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Abstract: To improve operational flexibility, throughput capacity, and responsiveness

in order fulfillment operations, several distribution centers are implementing autonomous

vehicle-based storage and retrieval (AVS/R) system in their high-density storage areas. In

such systems, vehicles are self-powered to travel in horizontal directions (x- and y- axes), and

use lifts or conveyors for vertical motion (z-axis). In this research, we propose a multi-tier

queuing modeling framework for the performance analysis of such vehicle-based warehouse

systems. We develop an embedded Markov chain based analysis approach to estimate the

first and second moment of inter-departure times from the load-dependent station within a
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semi-open queuing network. The linking solution approach uses traffic process approxima-

tions to analyze the performance of sub-models corresponding to individual tiers (semi-open

queues) and the vertical transfer units (open queues). These sub-models are linked to form

an integrated queuing network model, which is solved using an iterative algorithm. Perfor-

mance estimates such as expected transaction cycle times and resource (vehicle and vertical

transfer unit) utilization are determined using this algorithm, and can be used to evaluate

a variety of design configurations during the conceptualization phase.

Keywords: vehicle-based warehouse systems, integrated queuing model, linking algorithm,

embedded Markov chains, semi-open queues

1 Introduction

Autonomous vehicle-based technologies were introduced during the late 1990s to improve

the flexibility and responsiveness in handling unit-loads within a warehouse. Savoye Lo-

gistics, a France-based equipment manufacturer, pioneered the development of the Au-

tonomous Vehicle-based Storage and retrieval system (AVS/RS) (see www.sayove.com).

The main components of an AVS/RS are autonomous vehicles, lifts, and a system of rails

in the rack area. Autonomous vehicles provide horizontal movement (x-axis and y-axis)

within a tier using rails, and lifts provide vertical movement (z-axis) between tiers. Several

variants of AVS/RS have been introduced by Vanderlande Industries and Nedcon, and are

practiced to handle both unit-load pallets as well as totes.

Although autonomous vehicle-based warehouse automation systems offer substantial

throughput flexibility, they also involve additional operational complexities due to blocking

and bottlenecks among the horizontal and vertical load transfer mechanisms. The objective
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Figure 1: Illustration of: (a) a warehouse using AVS/RS - system view, and (b) vehicle-lift
interface in AVS/RS (source: Savoye Logistics)

of this paper is to provide a modeling framework and solution methodology to evaluate

the performance of AVS/R with alternate vertical transfer mechanisms. We describe this

methodology and demonstrate its application by analyzing the design tradeoffs in tier-

captive warehouse systems. However, the models can be used to analyze the performance

of other variants of autonomous vehicle-based storage and retrieval systems.

In the literature, a few studies on AVS/RS use semi-open queuing network (SOQN)

models to analyze the system performance (see Malmborg [2003], Roy et al. [2012], Roy

et al. [2014], Ekren et al. [2013]). The existing models either analyze the performance of a

single tier (with and without blocking) or they analyze the performance of multi-tier systems

with pooled vehicles (by ignoring the blocking effects). A few studies are also available on

the performance analysis of AVS/RS with tier-captive vehicles. Amongst them, Heragu

et al. [2011] proposed an open queuing network (OQN) model where both lifts and tiers

are modeled as shared FCFS servers. The OQN is solved using a parametric decomposition

approach. Current literature has two main limitations. First, it does not provide the

distribution of vehicles in the aisles and cross-aisle of the tiers. Distribution of vehicles in
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a tier is of significant interest to design engineers because they provide information on the

congestion effects at aisles, cross-aisles, and LU points. Second, they do not capture the

vehicle interference in the cross-aisles and aisles, which results in additional delays. The

SOQN model realistically captures the synchronization between transaction and vehicles

because within a tier either a transaction could wait for a vehicle or a vehicle could wait for

a transaction arrival. However, there are other challenges related to the analysis of these

SOQNs. First, SOQNs do not have a product-form solution, which makes the analysis

harder. Second, as the number of stations in the network grows, the analysis of SOQNs

using Markov chains becomes infeasible because of the curse of state space dimensionality.

Third, the resource travel times follow a general service time distribution, which makes the

analysis more complex. Further, there are specific service protocols for the use of resources

(vehicles, vertical transfer units) during service, which need to be analyzed carefully. The

blocking delays introduced due to sharing of resources such as aisles and cross-aisles should

also be captured in the analysis.

We propose a decomposition-based analysis approach, which addresses the above chal-

lenges. The individual tiers are modeled using a semi-open queuing network (SOQN) and

the vertical transfer subsystem is modeled using an open queuing network (OQN). These

subsystems are combined into an integrated queuing network model, which is composed

of multiple SOQN models denoting the tiers and an OQN model denoting the conveyor.

This network is complex to solve in its original form. This results in an integrated queuing

network model consisting of multiple inter-connected SOQNs. In the integrated queuing

network model, each single tier is replaced by an equivalent load-dependent station and

the individual tiers and the vertical transfer unit are linked using an algorithm based on

an embedded Markov chain analysis. Modeling each tier dynamics with a load-dependent

station greatly reduces the number of components in the SOQN state-space description and
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the number of states for describing each SOQN. The vehicle routing within a tier captures

the service protocols and the blocking delays are measured using queues in the model for

each tier. We conduct our analysis with the first two-moments of the relevant distributions,

which keeps our analysis relatively simple; this seems sufficient for estimating the perfor-

mance measures. This solution approach is validated against detailed simulations using

practical data and also used to test the performance of alternate vertical transfer mecha-

nisms and investigate its effect on system throughput capacity. Existing SOQN solution

methods cannot efficiently solve multiple SOQNs that are interconnected with each other

(Avi-Itzhak and Heyman [1973], Dallery [1990], Buitenhek et al. [2000], Jia and Heragu

[2009]). Our approach provides a solution framework that addresses all of these challenges.

The rest of this paper is organized as follows. Section 2 describes the system operations

and explains the system modeling approach. The queuing network model for horizontal

movement within a single tier is described in Section 3 whereas the departure process

analysis for a tier is discussed in Section 4. The queuing network model for the vertical

transfer mechanism is illustrated in Section 5. In Section 6, the integrated queuing network

model, which links the queuing models for tiers with the vertical transfer unit, is discussed

and the approach to estimate the performance measures of the vertical transfer subsystem

is presented in Section 7. Numerical results are presented in Section 8 and the conclusions

of this study are discussed in Section 9.

2 System Description and Modeling Approach

We first describe two variations of AVS/RS and then present a common modeling approach

for analyzing system performance. The first variation is a conveyor-based AVS/RS com-

posed of a set of tiers and one vertical conveyor system that transfers pallets between the
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tiers (Figure 2a). The second variation is an AVS/RS with a lift mechanism (Figure 2b),

where a single lift is used to transfer pallets in the vertical direction. These two variations

have been chosen for illustrative purposes, and the modeling approach can be applied to

other variations of AVS/RS easily.

In either system, a tier of a storage area is composed of a set of aisles with storage

racks on both the sides of each aisle. A cross-aisle is located at the end of the tier and

it runs orthogonal to the aisles, and vehicles travel between aisles using the cross-aisle. A

system of rails guides the rectilinear movement of vehicles along the x and y dimensions.

The Load/Unload (LU) point is located at the middle of the cross-aisle on each tier. In

other words, the LU point divides the cross-aisle into two equal segments (CAR and CAL:

corresponding to the right and left segment of the cross-aisle). In the conveyor-based

system, the conveyor is located along the LU points of each tier, and is composed of multiple

bi-directional conveyor loops where each loop transfers pallets between consecutive tiers.

Note that unlike the lift-based systems, conveyors enable multiple pallets to be transferred

simultaneously.

2.1 Storage and Retrieval Operations

To retrieve a pallet in a conveyor-based system, the vehicle in tier i+1 retrieves the pallet

and deposits the pallet at the tier i+1’s LU point. To move the pallet from tier i+1 to tier

i, the conveyor loop i picks up the pallet from the LU point of tier i+1 and moves it to the

LU point of tier i. From the LU point, the conveyor loop i−1 picks the pallet and transfers

it to the successive loop. The conveyor transfer process is complete when the pallet reaches

the LU point of tier 1. Storage operations can be described in a similar manner. The guide

path of a conveyor loop is bi-directional, that is, the conveyor loop switches its direction of

travel when the type of transaction changes. For instance, if the loop rotates in a clock-wise
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Figure 2: AVS/RS with tier-captive vehicles and (a) conveyor mechanism and (b) lift
mechanism

motion to move a pallet up, then the loop rotates in a counter-clockwise motion to move

a pallet down. At any point in time, the conveyor is either idle, or moving a pallet up or

moving a pallet down.

To retrieve a pallet in a lift-based system, the vehicle in tier i retrieves the pallet from

the storage location and deposits it at the LU point of tier i. The lift travels from its dwell

point and picks up the pallet from the LU point of tier i. After loading the pallet, the lift

travels to the LU point of tier 1 and unloads the pallet. Similarly, to store a pallet, the lift

travels from its dwell point to pick up the pallet from the LU point of tier 1. The lift then

travels to the LU point of the storage tier and unloads the pallet.
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2.2 Modeling Approach

The transaction cycle time and throughput of AVS/RS depend on several factors including

vehicle utilization, conveyor (lift) utilization, and tier configuration parameters. Therefore,

a queuing network model is needed to model the system dynamics and estimate performance

measures. An integrated queuing network model is proposed here for an AVS/R system

with T tiers. It is composed of: 1) a conveyor (lift) subsystem supporting vertical move-

ment and 2) T single-tier subsystems supporting horizontal movement (Figure 3a). Note

that the departures of storage transactions from the conveyor (lift) subsystem form the

arrivals of storage transactions to the tier subsystems. Similarly, the departures of retrieval

transactions from the tier subsystems form the arrivals of retrieval transactions to the con-

veyor/ lift subsystems. Hence, we adopt a decomposition-based modeling approach that

recognizes these relationships between the subsystems. The steps of the analysis approach

are as follows.

1. First, queuing models for individual tiers are analyzed in isolation. This analysis

provides, among other measures, parameters that characterize the departure process

(in terms of the moments of inter-departure times) from each tier (see Sections 3 and

4 for details).

2. Then, the queuing model for the vertical transfer mechanism (lift or conveyor sub-

system) is analyzed in isolation. This analysis provides parameters that characterize

the departure process (in terms of the moments of inter-departure times) from all

conveyor loops (see Section 5 for details).

3. Subsequently, the departures and arrivals to different subsystems are linked together

through a linking algorithm (see Section 6 for details).
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4. After linking all subsystems, the performance measures for individual tiers (average

queue length measures, resource utilization, and throughput times) and vertical trans-

fer mechanism (average queue length measures, resource utilization, and throughput

times) are estimated (see Section 7 for details).

We discuss next the model assumptions for the tier and the vertical transfer subsystems

before providing details of each step in our modeling approach.

2.3 Modeling Assumptions

The main assumptions for the analysis of single-tier subsystems are as follows. Within a

tier, the vehicle dwells at the LU point after processing a transaction. This implies that

a vehicle that completes a retrieval transaction dwells at the LU point. After a vehicle

completes a storage transaction, it travels to the LU point to serve the next transaction.

The system operates under single-command cycle only, that is, vehicles either process a

storage transaction or a retrieval transaction in one cycle. All vehicles are pooled within

a tier, that is, any free vehicle can process any type of transaction. Without loss of gen-

erality, the number of aisles in the tier is assumed to be even. The storage and retrieval

transaction arrival rates for a system with T tiers are Poisson with rates λs1 , λs2 , . . . , λsT

and λr1 , λr2 , . . . , λrT respectively. Without loss of generality, it is assumed that λsi equals

to λri for each tier i. For simplicity of exposition, all tier subsystems are assumed to have

V dedicated vehicles. The LU points in all tiers have sufficient buffer space to load/unload

the pallets.

The main assumptions for the analysis of the vertical transfer mechanism (conveyor/

lift subsystem) are as follows. Each conveyor loop/ lift transfers at most one pallet at any

time. The pallets for storage and retrieval are transferred by each conveyor loop/ lift in an
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Figure 3: Analysis approach of the multi-tier system with conveyors: (a) block representa-
tion and (b) queuing network

FCFS fashion.

Note that the assumptions can be relaxed, and the proposed approach can still be

used albeit with additional model complexity. Some instances of systems with different

assumptions and their analysis have been reported in Roy et al. [2012], Roy et al. [2014],

and Roy et al. [2015]. The queuing network model for horizontal movement in a tier is

discussed in the next section.
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3 Queuing Network for Horizontal Movement in a Tier

The process of either storing (retrieving) a pallet at (from) a location involves the horizontal

movement of a vehicle within the aisles and cross-aisles of a tier in addition to vertical travel

using lifts or conveyors. Hence a key subsystem of the integrated queuing network model

for AVS/RS is the model of a single tier. This single tier model must capture the movement

dynamics within a single tier as well as the departure process from the single tier as they

form inputs to the subsystem modeling the vertical transfer. The SOQN model for the

single tier is described in Figure 3. In the SOQN model of a tier i, there are V vehicles
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processing transactions. These vehicles belong to two classes, storage class and retrieval

class, denoted by si and ri respectively.

A key input required in this analysis is the arrival process to the SOQN. Note that the

mean and the squared coefficient of variation (SCV) of the inter-arrival times for retrieval

transactions (denoted by λ−1
ari,Ji

and c2ari,Ji
, where ri is the retrieval class index and Ji is the

synchronization station index in tier i) are known inputs. Since the pallets to be retrieved

are directly sent to the LU point of the retrieval tier in the tier subsystem, the inter-arrival

times for class i retrieval transaction to the tier i are assumed to be exponential with mean

λ−1
ari,Ji

, c2ari,Ji
= 1, where i = {1, . . . , T}. For the storage transactions to tier i, where i > 1,

let λ−1
asi,Ji

and c2asi,Ji
denote the mean and the SCV of the inter-arrival times. (Note that

tier 1 is located at the ground level and does not need vertical transfer. Therefore, the

inter-arrival times of storage transactions are exponential at tier 1, c2as1,J1
= 1.)

To simplify the analysis for a single tier i, the external arrival streams corresponding

to the storage and retrieval transaction classes are aggregated into a single transaction

class (Ai). (Note that we later use a disaggregation technique to estimate the performance

measure for each transaction class. ) Aggregation implies that the mean of the inter-arrival

time for the aggregated class (λ−1
aAi,Ji

) is given by Equation 1.

λ−1
aAi,Ji

= (λasi,Ji
+ λari,Ji

)−1 (1)

Note that the inter-arrival time distribution of the retrieval class is exponential whereas

the inter-arrival time distribution of the storage class is not exponential. Therefore, the

aggregated SCV of the transaction inter-arrival times (c2aAi,Ji
) to the buffer B1 of the syn-

chronization station J in tier i is determined using Equation 2. Note that (c2ari,Ji
)=1. The
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SCV of arrivals of class Ai, c
2
aAi,Ji

, is given by Equation 2 and a convex combination of the

inter-arrival time SCV for the storage and retrieval transactions to a tier i (Whitt [1983]).

c2aAi,Ji
=

λasi,Ji

λasi,Ji
+ λari,Ji

(c2asi,Ji
) +

λari,Ji

λasi,Ji
+ λari,Ji

(c2ari,Ji
) (2)

The notations used in the queuing analysis of the horizontal movement within a tier are

described in Table 1. We use the model from Roy et al. [2014] to estimate the throughput

of storage and retrieval transactions from a single tier with V vehicles. Subsequently, in

the integrated queuing network model of the whole system, the subnetwork corresponding

to tier i (which consists of N aisles, cross-aisle (left and right), and an LU point station) is

replaced with an equivalent single load-dependent station Si (see Figure 3b). The service

rate of the load-dependent station is assumed to be exponentially distributed with mean

µi(n)
−1, where µi(n) is the throughput of a closed queuing network with n vehicles, for

n = {0, . . . , V }.

4 Departure Process Analysis from a Single Tier

The objective of the departure process analysis is to determine the moments (in particular

the mean and SCV) of the inter-departure times from the tier i for each class of transac-

tions (si and ri). The parameters describing the departure process from each tier and the

performance measures are estimated using a three-step approach: 1) fit a two-phase Coxian

distribution to the interarrival times, 2) define the embedded Markov chain and form the

transition matrix, PD and 3) analyze the inter-departure times from the load-dependent

station using an embedded Markov chain analysis. The departure process from the load-

dependent station Si is studied as a Markov renewal process to determine the mean (λ−1
dAi,Si

)

and SCV (c2dAi,Si
) of the inter-departure times from tier i. The details of the approach are
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Table 1: Notations used in the analysis of horizontal movement within a tier
Notation Description

T Number of tiers

V Number of vehicles/tier

Si Load-dependent station of tier i

Ji Synchronization station of tier i

B1i, B2i Virtual buffers in tier i for waiting transactions and vehicles respectively

µi(n)
−1 Mean service time of Si with n vehicles

Ai Aggregated transaction class in tier i

λ−1

s , λ−1

r Mean inter-arrival times for all storage and retrieval transaction classes

λ−1

si
, λ−1

ri
Mean inter-arrival times for storage and retrieval transaction classes with destination tier i

λ−1

asi,Ji
, c2asi,Ji

Mean and SCV of the inter-arrival time for storage transaction class to Ji

λ−1

ari,Ji
, c2ari,Ji

Mean and SCV of the inter-arrival time for retrieval transaction class to Ji

λ−1

aAi,Ji
, c2aAi,Ji

Mean and SCV of the inter-arrival time for the aggregated transaction class to Ji

λ−1

dAi,Si
, c2dAi,Si

Mean and SCV of the inter-departure time for the aggregated transaction class from Si

SD State space for the embedded Markov chain

PD Transition probability matrix for the embedded Markov chain

ΠD Steady state probability distribution for the embedded Markov chain

discussed in the following paragraphs.

4.1 Step 1: Fit a 2-phase Coxian Distribution

Each tier is analyzed assuming that the mean and SCV of inter-arrival times for storage

and retrieval transactions are known. Using this information, a 2-phase Coxian distribution

is fit to model the inter-arrival times to the tier. Let λ1i and λ2i denote the two phases of

the Coxian distribution and pi denote the probability with which the transaction proceeds

to the second arrival phase after completing the first phase of arrival. Note that we assume

a balanced 2-phase Coxian distribution to determine λ1i , λ2i , and pi that satisfy the mean

and SCV of the inter-arrival times, λ−1
aAi,Ji

and c2aAi,Ji
(see Bolch et al. [2006]).
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4.2 Step 2: Develop the Transition Probability Matrix (PD)

The departure process from the load-dependent station (Si), corresponding to tier i (see

Figure 3b), is studied as a Markov renewal process and the mean and SCV of the transaction

inter-departure times from a tier i (λ−1
dAi,Si

and c2dAi,Si
) are obtained by analyzing the Markov

chain embedded at departure instants from Si. First, the transition probability matrix (PD)

is developed and the steady state stationary probability vector (ΠD) is obtained. Using

ΠD, the mean and SCV of the inter-departure times from Si are obtained.

The state of the embedded Markov chain (Xk) has two tuples (i1, i2). The component

i1 corresponds to the difference between the number of transactions waiting in buffer B1i

and the number of idle vehicles waiting in buffer B2i whereas the component i2 corresponds

to the phase of the 2-phase Coxian distribution of the pending arrival. Since the buffer size

for transactions at buffer B1i is K, at the departure instant, component i1 takes a value

from the set {−V, . . . ,−1, 0, 1, . . . ,K − 1} and component i2 takes a value from the set

{1, 2}. Therefore, the cardinality of the statespace, SD, is 2(K + V ).

Since the arrivals to the buffer B1i are composed of exponential phases of a Cox-2 dis-

tribution and the load-dependent service times are exponentially distributed, the transition

matrix PD has a special structure. The non-zero portion of PD has four main regions and

the entries in PD are denoted by P (Xi,Xj) where Xi, Xj are the states observed at two

consecutive departure time instants. The components of Xi and Xj are denoted by (i1, i2)

and (j1, j2) respectively. For a semi-open queuing network with V = 2 and K = 3, the

states and the regions are described in Table 2. Next we provide an example to illustrate

how each P (X1,X2) is determined. The detailed expressions to estimate P (Xi,Xj) are ob-

tained by considering subregions within these four main regions and are listed in Appendix

A.
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Table 2: Different regions in the PD matrix

Xi(i1, i2),Xj(j1, j2) −2, 1 −2, 2 −1, 1 −1, 2 0, 1 0, 2 1, 1 1, 2 2, 1 2, 2

−2, 2 2 2 2 2 2 2 2 2 2 4

−2, 1 2 2 2 2 2 2 2 2 2 4

−1, 1 2 2 2 2 2 2 2 2 2 4

−1, 2 - 3 3 3 3 3 3 3 3 4

0, 1 - - 1 1 1 1 1 1 1 4

0, 2 - - - 1 1 1 1 1 1 4

1, 1 - - - - 1 1 1 1 1 4

1, 2 - - - - - 1 1 1 1 4

2, 1 - - - - - - 1 1 1 4

2, 2 - - - - - - - 1 1 4

Consider the case when Xi = (0, 2) and Xj = (1, 1) (see region 1 in Table 2). Since

j1 − i1 = 1, two arrivals occur prior to a departure. Further, i1 = 0 implies that in

state Xi, other vehicles (V = 2) are busy processing transactions. Since the arrival is in

phase 2 of the arrival process (i2 = 2), the probability that the arrival occurs prior to

the service completion is
λ2i

λ2i
+µi(2)

. The probability that the second arrival also occurs

prior to the service completion is given by
[

λ1i

λ1i
+µi(2)

] [
pi

(
λ2i

λ2i
+µi(2)

)
+ (1− pi)

]
. Finally,

the probability that the service is complete prior to a third arrival is given by µi(2)
λ1i

+µi(2)
.

Therefore, P (Xi,Xj) for Xi = (0, 2) and Xj = (1, 1) is given by Equation 3. Using similar

logic, we derive all the other expressions (see Appendix A).

P (Xi,Xj) =
λ2i

λ2i + µi(2)

[
λ1i

λ1i + µi(2)

] [
pi

(
λ2i

λ2i + µi(2)

)
+ (1− pi)

]
µi(2)

λ1i + µi(2)

=
µi(2)λ1iλ2i [λ2i + µi(2)(1 − pi)]

(λ1i + µi(2))2(λ2i + µi(2))2
(3)

Let ΠD = {ΠD(Xk) : Xk ∈ SD}, where ΠD(Xk) is the steady state probability that

the load-dependent station is in state Xk at a departure instant. Using PD, the stationary
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probability vector ΠD of the underlying Markov chain is obtained by solving the system of

linear Equations 4 and 5.

ΠDPD = ΠD (4)

∑

k∈SD

ΠD(Xk) = 1 (5)

After deriving the steady state probability distribution, ΠD, the first two moments of the

inter-departure times (E[Di] and E[D2
i ]) are estimated using an approach presented in the

next section.

4.3 Step 3: Estimate Parameters of the Inter-departure Time Distribu-

tion

After estimating the steady state probability vector ΠD, the first and second moment of the

inter-departure time, Di, from the load-dependent station Si are determined. Note that at

the departure instant, the transaction leaves the system in one of the 2(K + V ) states in

SD. Note that the time to the subsequent departure from the load-dependent queue would

depend on the state, Xi, at the instant of a departure. Correspondingly, we partition SD

into five sets, G1, G2, G3, G4, and G5. The description of these sets is given below.

1. G1 = {(−V, 1)}: In this state, there are no vehicles processing transactions in the

load-dependent station Si. Therefore, the next departure occurs when a transaction

arrives and completes its service.

2. G2 = {(−V, 2)}: In this state, there are no vehicles in the load-dependent station

Si. However, a transaction has completed phase 1 of its arrival process. Therefore,

the next departure occurs when phase 2 of the arrival process completes followed by
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completion of the service of this transaction.

3. G3 = {(−V + 1, 1), (−V + 2, 1), . . . , (−1, 1)}: In these states, there are one or more

vehicles at the load-dependent station Si and the arriving transaction is in phase 1.

Therefore, the next departure occurs when the transaction at station Si completes its

service.

4. G4 = {(−V + 1, 2), (−V + 2, 2), . . . , (−1, 2)}: In these states, there are one or more

vehicles at the load-dependent station Si and the arriving transaction is in phase 2.

Therefore, the next departure occurs when the transaction at station Si completes its

service.

5. G5 = {(0, 1), (0, 2), . . . , (K− 1, 1), (K − 1, 2)}: In these states, all vehicles are present

at the load-dependent station Si and the arriving customer is either in phase 1 or

phase 2. Therefore, the next departure occurs when the transaction at station Si

completes its service.

We next describe the procedure used to determine the parameters of the inter-departure

time using states in G1 as an example.

Departure Analysis for States in G1: If a departure leaves the system in state s =

(−V, 1), the following events need to occur for the subsequent departure. First, a transaction

should arrive and then its service needs to be completed. Let the notations A and S
′

denote

the events corresponding to an arrival and service completion respectively. Note that the

inter-arrival time follows a Cox-2 distribution with rates λ1i and λ2i corresponding to phase

1 and 2 respectively. The service completion time, however, could vary depending on the

number of vehicles present at station Si. The service time at Si follows a load-dependent

exponential service time with mean µi(n)
−1 when there are n vehicles in tier i. We denote
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S
1
v as a sequence with v arrivals followed by a service completion, i.e., S1v = (A, . . . , A, S

′

)

where v = 1, . . . , V . One of the following sequence of events (S1v) needs to occur before

the next departure. The first part of the service is completed at rate µi(1), the second

part of the service is completed at rate µi(2). Likewise, the (v − 1)th part of the service

time is completed at rate µi(v − 1), and the residual service time is completed at a rate

µi(v). Note that the estimation of the first and second moment of the inter-departure time

corresponding to each sequence of event, e, E[Di|S
1
e], E[D2

i |S
1
e], involves determining the

distribution of the residual service time after the last arrival. Determining these residual

service times requires conditioning on the exact times of each of the previous arrivals, which

can get very cumbersome. Hence, we develop an approximation for the first and the second

moments of the inter-departure times.

Note that µi(n) is the throughput of the closed queuing network with n resources.

As the number of resources increases, the throughput increases monotonically, that is,

µi(n) > µi(n − 1) > . . . > µi(1). If there are n vehicles present at the load-dependent

queue before the departure instant, then using a µi(n) service rate would give a lower

bound estimate on the expected inter-departure times whereas using a service rate cor-

responding to the number of vehicles present at Si at the inception of the service would

give an upper bound estimate of the first and second moment of the inter-departure times.

Since performance measurement under high vehicle utilization is more practical, we use

lower bound estimates for the two moments (E[Di|S
1
e]l, E[D2

i |S
1
e]l) as our approximation.

At high vehicle utilization, all vehicles will be present more often at the load-dependent

station.

To compute the probability associated with each sequence S
1
e, we need to estimate the

probability qn of an arrival prior to service completion at Si with n customers operating

at rate µi(n). Let the random variables, Y and Zn, denote the Cox-2 inter-arrival times at
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station Ji and the exponentially distributed service times at the load-dependent station Si

with n busy vehicles. Further, let the random variables Y1 and Y2 denote the first and the

second exponential phase of the 2-phase Coxian random variable, Y .

Formally, the probability distribution of Cox-2 inter-arrival times, fY (t) is shown in

Equation 6, where C1 and C2 are expressed as
(
λ1i

(1−pi)−λ2i

λ1i
−λ2i

)
and

(
1−

λ1i
(1−pi)−λ2i

λ1i
−λ2i

)

respectively.

fY (t) = C1λ1ie
−λ1i

t + C2λ2ie
−λ2i

t, t ≥ 0 (6)

The probability distribution function for Zn is expressed as follows.

fZn(t) = µi(n)e
−µi(n)t, t ≥ 0 (7)

Then the probability qn, which is P [Y ≤ Zn] is given by Equation 8.

P [Y ≤ Zn] =

(
C1

λ1i

λ1i + µi(n)
+ C2

λ2i

λ2i + µi(n)

)
(8)

With this set of information, the probability corresponding to each sequence of events

(S1e for state s = (−V, 1)), the conditional lower bounds for the two moments of the expected

inter-departure times (E[Di|S
1
e]l, E[D2

i |S
1
e]l) are determined (Table 8 in Appendix ). The

estimation of the conditional lower bound for the expected inter-departure time is described

for S
1
2 = {A,A, S

′

}. The expected time for an arrival is E[Y ]. The expected time for an

arrival in the first and second phase of an arrival are denoted by E[Y1] and E[Y2] respectively.

After two arrivals, the expected time to complete a service is E[Z2] =
1

µi(2)
. Therefore, the

lower bound is given by E[Di|S
1
2]l, which is E[Y ] +E[Z2]. Note that the estimate of lower
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bound follow the order: E[Di|S
1
2]l ≤ E[Di|S

1
2]. The probability (p

S1
2
) that this sequence

occurs is the probability of exactly two arrivals taking place before the service completion,

which is q1(1− q2). Similarly, the conditional lower bound for the second moment of S12 is

given by the expression
[
pi
(
(V ar[Y1] + V ar[Y2] + V ar[Z2]) + (E[Y1] + E[Y2] + E[Z2])

2
)]
+

[
(1− pi)

(
(V ar[Y1] + V ar[Z2]) + (E[Y1] + E[Z2])

2
)]

.

Likewise, the conditional expected lower bounds for the first and the second moment

are determined for all sequences (S1e) in s. Then the expressions for the lower bound for

the first and the second moment of the inter-departure times of the sequences along with

their occurrence probabilities are used to determine the expressions for the lower bound

for the first and the second moment of the inter-departure times corresponding to a state

s ∈ G1. Equations 9 and 10 provide the relationship for the lower bound of the first and

second moments of the inter-departure time.

∑

S1e∈s

pS1eE[Di|S
1

e]l = E[Di|s ∈ G1]l ≤ E[Di|s ∈ G1] (9)

∑

S1e∈s

pS1eE[D2

i |S
1

e]l = E[D2

i |s ∈ G1]l ≤ E[D2

i |s ∈ G1] (10)

A similar analysis is done for all states in G2, . . . , G5. The analysis details and summary of

the expressions are included in Appendix B. Using the steady state probability distribution,

ΠD, the unconditional estimates of the lower bound for the first and second moment of the

inter-departure times are given by Equations 11 and 12. These lower bounds are used as

approximations for the first and second moments of the inter-departure times.

5∑

i=1

∑

s∈Gi

ΠD(s)E[Di|s ∈ Gi]l = E[Di]l ≤ E[Di] (11)

5∑

i=1

∑

s∈Gi

ΠD(s)E[D2

i |s ∈ Gi]l = E[D2

i ]l ≤ E[D2

i ] (12)
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Now, the SCV of inter-departure times of transactions from Si can be estimated using

Equations 13 and 14. Equation 13 provides the expression to estimate the SCV of the

inter-departure times for all transactions from station Si in tier i (c2dAi,Si
) whereas Equation

14 provides the expression to estimate the SCV of the inter-departure times for the retrieval

transactions from station Si in tier i, where qo is the proportion of transactions that belongs

to retrieval class ri (Whitt [1983]).

Note that the gap between the lower bound estimate for the expected inter-departure

time and the actual value widens when the number of arrivals (before a service completion)

in the sequence, S
1
e, increases. We use the maximum service rate in the lower bound,

which weakens the bound estimate with an increase in the number of arrivals. However,

the probability of such an event occurrence also decreases, especially under heavy traffic

conditions (high vehicle utilization). Hence, the overall bound estimate may not be affected

to a large extent. Using a similar analysis, we can also develop an upper bound estimate

for the first two moments of the inter-departure times. However, the upper bound would

be a weak approximation because the transaction at the load-dependent station would be

serviced at the lowest possible rate, µi(1).

c2dAi,Si
=

E[D2
i ]l − E[Di]

2
l

E[Di]
2
l

(13)

c2dri,Si
= qoc

2
dAi,Si

+ 1− qo (14)

The queuing analysis of the vertical transfer mechanism (conveyor/ lift subsystem) is

described in the subsequent section.
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5 Queuing Models for Vertical Movement between Tiers

We describe the queuing network models for the conveyor and the lift subsystems in this

section. The objective of analyzing the conveyor system is to determine the mean and

the SCV of the inter-departure times for the transactions from the conveyor loops and to

estimate the performance measures. The notations used in the analysis of the conveyor

subsystem are described in Table 3. The details of the queuing model and the analysis

approach are discussed in the following paragraphs. In the conveyor system, the pallet is

Table 3: Notations used in the analysis of vertical transfer with conveyors and lifts
Notation Description

Lk Conveyor loop k = 1, . . . , T − 1

λ−1

asi,Lk
, c2asi,Lk

Mean and SCV of the inter-arrival time for storage transaction class si to Lk

λ−1

ari,Lk
, c2ari,Lk

Mean and SCV of the inter-arrival time for retrieval transaction class ri to Lk

λ−1

dsi,Lk

, c2dsi,Lk
Mean and SCV of the inter-departure time for storage transaction class si from Lk

λ−1

dri,Lk

, c2dri,Lk
Mean and SCV of the inter-departure time for retrieval transaction class ri from Lk

µ−1

D , c2ŝri,Lk
Mean and SCV of the service time for retrieval (or storage) transaction class ri (or si) at Lk

CLk
Set of all transaction classes that visit conveyor loop Lk

ρri,Lk
Utilization of conveyor loop Lk due to retrieval class ri

ρLk
Utilization of conveyor loop Lk

transferred vertically using one or more conveyor loops. Each loop (Lk) transfers a pallet

between consecutive tiers k and k+1 where k = 1, . . . , T − 1. Therefore, to transfer pallets

in a multi-tier system with T tiers, a maximum of T − 1 conveyor loops are required. Loop

L1 transfers a load between the first and the second tier whereas loop LT−1 transfers a load

between T − 1th and T th tier. For each loop k, the pallets, to be stored, queue at the LU

point on tier k and the pallets, to be retrieved, queue at the LU point on tier k + 1.

Next, the queuing analysis is discussed. Each conveyor loop segment is modeled as an

open GI/G/1 queue with deterministic service time, µ−1
D , implying that a network of T −1

open GI/G/1 queues are used to model the conveyor system. The conveyor stations are

23



indexed as L1, L2, . . . , LT−1. There are T transaction classes corresponding to the storage

transaction and T transaction classes corresponding to the retrieval transaction. The index

i for storage and retrieval classes: 1, 2, . . . , T correspond to tiers 1, 2, . . . , T . Note that class

1 storage and retrieval transactions do not use the conveyor. A storage class i transaction

is routed through the conveyor stations in the following order: L1, L2, . . . , Li−1 whereas a

retrieval class i transaction is routed through the conveyor stations in the following order:

Li−1, Li−2, . . . , L1. Figure 5 shows the queuing network for the conveyor system with four

tiers.

For Storage Transactions For Retrieval Transactions

Vertical Conveyors

µ−1
D

µ−1
D

µ−1
D

µ−1
D

µ−1
D µ−1

D

L1

L2

L3

λ−1

as2,L1

, c2as2,L1

,

λ−1

as3,L1

, c2as3,L1

,

λ−1

as4,L1

, c2as4,L1

λ−1

s3,L2
, c2as3,L2

,

λ−1

s4,L2
, c2as4,L2

λ−1

as4,L3

, c2as4,L3

λ−1

ds2,L1

, c2ds2,L1

λ−1

ds3,L2

, c2ds3,L2

λ−1

ar4,L3

, c2ar4,L3

λ−1

ar3,L2

, c2ar3,L2

,

λ−1

ar4,L2

, c2as4,L2

λ−1

ds4,L3

, c2ds4,L3

λ−1

ar2,L1

, c2ar2,L1

,

λ−1

ar3,L1

, c2ar3,L1

,

λ−1

ar4,L1

, c2ar4,L1

λ−1

dr2,L1

, c2dr2,L1

,

λ−1

dr3,L1

, c2dr3,L1

,

λ−1

dr4,L1

, c2dr4,L1

L1

L2

L3

(a) (b) (c)

Figure 5: Vertical conveyor queuing network for a four-tier system: (a) vertical conveyors,
(b) flow of storage transactions, and (c) flow of retrieval transactions

24



Since pallets to be stored are first conveyed to the destination tiers using the conveyor

subsystem, the storage transaction requests arrive directly to the conveyor subsystem from

an external source. The distribution of the inter-arrival times for storage transaction class

(si) to the conveyor loop L1 is exponential with mean, λ−1
asi,L1

, and SCV, c2asi,L1
= 1, where

i = {2, . . . , T}. However, the tier subsystem is involved in the first processing step of the

retrieval transactions. The vehicle in the tier retrieves the pallet from the storage address

and then deposits at the LU point of the tier. Using a conveyor subsystem, the pallet is

transferred from the LU point of the retrieval tier to the LU point of tier 1. Therefore,

the distribution of the inter-arrival times of the retrieval transactions to the conveyor loops

is not exponential. The mean of the inter-arrival time for the retrieval transaction class

ri to the conveyor loop Li−1 from tier i is λ−1
ari,Li−1

. Further, for the retrieval transaction

class ri, the SCV of the inter-arrival times to the conveyor loops (c2ari,Li−1
), is unknown.

The inputs to the analysis are the mean and SCV of the inter-arrival times of the storage

and retrieval transactions to the conveyor loops. Note that the SCV of the inter-arrival

times for retrieval transactions are not known and will be subsequently determined by

linking the departure processes from the tier and the conveyor subsystems. However, for

the analysis of the conveyor system in isolation, these are assumed to be known inputs with

mean, λ−1
ari,Li−1

and SCV, c2ari,Li−1
= 1. Within the network, the routing of the transactions

and the service times at each node of the tier are also known. With this information, the

departure process from each conveyor loop and the performance measures are estimated

using a parametric-decomposition approach.

The conveyor model, which is a multi-class open queuing network with tandem stations,

is a non product-form queuing network that is solved using a parametric-decomposition

approach (Whitt [1983],Whitt [1994]). To solve a queuing model using the decomposition

approach, the inputs are the mean and the SCV of the transaction inter-arrival time to all

25



stations, and the mean and SCV of the service times for all stations in the network. The

outputs are the performance measures for each station, such as utilization, expected cycle

time and the expected number of transactions waiting in the queue.

In the conveyor subsystem, the mean inter-arrival and the inter-departure times for all

transaction classes at conveyor station, Lk are given by Equations 15 and 16 respectively.

Though the mean inter-arrival time, mean service time, and the SCV of the service time

at all stations are known, the SCV of inter-arrival times at stations are not all known. For

instance, in Figure 5, the SCV of the inter-arrival times for storage classes 2, 3, and 4 at

conveyor loop L1 queue are known, but the SCV of the inter-arrival times for storage classes

3 and 4 to conveyor loop L2 are unknown. Similarly, while the SCV of the inter-arrival times

for retrieval classes 2, 3, and 4 at conveyor loop L1, L2, and L3 are known, the SCV of the

inter-arrival times for retrieval classes 3 and 4 at loop L1 queue are unknown. The approach

to determine the unknown SCVs of the inter-arrival times is described for a retrieval class ri

at conveyor loop k. Let CLk
denote the set of all transaction classes that visit station Lk (for

instance, CL1
= {r2, . . . , rT , s2, . . . , sT }). The expression for estimating c2dri,Lk

is provided

by Whitt [1994] (Equation 17), where φri,Lk
is defined as λari,Lk

/
∑

j∈CLk
λaj,Lk

. Also note

that the inter-departure time SCV and the inter-arrival time SCV of a transaction class

are linked across consecutive conveyor stations by the following relationship. The inter-

departure time SCV of a transaction class at a conveyor station is equal to the inter-arrival

time SCV for the same class at its next station in the routing (Equations 18 and 19). Using

this approach, the SCV of the inter-departure time for all classes from the conveyor loops

can be determined.

λ−1
aj,Lk

= λ−1
j ∀j ∈ CLk

(15)

λ−1
dj,Lk

= λ−1
aj,Lk

∀j ∈ CLk
(16)
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c2dri,Lk
= ρ2ri,Lk

c2ŝri,Lk
+ (1− 2ρri,Lk

ρLk
+ ρ2ri,Lk

)c2ari,Lk
+

φri,Lk

∑

j 6=ri,∀j∈CLk

ρ2j,Lk

φj,Lk

(c2ŝj,Lk
+ c2aj,Lk

) (17)

c2dri,Lk
= c2ari,Lk−1

(18)

c2dsi,Lk
= c2asi,Lk+1

(19)

where i ∈ {1, . . . , T} and k ∈ {1, . . . , T − 1}

Since the travel time in the conveyor loop is assumed to be deterministic, c2ŝri,Lk
= 0

and c2ŝsi,Lk
= 0 ∀i ∈ {1, . . . , T} and ∀k ∈ {1, . . . , T − 1}, the values of two variables,

for each transaction class j : j ∈ CLk
at a station Lk, c

2
dj,Lk

and c2aj,Lk
, are unknown. The

number of transaction classes routed to conveyor station Lk is 2(T−k). Therefore, the total

number of initial variables is 2T (T − 1). Amongst them, the inter-arrival time SCVs of the

storage classes at station 1, (T − 1) quantities, and the inter-arrival time SCVs of retrieval

transactions from the tiers to the conveyor stations, (T − 1) quantities, are initialized to

1 (assuming an exponential distribution). Therefore, the remaining number of unknown

quantities is 2(T − 1)2.

To estimate the SCV of inter-arrival times of retrieval and storage classes at all stations,

a system of linear equations is formed using the following two steps: 1) The expression for

the inter-departure time SCV for all classes at each conveyor station is known from Equation

17. This gives a set of T (T − 1) linear equations, 2) Further, note that the inter-departure

time SCV of a transaction class from a conveyor station forms the inter-arrival time SCV

of the same class to the consecutive station. This gives an additional set of (T − 2)(T − 1)

linear equations (Equations 18 and 19).

Now, we have a system of 2(T − 1)2 linear equations and 2(T − 1)2 unknown variables,

which is solved to obtain the inter-arrival time SCVs for all classes to the conveyor stations.
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Next, each station can be solved in isolation and the performance measures such as conveyor

loop utilization, average queue length, and storage and retrieval vertical transfer cycle times

can be evaluated using standard approximation for GI/G/1 queues (Refer Whitt [1983]).

The expressions for the performance measures are provided in Section 7.2. The vertical

movements with lifts are modeled in a similar fashion where the lift resource is modeled

using a GI/G/1 queue. The details of the lift analysis are included in Appendix C.

6 Linking Models for Horizontal and Vertical Movements

In the previous sections, the queuing analysis of individual tiers and the vertical transfer

subsystem (lifts or conveyors) have been studied in isolation. However, in reality, these

queuing systems are inter-related. For instance, for storage transactions, the departure

process from the vertical transfer subsystem forms the arrival process to the tier subsys-

tems. Similarly, for retrieval transactions, the departure process from the tier subsystems

forms the arrival process to the vertical transfer subsystem (see Figure 3b). The departure

processes for the tier and vertical transfer subsystems are linked by a set of equations that

are solved using an iterative algorithm. Figure 7 illustrates the approach described in detail

in Sections 6.1 and 6.2.

6.1 Linking Equations for Vertical Transfer with Conveyors

First, the queuing model of the conveyor system is solved assuming the SCV of the inter-

arrival time for the retrieval transaction class ri, (c
2
ari,Li−1

)curr ∀i = (2, . . . , T ), to the con-

veyor loop Li−1 to be equal to 1. Since the inter-arrival times for storage transactions have

an exponential distribution, the inter-arrival time SCV for all classes of storage transactions

to the conveyor loop L1 is indeed equal to 1. With this initialization, the conveyor queuing
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network is solved using the method described in Section 5. After solving the queuing net-

work, the inter-departure time SCVs for all classes of storage transactions are determined.

With this information, the inter-arrival time SCV for the aggregated class (c2aAi,Ji
) to the

buffer B1i of synchronization station J in tier i : i = (2, . . . , T ) is calculated using Equation

2 described in Step 1 of Section 4. This step is followed by aggregating the subnetwork

of each tier into a load-dependent station Si and estimating µi(n). Note that this step is

executed only once because the value of µi(n) is independent of the inter-arrival time distri-

bution of the transactions. Then, the inter-departure time SCV for aggregate transaction

classes from all tiers is analyzed using the approach described in Step 2 of Section 4 and

the SCV of the inter-departure times for the retrieval transaction class ri, c
2
dri,Si

, from Si

is determined. Since this inter-departure time SCV forms the inter-arrival time SCV for

transaction class ri to the conveyor loop Li−1, the error component (δi), which is defined as

the absolute difference between c2dri,Si
and (c2ari,Li−1

)curr, is computed for i = (2, . . . , T ). If

the maximum absolute difference (δmax) is less than ǫ then the algorithm is terminated else

(c2ari,Li−1
)curr is updated using the step-size rule and all steps are repeated. The flowchart

shown in Appendix E summarizes the steps of this algorithm. The next section presents the

model and the expressions to determine the performance measures for the tier, conveyor,

and integrated multi-tier system.

6.2 Linking Equations for Vertical Transfer with Lift

Similar to the conveyor model, the departure process from the lift and the tier subsystems

is analyzed and linked together using the algorithm described in Section 6.1. The linking

algorithm for multiple tiers with a lift is similar to the one developed with a conveyor

except that there is a single server representing the lift resource (L̂1) instead of a series of

single-server stations representing the conveyor segments. First, the queuing model of the
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lift system, L̂1 is solved with the SCV of the inter-arrival time for the retrieval transaction

class ri, (c2a
ri,L̂1

)curr ∀i = (2, . . . , T ), to the lift resource L̂1, is assumed to be 1. Since

the inter-arrival times for storage transactions have an exponential distribution, the inter-

arrival time SCV for all classes of storage transactions to the lift resource L̂1 is indeed 1.

With this initialization, the lift queuing network is solved using the method described in

Appendix C and the SCV of the inter-departure times for the individual tiers are obtained.

The remaining linking steps where the tier networks are evaluated and new estimates for

the SCV of the inter-arrival times for the transactions to the lifts are identical to that

discussed in Section 6.1.

7 Estimating Performance Measures

The following subsections explain the model and list the expressions to estimate the per-

formance measures for the subsystems and the multi-tier system. Section 7.1 discusses the

equations to estimate the measures corresponding to a tier whereas Section 7.2 discusses the

equations to estimate the measures corresponding to a vertical transfer unit (both conveyors

and lifts).

7.1 Performance Measures for Horizontal Movement within a Tier

The performance estimate for each tier corresponding to the model illustrated in Figure 3b

is obtained by solving a continuous time Markov chain. The state space for the CTMC is

described by a two-tuple vector (i1, i2), which is used earlier in the analysis of the embedded

Markov chain except that the value for the tuples i1 is no longer restricted to K − 1. The

tuples i1 and i2 take the values from the set {−V,−V +1, . . . , 0, . . . ,∞} and {1, 2} respec-

tively. The expected inter-arrival times corresponding to the first and the second phase
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of the Cox-2 arrival process are λ−1
1i

and λ−1
2i

respectively. The expected load-dependent

service time is denoted by µi(n)
−1. With this information, the flow balance equations are

solved and the steady state probability distribution for the CTMC, πt is obtained. Using

πt, the vehicle utilization (UVi
) and the expected number of transactions waiting to be

processed at buffer B1 (QB1i
) for tier i : i ∈ {1, . . . , T} can be estimated. The expressions

for the performance measures of a tier are provided now.

Vehicle Utilization: To estimate vehicle utilization, the expected number of idle vehicles

(E[IVi
]) needs to be determined. The expressions to determine E[IVi

] and vehicle utilization

(UVi
) are given by Equations 20 and 21 respectively. Note that when i1 < 0, there are |i1|

number of idle vehicles at buffer B2i. Therefore, the expected number of idle vehicles is

estimated by taking an expectation on the number of idle vehicles corresponding to states

i1 < 0.

E[IVi
] =

∑

i1,i2:i1<0

πt(i1, i2)|i1| (20)

UVi
= 1−

E[IVi
]

V
(21)

Average Number of Transactions Waiting for Service: The expression for the average

number of transactions waiting for service (QB1i
) is given by Equation 22.

QB1i
=

∑

i1,i2:i1>0

πt(i1, i2)i1 (22)

Expected Transaction Cycle Times in a Tier: To estimate these measures, the ex-

pected number of busy vehicles in the tier subsystem is determined by the expression

V − E[IVi
]. Since we assume λsi = λri for each tier, the expected number of busy vehicles

processing storages and retrievals is equal to
V−E[IVi ]

2 .
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The expected retrieval cycle time in a tier, E[CTtri ], is composed of two components:

waiting time for an available vehicle and processing time in a tier. Both the components

are estimated by applying Little’s law in the buffer B1i and in the tier network. Since

QB1i
is the expected number of transactions waiting in buffer B1i,

QB1i

λri
+λsi

is the expected

waiting time for an available vehicle. Similarly,
V−E[IVi ]

2 is the expected number of vehicles

processing retrieval transactions within a tier. Therefore,
V−E[IVi ]

2λri
is the average time to

process a retrieval transaction within a tier. While the waiting time component can be

estimated in a similar fashion for the storage transactions, the expected processing time for

a storage transaction cannot be directly estimated.

Note that the processing of a storage transaction is complete when the pallet is unloaded

at the storage location within an aisle. Therefore, only a fraction of storage class vehicles

within an aisle are processing storage transactions while the rest are on their return travel

to the LU dwell point. To estimate the expected time spent by a storage class vehicle within

an aisle until unloading the pallet is complete, the following approach is adopted. The total

expected time spent within an aisle is the difference between the expected processing time

within a tier and the sum of the expected times spent by the storage class vehicle at the

cross-aisles and the LU point. Hence, the expected time spent by a storage class vehicle

at an aisle is determined using the expression
V−E[IVi ]

2λsi
− (2µ−1

CAL
+ µ−1

LU). Further, this

expression is multiplied by a term α, which is the ratio of time spent in the aisle until a

storage transaction is complete and the total expected time spent within an aisle to obtain

E[CTai ], which is the expected time spent by the vehicle in the aisle until the storage

transaction is complete. With this information, the expected cycle time for processing

storage and retrieval transactions in a tier i (E[CTtsi ] and E[CTtri ]) can be obtained by
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the expressions provided in Equations 23 and 24.

E[CTtri ] =
QB1i

λri + λsi

+
V − E[IVi

]

2λri

(23)

E[CTtsi ] =
QB1i

λri + λsi

+ µ−1
CAL

+ µ−1
LU +E[CTa,i] (24)

where E[CTai ] = α
(V−E[IVi ]

2λsi
−(2µ−1

CAL
+µ−1

LU )
)

is the expected aisle time spent by a storage

transaction and α =
W
2vh

+xw
vh

+Uvt

W
vh

+ 2xw
vh

+Uvt
.

7.2 Performance Measures for the Vertical Transfer Unit

The performance estimates for the conveyor subsystem such as conveyor utilization (UC),

expected number of transactions waiting for conveyor (QC), and expected conveyor cycle

time for processing storage and retrieval transactions (E[CTrc] and E[CTsc]). These mea-

sures are calculated using the SCV of the inter-arrival times for the transaction classes

obtained after the convergence of the linking algorithm.

Conveyor Utilization: The utilization of conveyor loop L1 (ρL1
) is of prime interest to

design engineers because all transactions that require conveyors use loop L1. Hence, it is

the most utilized conveyor loop among all loops and used as a measure of the conveyor

system utilization (Equation 25).

UC =
∑

j∈CL1

ρj,L1
(25)

Expected Cycle Times for the Conveyor System: Equation 26 provides the expres-

sion to estimate the expected cycle time (E[RLk
]) for all classes of transactions at conveyor

loop Lk where E[WLk
]GI/G/1 denotes the expected waiting time at loop Lk. In this equa-
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tion, E[WLk
]GI/G/1 denotes the expected waiting time in a GI/G/1 queue (Whitt [1983]).

Equations 27 and 28 provide the expressions to determine the expected conveyor cycle time

for class i retrieval and class i storage transactions (E[CTcri ] and E[CTcsi ]) respectively

using the values for E[RLk
]. The expected cycle time component to retrieve and store

a pallet using the conveyor subsystem are denoted by E[CTcr] and E[CTcs] respectively

(Equations 29 and 30).

E[RLk
] = E[WLk

]GI/G/1 + µ−1
D ∀k ∈ {1, . . . , T − 1} (26)

E[CTcri ] =

i−1∑

k=1

E[RLk
] ∀i ∈ {2, . . . , T} (27)

E[CTcsi ] =

i−1∑

k=1

E[RLk
] ∀i ∈ {2, . . . , T} (28)

E[CTcr] =

∑T
i=2 E[CTcri ]

T − 1
(29)

E[CTcs] =

∑T
i=2 E[CTcsi]

T − 1
(30)

Average Number of Transactions Waiting for Vertical Transfer: The average num-

ber of transactions waiting at conveyor loop Lk (QLk
), is estimated using Little’s law. The

expression to estimate the total number of transactions (QC) waiting in the conveyor sub-

system is shown in Equation 31.

QC =
T−1∑

k=1

QLk
(31)

From the lift queuing model, the following performance measures can be obtained: the

expected storage and retrieval lift cycle time E[CTlsi ] and E[CTlri ] for transaction class i

(Equations 32 and 33), the lift utilization (UL), and the average number of transactions
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waiting for the lift (QL).

E[CTlsi ] = E[WL]
GI/G/1 + E[Ssi ] (32)

E[CTlri ] = E[WL]
GI/G/1 + E[Sri ] (33)

7.3 Performance Measures for the Overall System

For the integrated system, the expected transaction cycle times (E[CTsc ] and E[CTrc ]),

average vehicle utilization (UV ), and the expected number of transactions waiting for service

(E[QW ]) in all tiers are estimated.

Expected Transaction Cycle Times: The total expected cycle time for storage and

retrieval transactions, which is the weighted sum of the cycle time across all tiers, are given

by Equations 34 and 35 respectively.

E[CTsc ] =
1

T
(E[CTts1 ]) +

1

T

T∑

i=2

(E[CTtsi ] +E[CTcsi ]) (34)

E[CTrc ] =
1

T
(E[CTtr1 ]) +

1

T

T∑

i=2

(E[CTtri ] + E[CTcri ]) (35)

Average Vehicle Utilization: The average vehicle utilization across all tiers is given by

Equation 36.

UV =

∑T
i=1 UVi

T
(36)

Average Number of Transactions Waiting for Service: The average number of trans-
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actions waiting across all tiers is given by Equations 37.

QB1
=

T∑

i=1

QB1i
(37)

To determine the expected transaction cycle times (E[CTsl ] and E[CTrl ]), E[CTlsi ]

and E[CTlri ] are substituted in place of E[CTcsi ] and E[CTcri ] in Equations 34 and 35

respectively. The next section presents the numerical results and insights.

8 Numerical Experiments

This section describes the design of experiments conducted to validate the model results

and develop insights with respect to the design parameters. For the multi-tier system,

the expected queue length at the vertical transfers, the expected transaction throughput

times, and the vehicle and vertical transfer resource utilization are of interest for system

sizing. To validate the analytical model, we obtain input data by partnering with Savoye

Logistics (www.savoye.com), a leading manufacturer of autonomous vehicle-based systems.

For experimentation, we consider a tier with two levels of D
W ratio: 1 and 2. A tier with

30 aisles and 81 columns (4860 storage locations per tier) has a D
W ratio of 1 whereas a tier

with 44 aisles and 60 columns (5280 storage locations per tier) has a D
W ratio of 2. The

number of tiers is also varied at two levels: 5 and 7. The transaction rate is varied at 10

equally spaced intervals from 270 pallets/hr to 400 pallets/hrs. To maintain the utilization

of both vehicles as well as the vertical transfer between 60% to 90%, we consider 5 vehicles

per tier for the conveyor-based system. However, for the lift-based system, we consider 2

vehicles per tier and 3 vehicles per tier for the 7 tier and the 5 tier system, respectively. In

sum, 40 cases each (2× 2× 10) were analyzed for both conveyor and lift systems.
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Based on practical application data, the vehicle horizontal velocity (vh), lift velocity (vl),

and conveyor velocity (vc) are initialized to 8.2 ft/sec, 4.9 ft/sec, and 1.5 ft/sec respectively.

We assume that lifts have an additional load/unload time of 2 seconds. The simulation

model is build using AutoModTM v12.2.1. (see Roy et al. [2015] for details). For each

scenario, 15 replications are run with a warm-up period of at least 6,500 transactions and

a run time of at least 65,000 transactions. The analytical model takes less than 30 seconds

of computational time on a standard PC.

Performance of the Analytical Model: For AVS/RS with conveyor mechanism, the

average absolute error percentage
∣∣∣ya−ys

ys

∣∣∣ in the total expected conveyor transaction cycle

times, conveyor utilization and the expected number of transactions waiting for the conveyor

are 8%, 0.1%, and 22% respectively whereas for AVS/RS with lift mechanism, the average

absolute error percentage in the total expected transaction cycle times, lift utilization and

expected number of transactions waiting for the lift are 6%, 0.1%, and 12% respectively,

where ya and ys denote the performance measure estimates obtained from the analytical and

simulation models respectively. The linking algorithm converges in less than 25 iterations

for a seven-tier system. Figure 8a in Appendix F shows the distribution of the absolute

errors for the conveyor-based system such as vehicle utilization, expected conveyor retrieval

and storage cycle time, expected number of transactions waiting for the conveyor, and

conveyor utilization. Similarly, Figure 8b in Appendix F shows the distribution of the

absolute errors for the lift-based system such as vehicle utilization, expected lift retrieval

and storage cycle time, expected number of transactions waiting for lift, and lift utilization.

It can be seen that the overall errors for all measures are within 15% except for the expected

number of transactions that wait for conveyor, QC . The expected number of transactions

waiting for the conveyor is low (0.3-0.5 per tier), hence the errors appear high (See Table 6).

Tables 4 and 5 provide a summary of the averages as well as the range (min-max) for the

37



performance measures corresponding to the conveyor system and lift system respectively.

Table 4: Model performance (Output for conveyor-based system)

Statistic UV E[CTcr] E[CTcs] QC UC

Average 0.90% 7.66% 8.17% 21.95% 0.11%

Range -0.24%-1.99% 4.73%-12.26% 4.49%-15.81% -6.98%-60.8% 0.01%-0.30%

Table 5: Model performance (Output for lift-based system)

Statistic UV E[CTlr] E[CTls] QL UL

Average 1.34% 6.84% 4.91% 11.16% 0.13%

Range -0.35%-3.01% 1.01%-14.49% 14.4%-11.79% 4.45%-21.63% 0.0%-0.30%

Performance Measures for Conveyor and Lift-based Systems: Tables 6 and 7 pro-

vide the numerical results from the analytical models of the conveyor and lift-based systems

respectively. For the conveyor-based system, the results for the performance measures: ve-

hicle utilization, conveyor utilization, expected transaction cycle times, expected conveyor

cycle times, and the average number of transactions waiting for vehicles and conveyor are

shown whereas for the lift-based system, the results for the performance measures: vehi-

cle utilization, lift utilization, expected transaction cycle times, expected lift cycle times,

and the average number of transactions waiting for vehicles and lift are shown. The con-

figurations for both systems are seven tiers, and 5280 storage locations/tier. Note that

the lift system becomes a bottleneck resource with 2 vehicles/tier. However, the conveyor

system permits an increase in the number of vehicles from 2 to 5 vehicles/tier, which al-

lows an increase in the throughput capacity of the system by 150%. These experiments

suggest that the conveyor mechanism can substantially improve the throughput capacity

of AVS/RS. Also note that by using multiple conveyor loops, the expected cycle time for
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vertical transfer is less than that of the lift system.

Table 6: Performance estimates for conveyor-based AVS/RS with 5 vehicles/tier

λs, λr (pall./hr) Type QB1
UV (%) E[CTrc ](sec) E[CTsc ] (sec) E[CTcr](sec) E[CTcs](sec) QC UC (%)

648
ya 4.3 66% 180 131 32 32 2.3 77%
ys 3.0 66% 173 123 29 28 1.7 77%

662
ya 4.9 68% 184 135 33 33 2.5 79%
ys 3.3 67% 176 125 30 29 1.9 79%

677
ya 5.7 70% 190 140 35 35 2.8 81%
ys 4.0 69% 180 130 31 30 2.1 81%

691
ya 6.7 71% 196 146 36 36 3.1 82%
ys 4.7 71% 185 134 32 32 2.4 82%

706
ya 7.8 73% 203 153 38 38 3.4 84%
ys 5.6 72% 192 140 34 33 2.7 84%

720
ya 9.1 75% 211 161 40 40 3.9 86%
ys 6.1 73% 196 144 36 35 3.0 86%

734
ya 10.7 76% 220 170 43 43 4.4 87%
ys 7.0 75% 202 150 38 37 3.5 87%

749
ya 12.6 78% 231 181 46 46 5.1 89%
ys 8.2 77% 211 158 42 40 4.2 89%

763
ya 14.8 80% 245 195 51 51 6.0 91%
ys 9.4 78% 221 167 46 44 5.0 91%

778
ya 16.6 82% 263 212 57 57 7.3 93%
ys 10.8 80% 234 179 53 50 6.3 93%

Table 7: Performance estimates for lift-based AVS/RS with 2 vehicles/tier

λs, λr (pall./hr) Type QB1
UV (%) E[CTrc ](sec) E[CTsc ](sec) E[CTlr](sec) E[CTls](sec) QL UL (%)

270
ya 5.7 63% 236 191 50 49 2.3 83%
ys 3.5 62% 204 159 47 46 2.2 83%

274
ya 6.0 64% 242 197 53 52 2.6 84%
ys 3.8 62% 208 165 50 50 2.4 84%

277
ya 6.4 65% 249 204 57 55 2.8 86%
ys 4.0 63% 214 169 53 52 2.6 86%

281
ya 6.8 65% 257 212 61 60 3.2 87%
ys 4.3 64% 221 177 57 56 2.9 87%

284
ya 7.2 66% 266 221 66 65 3.5 88%
ys 4.4 65% 227 183 61 60 3.2 88%

288
ya 7.7 67% 276 231 72 70 4.0 89%
ys 4.6 66% 233 189 66 66 3.6 89%

292
ya 8.2 68% 287 242 79 78 4.5 90%
ys 4.8 66% 244 201 75 74 4.3 90%

295
ya 8.7 69% 300 255 88 87 5.2 91%
ys 5.1 67% 255 211 84 83 5.0 91%

299
ya 9.3 70% 316 271 100 99 6.1 92%
ys 5.3 68% 266 222 93 92 5.6 92%

302
ya 9.9 71% 335 290 116 114 7.4 93%
ys 5.7 69% 287 243 110 109 6.9 93%
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Comparison of Expected Transaction Cycle Times: Further, for the multi-tier system

with 7 tiers, 28,560 storage locations, and 3 vehicles/tier, the λs, λr are varied from 270

to 306 pallets/hr. For these set of system configurations, it is observed that the conveyor

system decreases the expected transaction cycle times by 17%-64% (Figure 6). Since the

conveyor throughput capacity is greater than the lift throughput capacity, the lift waiting

time is more than the conveyor waiting time for the same transaction arrival rates. Hence,

we notice that as the arrival rates increase, the expected transaction time with the lift

grows rapidly. However, note that the decision to select a conveyor vertical transfer over a

lift vertical transfer is subject to many other factors such as cost and space considerations.

For instance, the lift unit is compact and typically requires less space than the conveyor

unit.
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Figure 6: Comparing retrieval transaction cycle times with lift and conveyor system

Throughput Capacity: The throughput capacity of each tier i is min(X(Vi), λsi +

λri) where X(Vi) is the throughput of the closed queuing network corresponding to a

tier with V vehicles. However, for the multi-tier system, the throughput capacity is
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min(
∑T

i=1 X(Vi),
∑T

i=1 λsi + λri , µv) where µv is the throughput capacity of the vertical

transfer unit. While the number of vehicles in the system can be increased to increase the

throughput capacity, at some point, the throughput capacity of the vertical transfer mecha-

nism will constrain the throughput capacity of the system. Due to multiple conveyor loops,

which process transactions in parallel, the throughput capacity of the system is improved

by multiple times when compared to the lift-based system.

9 Summary and Conclusions

During the last decade, a new generation of vehicle-based storage and retrieval systems

(AVS/RS) that provides additional throughput capacity flexibility has emerged. We de-

velop a modular decomposition-based queuing network framework to analyze such systems.

Our approach captures several distinguishing features of AVS/RS such as sequential rec-

tilinear vehicle movement in a tier, service protocols for accessing resources, transaction

requests competing for shared vertical transfer resources from multiple tiers, and resource

synchronization requirements. We illustrate the use of this approach using two types of

vertical transfer mechanisms: lifts and conveyors. The solution approach is efficient and

scalable, and can accommodate a wide variety of design parameter settings such as different

tier depth-to-width ratio, number of tiers, and number of vertical transfer units.

A key building block of the approach is the detailed model of the horizontal movement

dynamics within a tier. Each tier is modeled as an SOQN to capture the transaction waiting

times for vehicles. To ensure computational tractability of a system with multiple tiers,

each tier is modeled in an aggregate way as a single load-dependent queue, with the service

rate for this queue being obtained from the analysis of the respective SOQNs.

The vertical transfer subsystem is modeled as a multi-class queuing network with
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GI/G/1 queues corresponding to different vertical transfer segments. An analysis of the

entire system requires effectively capturing the linkage between arrivals and departures

in the tier subsystem and vertical transfer units. To do so, we develop approximations

using embedded Markov chain analysis to estimate the first and second moments of inter-

departure times from the load-dependent queue present in the semi-open queue. Then,

using a detailed departure process analysis and a novel linking algorithm, the models are

solved. Detailed simulations are carried out to show the efficacy of the analytical model. A

comparison of the results with simulation shows that the errors are low. Our approxima-

tions for the departure process in SOQN and the methodology for linking multiple SOQNs

also addresses a major limitation in the current state-of-the-art SOQN literature.
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Online Supplemental Material

A Embedded Markov Chain Analysis for SS-SOQN

In this appendix, the transition probabilities from Xi to Xj are described for the four

regions corresponding to transition probability matrix, PD (Refer Section 4.

Region 1

P (Xi,Xj) =
µi(V )

λ1i + µi(V )
if i1 − j1 = 1, i2 = 1, j2 = 1, i1 >= 0

P (Xi,Xj) =
µi(V )

λ2i + µi(V )
if i1 − j1 = 1, i2 = 2, j2 = 2, i1 >= 0

P (Xi,Xj) =
λ1ipi

λ1i + µi(V )

µi(V )

λ2i + µi(V )
if i1 − j1 = 1, i2 = 1, j2 = 2, i1 >= 0

P (Xi,Xj) =
λ2i

λ2i + µi(V )

µi(V )

λ1i + µi(V )
if i1 − j1 = 0, i2 = 2, j2 = 1, i1 >= 0

P (Xi,Xj) = θ
|i1−j1+1|
1

µi(V )

λ1i + µi(V )
if i1 − j1 <= 0, i2 = 1, j2 = 1, i1 >= 0

P (Xi,Xj) = θ
|i1−j1+1|
1

λ1ipi
λ1i + µi(V )

µi(V )

λ1i + µi(V )
if i1 − j1 <= 0, i2 = 1, j2 = 2, i1 >= 0

P (Xi,Xj) = θ
|i1−j1|
1

λ2i

λ2i + µi(V )

µi(V )

λ1i + µi(V )
if i1 − j1 < 0, i2 = 2, j2 = 1, i1 >= 0

P (Xi,Xj) = θ
|i1−j1|
1

λ2i

λ2i + µi(V )

λ1ipi
λ1i + µi(V )

µi(V )

λ2i + µi(V )
if i1 − j1 < 0, i2 = 2, j2 = 2, i1 >= 0

where θ1 = pi

(
λ1i

λ1i
+µi(V )

λ2i

λ2i
+µi(V )

)
+ (1− pi)

(
λ1i

λ1i
+µi(V )

)

The expression for transition probability, P (Xi,Xj), is now explained for i1 − j1 < 0, i2 =

2, j2 = 2, i1 >= 0. Since i1 is less than j1 there are j1 − i1 + 1 arrival events by the

next departure instant. This requires completion of phase 2 of the first arrival, followed

by completion of j1 − i1 arrivals, followed by completion of phase 1 of the (j1 − i1 + 2)th
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arrival, and finally completion of the service process prior to the completion of phase 2 of

the (j1 − i1 + 2)th arrival. This yields P (Xi,Xj) is θ
|i1−j1|
1

λ2i

λ2i
+µi(V )

λ1i
pi

λ1i
+µi(V )

µi(V )
λ2i

+µi(V ) .

Region 2

P (Xi,Xj) = θ2(|i1 − j1|)
µi(min(|i1 − j1|+ 1, V ))

λ1i + µi(min(|i1 − j1|+ 1, V ))

if (i1 = −V, i2 ∈ {1, 2}, j2 = 1 or i1 = −V + 1, i2 = 1, j2 = 1)

and j1 ∈ {−V, . . . ,K − 1}

P (Xi,Xj) = θ2(|i1 − j1|)
µi(min(|i1 − j1|+ 1, V ))

λ2i + µi(min(|i1 − j1|+ 1, V ))

λ1ipi
λ1i + µi(min(|i1 − j1|+ 1, V ))

if (i1 = −V, i2 ∈ {1, 2}, j2 = 2 or i1 = −V + 1, i2 = 1, j2 = 2)

and j1 ∈ {−V, . . . ,K − 2}

where θ2(n) =
∏n

i=1 pi

(
λ1i

λ1i
+µi(i)

λ2i

λ2i
+µi(i)

)
+ (1− pi)

(
λ1i

λ1i
+µi(i)

)
, and

µi(i) =





µi(V ) i > V

µi(i) otherwise

The expression for transition probability, P (Xi,Xj), is now explained for i1 = −V, i2 ∈

{1, 2}, j1 ∈ {−V, . . . ,K − 2}, j2 = 2. After the first transaction arrives, the number of

additional transactions that arrive before the next departure is j1 − i1. The probability

of an arrival prior to service completion is given by the expression pi

(
λ1i

λ1i
+µi(i)

λ2i

λ2i
+µi(i)

)
+

(1−pi)
(

λ1i

λ1i
+µi(i)

)
where i is the number of vehicles processing transactions at Si. Since all

arrival events are independent of each other, the joint probability of |i1−j1| arrivals is given

by the term θ2(|i1−j1|). Since j2 is 2, the (j1−i1+1)th arrival must complete phase 1 of the

arrival process and enter phase 2 before the next departure. This probability is given by the
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expression
λ1i

pi
λ1i

+µi(min(|i1−j1|+1,V )) where min(|i1−j1|+1, V ) is the number of vehicles present

at the load-dependent station. However, the departure occurs before the phase 2 arrival

process is complete and this happens with probability µi(min(|i1−j1|+1,V ))
λ2i

+µi(min(|i1−j1|+1,V )) . By taking a

product of these event probabilities, the final expression for P (Xi,Xj) is determined.

Region 3

P (Xi,Xj) =
µi(min(V + i1, V ))

λ1i + µi(min(V + i1, V ))

if i1 > −V + 1, i1 < 0, i1 − j1 = 1, i2 = 1, j2 = 1

P (Xi,Xj) =
µi(min(V + i1, V ))

λ2i + µi(min(V + i1, V ))

if i1 > −V + 1, i1 < 0, i1 − j1 = 1, i2 = 2, j2 = 2

P (Xi,Xj) =
µi(min(V + i1, V ))

λ2i + µi(min(V + i1, V ))

λ1ipi
λ1i + µi(min(V + i1, V ))

if i1 > −V + 1, i1 < 0, i1 − j1 = 1, i2 = 1, j2 = 2

P (Xi,Xj) = θ3(|i1 − j1 + 1|, V + i1)
µi(min(|i1 − j1|, V ))

λ1i + µi(min(|i1 − j1|, V ))

if i1 > −V + 1, i1 < 0, i1 − j1 < 1, i2 = 1, j2 = 1

P (Xi,Xj) = θ3(|i1 − j1 + 1|, V + i1)
µi(min(j1 + V + 1, V ))

λ2i + µi(min(j1 + V + 1, V ))

λ1ipi
λ1i + µi(min(j1 + V + 1, V ))

if i1 > −V + 1, i1 < 0, i1 − j1 < 1, i2 = 1, j2 = 2

P (Xi,Xj) = θ3(|j1 − i1|, V + i1 + 1)
µi(min(i1 + V + 1, V ))

λ1i + µi(min(i1 + V + 1, V ))

λ2i

λ2i + µi(min(i1 + V, V ))
if i1 >= −V + 1, i1 < 0, i1 − j1 < 1, i2 = 2, j2 = 1

P (Xi,Xj) = θ3(|j1 − i1|, V + i1 + 1)
µi(min(j1 + V + 1, V ))

λ1i + µi(min(j1 + V + 1, V ))

λ2i

λ2i + µi(min(i1 + V, V ))

λ1ipi
λ1i + µi(min(j1 + V + 1, V ))

if i1 >= −V + 1, i1 < 0, i1 − j1 < 1, i2 = 2, j2 = 2
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where θ3(n, v1) =
∏

j=1:n pi

(
λ1i

λ1i
+µi(j)

λ2i

λ2i
+µi(j)

)
+ (1− pi)

(
λ1i

λ1i
+µi(j)

)
,

v1 is the number of vehicles present in the load-dependent station corresponding to state

Xi, and

µi(j) =





µi(V ) j + v1 + 1 > V

µi(j + v1) otherwise

The expression for transition probability, P (Xi,Xj), is now explained for i1 >= −V+1, i1 <

0, i1 − j1 < 1, i2 = 2, j2 = 2. In this case, there are one or more vehicles already in service

at Si. The number of additional arrivals that occur before the next departure is j1− i1+1.

At the previous departure instant, the impending arrival was in phase 2 of arrival pro-

cess. Therefore, the probability that this arrival occurs before the service completion is

λ2i

λ2i
+µi(min(i1+V,V )) . Note that the service rate of the load-dependent station is µi(min(i1 +

V, V )) because the number of vehicles present at Si is min(i1+V, V ). The probability that

j1 − i1 additional arrivals occur prior to the service completion is θ3(|j1 − i1|, V + i1 + 1)

where V + i1 + 1 is the number of vehicles present at the load-dependent station. Further,

(j1 − i1 + 2)th arrival must complete phase 1 of the arrival process and join phase 2 be-

fore the departure. This probability is given by the expression
λ1i

pi
λ1i

+µi(min(j1+V+1,V )) where

min(j1 + V + 1, V ) is the number of vehicles present at the load-dependent station before

the departure instant. However, the departure occurs before the phase 2 arrival process

is complete. This probability is given by the expression µi(min(j1+V+1,V ))
λ1i

+µi(min(j1+V+1,V )) . By taking

a product of these event probabilities, the final expression for P (Xi,Xj) is obtained as

θ3(|j1 − i1|, V + i1 + 1) µi(min(j1+V+1,V ))
λ1i

+µi(min(j1+V+1,V ))

λ2i

λ2i
+µi(min(i1+V,V ))

λ1i
pi

λ1i
+µi(min(j1+V+1,V )) .
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Region 4

P (Xi,Xj) = 1−
K−2∑

j1=−V

2∑

j2=1

P (Xi,Xj)− P (Xi, (K − 1, 1))

where Xi ∈ SD and Xj = (K − 1, 2)

The expression for transition probability, P (Xi,Xj), is now explained for Xi ∈ SD and

Xj = (K − 1, 2). There are K vehicles before the service completion and another arrival is

in phase 2 of the arrival process. To estimate P (Xi,Xj), we use the law of total probability,

i.e, the sum of all transition probabilities from a Xi to Xj : Xj ∈ SD is 1.
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B Inter-departure Time Analysis

The following paragraphs describe the analysis of departure process for states in G2, G3,

G4, and G5.

Departure Analysis for States in G2: If a departure leaves the system in state (−V, 2),

the following events need to occur for the subsequent departure. First, a transaction should

arrive and then this transaction’s service needs to be completed. Since the arrival is already

in phase 2, let the notation A2 reflect a transaction arrival from the second phase. Similar

to the analysis of states in G1, the service completion time could vary depending on the

number of vehicles present at the load-dependent station Si affecting µi(n)
−1. Therefore,

one of the following sequence of events could occur before the next departure instant.

• S
2
1 = (A2, S

′

): Completion of the second phase of an arrival followed by a service

completion by rate µi(1).

• S
2
2 = (A2, A, S

′

): Completion of two arrivals (second phase of the first and both phases

of the second) followed by a service completion. A part of the service is completed at

rate µi(1) and the residual service time requirement is completed at a rate µi(2).

• S
2
V = (A2, A, . . . , A, S

′

): Completion of V arrivals (second phase of the first and both

phases of the remaining arrivals) followed by a service completion. The first part of

the service is completed at rate µi(1), the second part of the service is completed

at rate µi(2). Likewise, the (V − 1)th part of the service time is completed at rate

µi(V − 1) and the residual service time is completed at a rate µi(V ).

Let pS2e denote the probabilities of these sequence of events. Then the relationship for the

lower bound of the first and second moments of the inter-departure time is obtained as
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follows.

∑

S2e∈s

pS2eE[Di|S
2

e]l = E[Di|s ∈ G2]l ≤ E[Di|s ∈ G2] (38)

∑

S2e∈s

pS2eE[D2

i |S
2

e]l = E[D2

i |s ∈ G2]l ≤ E[D2

i |s ∈ G2] (39)

(40)

Departure Analysis for States in G3: For states in G3, the previous departure leaves

one or more transactions at Si. Therefore, a transaction immediately begins its service

after the previous transaction departure. Hence, the time to the next departure equals

the time to complete one service. Similar to the analysis of states in sets G1 and G2, the

service completion time would vary depending on the number of vehicles present at the

load-dependent station Si affecting µi(n)
−1 and during their service time multiple arrivals

could occur leading to the following sequence of events. The sequence of events and further

analysis results are described with respect to state (−V + 1, 1).

• S
3
1 = (S

′

): Service completes at rate µi(1).

• S
3
2 = (A,S

′

): One arrival followed by a service completion. A part of the service is

completed at rate µi(1) and the residual service time requirement is completed at a

rate µi(2).

• S
3
V = (A, . . . , A, S

′

): Likewise, V − 1 arrivals followed by a service completion. The

first part of the service is completed at rate µi(1), the second part of the service is

completed at rate µi(2). Likewise, the (V − 1)th part of the service time is completed

at rate µi(V − 1) and the residual service time is completed at a rate µi(V ).

Let pS3e denote the probabilities of these sequence of events. Then the relationship for the
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lower bound of the first and second moments of the inter-departure time is obtained as

follows.

∑

S3e∈s

pS3eE[Di|S
3

e]l = E[Di|s ∈ G3]l ≤ E[Di|s ∈ G3] (41)

∑

S3e∈s

pS3eE[D2

i |S
3

e]l = E[D2

i |s ∈ G3]l ≤ E[D2

i |s ∈ G3] (42)

(43)

Departure Analysis for States in G4: Similar to states in G3, the previous departure

leaves one or more transactions at Si. However, the next arrival is already in phase 2.

Therefore, although a transaction immediately begins service after the previous departure,

a departure occurs when service is complete. Similar to the analysis of states in G1, G2, G3,

the service completion time would vary depending on the number of vehicles present at

the load-dependent station Si affecting µi(n)
−1 and during this time multiple arrivals could

occur leading to the following sequence of events.The sequence of events and further analysis

is described with respect to state (−V + 1, 2).

• S
4
1 = (S

′

): Service completes at rate µi(1).

• S
4
2 = (A2, S

′

): Completion of phase 2 of the first arrival followed by a service

completion. A part of the service is completed at rate µi(1) and the residual ser-

vice time requirement is completed at a rate µi(2). The probability that phase

2 of arrival completes prior to completion of service, denoted by q̂n, is given by

P [Y2 ≤ Zn] =
λ2i

λ2i
+µi(n)

.

• S
4
V = (A2, A, . . . , A, S

′

): Completion of phase 2 of the first arrival followed by comple-

tion of both phases of (V −2) arrivals before the completion of service. The first part
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of the service is completed at rate µi(1), the second part of the service is completed

at rate µi(2). Likewise, the (V − 1)th part of the service time is completed at rate

µi(V − 1) and the residual service time is completed at a rate µi(V ).

Let pS4e denote the probabilities of these sequence of events. Then the relationship for the

lower bound of the first and second moments of the inter-departure time is obtained as

follows.

∑

S4e∈s

pS4eE[Di|S
4

e]l = E[Di|s ∈ G4]l ≤ E[Di|s ∈ G4] (44)

∑

S4e∈s

pS4eE[D2

i |S
4

e]l = E[D2

i |s ∈ G4]l ≤ E[D2

i |s ∈ G4] (45)

(46)

Analysis for a departure from states in G5: Since the previous departure leaves V

transactions to be processed Si, for states in G5, a transaction that immediately begins

service after the previous departure. This service is not interrupted by future arrivals.

Hence, the time to the next departure only depends on the completion of service with rate

µi(V ). (see Equations 47 and 48).

E[Di|s ∈ G5]l =
1

µi(V )
(47)

E[D2
i |s ∈ G5]l =

2

µi(V )2
(48)

The first and second moment expressions are provided in Table 8.
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Table 8: First and second moment expressions of the inter-departure times
State, Set Event Sequence (S.e) Probability (pS.e) E[Di|S

.
e]l E[D2

i |S
.
e]l

(−V, 1) ∈ G1

A,S
′

1− q1 pi (E[Y1] + E[Y2] + E[Z1]) + (1− pi) ((E[Y1] + E[Z1]))
[
pi
(
(V ar[Y1] + V ar[Y2] + V ar[Z1]) + (E[Y1] +E[Y2] + E[Z1])

2
)]

+
[
(1− pi)

(
(V ar[Y1] + V ar[Z1]) + (E[Y1] + E[Z1])

2
)]

A,A, S
′

q1(1− q2) pi ((E[Y1] + E[Y2] + E[Z2])) + (1− pi) ((E[Y1] + E[Z2]))
[
pi
(
(V ar[Y1] + V ar[Y2] + V ar[Z2]) + (E[Y1] +E[Y2] + E[Z2])

2
)]

+
[
(1− pi)

(
(V ar[Y1] + V ar[Z2]) + (E[Y1] + E[Z2])

2
)]

. . . .

. . . .

A, . . . , A, S
′

q1q2 . . . qV−1 pi ((E[Y1] + E[Y2] + E[ZV ])) + (1− pi) ((E[Y1] + E[ZV ]))
[
pi
(
(V ar[Y1] + V ar[Y2] + V ar[ZV ]) + (E[Y1] +E[Y2] + E[ZV ])

2
)]

+
[
(1− pi)

(
(V ar[Y1] + V ar[ZV ]) + (E[Y1] + E[ZV ])

2
)]

(−V, 2) ∈ G2

A2, S
′

1− q1 (E[Y2] + E[Z1]) (V ar[Y2] + V ar[Z1]) + (E[Y2] + E[Z1])
2

A2, A, S
′

q1(1− q2) (E[Y2] + E[Z2]) (V ar[Y2] + V ar[Z2]) + (E[Y2] + E[Z2])
2

. . . .

. . . .

A2, A, . . . , A, S
′

q1q2 . . . qV−1 (E[Y2] + E[ZV ]) (V ar[Y2] + V ar[ZV ]) + (E[Y2] + E[ZV ])
2

(−V + 1, 1) ∈ G3

S
′

1− q1 E[Z1] E[Z1]
2

A,S
′

q1(1− q2) E[Z2] E[Z2]
2

. . . .

. . . .

A,A, . . . , A, S
′

q1q2 . . . qV−1 E[ZV ] E[ZV ]
2

(−V + 1, 2) ∈ G4

S
′

1− q̂1 E[Z1] E[Z1]
2

A2, S
′

q̂1(1− q2) E[Z2] E[Z2]
2

. . . .

. . . .

A2, A, . . . , A, S
′

q̂1q2 . . . qV−1 E[ZV ] E[ZV ]
2

∀s ∈ G5 S
′

1 E[ZV ] E[ZV ]
2
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C Analysis of Vertical Movements with Lifts

In AVS/RS with lift mechanism, lifts are used to transfer pallets in the vertical direction

instead of conveyors. Similar to the conveyor-based system, the lift-based system with

T tiers can be divided into a single lift subsystem and T individual tier subsystems (see

Figure 4a). The lift dwells at the point of service completion, i.e., after processing a storage

transaction it dwells near the LU point of the destination tier, whereas after processing a

retrieval transaction it dwells at the LU point of the tier 1.

Figure 4b shows the queuing network model for a system with three tiers that are linked by a

lift unit, denoted by L̂1. All tiers except the first tier is linked to the lift queue. The queuing

models for the tier subsystems are identical to the conveyor-based system. But, the queuing

model for the lift subsystem differs from the queuing model for the conveyor subsystem.

Note that unlike multiple conveyor queues in conveyor subsystem, the lift subsystem has

only one queue i.e., all transactions that require storage or retrievals with destination tier

greater than 1 uses the shared lift subsystem. Further, the difference lies in estimating the

service time at the GI/G/1 queue.

For vertical travel, lift is used for transactions with storage or retrieval destination tiers in

2, . . . , T . Since the service times of the lift vary depending on the type of transaction, dwell

point of the lift and the destination tier location, each transaction type with a different

expected lift service time is modeled as a different class. Therefore, there are T transaction

classes corresponding to the storage transaction and T transaction classes corresponding

to the retrieval transaction. The index i in storage and retrieval classes (si and ri): i =

1, 2, . . . , T correspond to tiers 1, 2, . . . , T . Let C denote the set of all storage and retrieval

classes. The inter-arrival times for the storage transactions is exponential with parameter

λ−1
a
si,L̂1

, where si is the class of storage transaction. Similar to the conveyor subsystem,
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the inter-arrival times for the retrieval transactions have a general distribution with mean

λ−1
a
ri,L̂1

. Note that the lift is not used by class 1 transactions (s1 and r1). Therefore, the lift

is modeled as an open GI/G/1 queue with 2(T −1) transaction classes, general inter-arrival

times for retrieval class, exponential inter-arrival times for storage class, and general service

times with means E[Sri ] and E[Ssi ] corresponding to class index ri and si of retrieval and

storage transactions respectively.

The lift service times, which correspond to the vertical travel time components, vary de-

pending on the originating and the destination tier number of the lift. Therefore, the inputs

to determine the lift service times for each class of transaction are the originating tier index,

the destination tier number of the lift, and the probability mass function of the lift’s origi-

nating tier index. The distance between any two tiers (i and j) is expressed by the absolute

value of the difference between the tier numbers (|i− j|) and multiplying the difference by

the height of a tier. Depending on the dwell point location of the lift, the lift could originate

from any of the tiers. Let p(i) represent the probabilities that the lift originates from tier

i : i = 1, 2, . . . , T . Therefore, p(1) and p(i > 1) =
∑T

i=2 p(i) denote the probabilities that

the lift originates from tier 1 and the remaining tiers respectively. Therefore, the probability

that the lift originates from a particular tier i : i > 1 is p(i|i > 1)p(i > 1) = 1
T−1p(i > 1).

Since, the lift adopts a point of service completion dwell point policy, it dwells at tier 1

after completing a retrieval transaction and dwells at the destination tier (2, . . . , T ) after

completing a storage transaction. Further, if λsi = λri ∀i ∈ {2, . . . , T}, then it is expected

that the probability of dwelling at any tier i is equally likely. Therefore, in this model,

p(1) = p(i > 1) = 0.5. Equations 49 and 50 provide the expressions to calculate the lift

service times for retrieval and storage transactions, respectively where i = 2, . . . , T .
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E[Sri ] =
p(i > 1)

T − 1





T∑

j=2

uh
vl

(|i− j|+ i− 1)



+ p(1)

{
2(i− 1)uh

vl

}
+ Llt + Ult (49)

E[Ssi ] =
p(i > 1)

T − 1





T∑

j=2

uh
vl

(i+ j − 2)



+ p(1)

{
(i− 1)uh

vl

}
+ Llt + Ult (50)

The second moment of the service times for all transaction classes is based on Bayes’

theorem, which relies on the property that the second moment of a mixture of distributions

is the mixture of the second moments (Equations 51 and 52).

E[S2

ri
] =

p(i > 1)

T − 1

T∑

j=2

(
uh

vl
(|i− j|+ i− 1) + Llt + Ult

)2

+ p(1)

(
2(i− 1)uh

vl
+ Llt + Ult

)2

(51)

E[S2

si
] =

p(i > 1)

T − 1

T∑

j=2

(
uh

vl
(i+ j − 2) + Llt + Ult

)2

+ p(1)

(
(i− 1)uh

vl
+ Llt + Ult

)2

(52)

In Equations 49-52, the notations uh, vl, Llt, and Ult denote the height of each tier, vertical

velocity of the lift, and load/unload times of the lift respectively. The queuing model is

solved using GI/G/1 queue with multiple customer classes.

D Cycle Time Expressions in AVS/RS

The cycle time expressions to complete storage and retrieval transactions in tier i for a

conveyor-based AVS/R system are given in Equations 53 and 54. The cycle time of a

transaction is composed of waiting time for resource, blocking delays, and horizontal and

vertical travel time components. Let WV denote the waiting time to access a free vehicle
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and Wci denote the waiting time to access a free conveyor loop i. Let Wclu and Wcrk denote

the blocking delays at the cross-aisle when the vehicle is traveling from LU point to the

racks and from racks to the LU point respectively. We denote Was and War as the blocking

delays at the aisles for storage and retrieval transactions respectively. Note that the storage

transaction is assumed to be complete when the pallet is unloaded at the storage location.

Hence, the blocking delay experienced by the vehicle in the aisle during its return travel is

not included in the storage cycle time expression. However, the total blocking delay in the

aisle is included in the cycle time expression for retrieval transactions. For vertical travel

using conveyor segment i, the terms t, Wci , and tc denote the storage/retrieval tier, the

waiting time for conveyor loop i, and the travel time in each loop. The horizontal travel

times include traveling from vehicle dwell point (xlu, ylu, which are x and y coordinates of

LU point) to the storage/retrieval location (xs, ys or xr, yr) with a velocity vh. Let Lvt

and Uvt denote the time to load and unload the pallet by a vehicle.

CTsc(i) =

i−1∑

j=1

(Wcj + tc) +WV + Lvt +Wclu +

∣∣∣∣
xlu − xs

vh

∣∣∣∣+Was

+

∣∣∣∣
ylu − ys

vh

∣∣∣∣+ Uvt (53)

CTrc(i) = WV +Wclu +

∣∣∣∣
xlu − xr

vh

∣∣∣∣+
∣∣∣∣
ylu − yr

vh

∣∣∣∣+ Lvt +War

+

∣∣∣∣
yr − ylu

vh

∣∣∣∣+Wcrk +

∣∣∣∣
xr − xlu

vh

∣∣∣∣+ Uvt +

i−1∑

j=1

(Wcj + tc) (54)

For AVS/RS with lift mechanism, Equations 55 and 56 provide cycle time expressions

(CTsl , CTrl) for storage and retrieval transactions respectively. For vertical travel using

lift mechanism, the travel times include traveling from lift dwell point (zvd) to LU point

(zlu), and from LU point to the destination tier (zs or zr). The load (unload) times for the
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vehicles and lift are Lvt (Uvt) and Llt (Ult) respectively. The vehicle and the lift waiting

times are denoted by WV and WL respectively. Note that unlike cycle time expressions

(Equations 53 and 54) for the conveyor system, there are additional vertical travel time

components such as lift travel time from its dwell point to the LU point.

CTsl = WL +

∣∣∣∣
zvd − zlu

vl

∣∣∣∣+ Llt +

∣∣∣∣
zlu − zs

vl

∣∣∣∣+ Ult +WV + Lvt +Wclu +

∣∣∣∣
xlu − xs

vh

∣∣∣∣

+ Was +

∣∣∣∣
ylu − ys

vh

∣∣∣∣+ Uvt (55)

CTrl = WV +Wclu +

∣∣∣∣
xlu − xr

vh

∣∣∣∣+
∣∣∣∣
ylu − yr

vh

∣∣∣∣+ Lvt +War +

∣∣∣∣
yr − ylu

vh

∣∣∣∣+Wcrk

+

∣∣∣∣
xr − xlu

vh

∣∣∣∣+ Uvt +WL +

∣∣∣∣
zvd − zr

vl

∣∣∣∣+ Llt +

∣∣∣∣
zr − zlu

vl

∣∣∣∣+ Ult (56)

E Flowchart of the Linking Algorithm

The flowchart used for linking the models corresponding to the horizontal and vertical

movements is provided in Figure 7.
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Initialize ǫ=0.0001

For conveyor loop Li−1:

Initialize (c2ari,Li−1

)curr = 1.0 for retrieval class

i: i = (2, . . . , T ) and,

For lift ̂L1:

Initialize (c2a
ri,L̂1

)curr = 1.0

Determine the SCV of the inter-departure

times (c2dri,Si
) for the retrieval transactions

from the load-dependent station Si

Estimate δi = |c2dri,Si
− (c2ari,Li−1

)curr|

Estimate δmax = max(δi), for i ∈ {2, . . . , T}

Stop

No

Yes

Solve queuing model of the conveyor subsys-

tem to get the SCV of the inter-departure

times for the storage transactions, c2dsi,Li−1

Is

δmax < ǫ ?

For conveyor loop Li−1:

Update (c2ari,Li−1

)curr

For lift ̂L1:

Update (c2a
ri,L̂1

)curr

Approximate the SOQN of a tier with a single

class single server SOQN

• Determine the SCV of the inter-arrival time

for the aggregated class (c2aAi,Ji
) at buffer

B1i of tier i, i = 2, . . . , T

• Determine load-dependent service times

µi(n)

Start

Figure 7: Flowchart to link the systems modeling horizontal and vertical movements

F Model Error Distribution
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(a)

(b)

Figure 8: Summary of errors for (a) the conveyor-based system (the histograms - top (left
to right) and bottom (left to right) correspond to the five measures: UV , E[CTcr], E[CTcs],
QC , and UC) and (b) lift-based system (the histograms - top (left to right) and bottom
(left to right) correspond to the five measures: UV , E[CTlr], E[CTls], QL, and UL)
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