ** 9075.67 4697.97 ** 9079.79 4701.20 ** 9077.72 4709.94 ** 9088.90 4711.89 ** 9087.55 4716.03
1 ** 14384.40 9860.16 ** 14394.47 9865.79 ** 14045.58 9868.68 ** 14053.29 9871.96 ** 14053.49 9879.33

α “ .6 α “ .7 α “ .8 α “ .9 α “ 1

2
5 3575.41 2467.53 2764.13 3556.21 2461.77 2755.10 3542.07 2452.70 2756.09 3529.40 2455.13 2746.81 3496.04 2453.12 2753.02
2 5330.41 4989.46 3447.28 5297.87 4995.66 3448.01 5277.77 4982.35 3446.74 5255.13 4981.52 3437.14 5208.15 4979.08 3445.96
1 ** 9880.08 7460.62 ** 9875.10 7459.17 ** 9868.34 7453.98 ** 9860.44 7444.39 ** 9856.14 7437.85

3
5 8625.57 3264.11 3737.09 8496.36 3260.34 3735.51 8557.70 3264.40 3728.75 8636.78 3265.08 3727.94 8505.16 3256.56 3723.55
2 ** 6624.07 4670.63 ** 6616.75 4665.41 ** 6605.43 4654.53 ** 6611.60 4661.52 ** 6608.81 4649.86
1 ** 13561.40 7535.74 ** 13560.47 7529.59 ** 13554.34 7522.31 ** 13551.50 7514.02 ** 13548.45 7508.89

4

5 8787.31 4484.15 3777.04 8854.99 4478.47 3765.44 8624.09 4473.32 3769.06 8944.90 4478.49 3760.90 8632.15 4473.17 3754.23
2 ** 9092.38 4709.60 ** 9079.95 4713.14 ** 9079.26 4704.31 ** 9073.29 4701.13 ** 9081.80 4698.01
1 ** 14051.54 9872.01 ** 14041.42 9867.35 ** 14040.53 9861.10 ** 14038.73 9857.57 ** 14038.32 9849.29

** out of memory
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