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Abstract
Bulk-service multi-server queues with heterogeneous server capacity and thresholds
are commonly seen in several situations such as passenger transport or package deliv-
ery services. In this paper, we develop a novel decomposition-based solution approach
for such queues using arguments from renewal theory. We then obtain the distribution
of the waiting time measure for multi-type server systems. We also obtain other useful
performance measures such as utilization, expected throughput time, and expected
queue lengths.
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1 Introduction

Heterogeneous servers have been a usefulmodeling construct for performance analysis
of telecommunication networks [4]. During recent years, other applications of hetero-
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geneous servers with bulk service have been found in container terminal systems [11],
passenger transport systems, and parcel distribution networks. In a passenger trans-
port system, the servers can vary in their carrying capacity (for example, a 20-seater
bus vs. a 40-seater bus) and serves (transports) the passengers in a batch. Hence, the
servers may have heterogeneous capacity. Likewise, we can model a parcel distribu-
tion network using heterogeneous capacity servers. The freight movers own or rent
trucks from the market of different capacities. The trucks vary in their body length
and carrying capacity. For instance, Light Duty Box Trucks typically have a carrying
capacity of 8600–14,050 lbs, whereas Heavy-duty Flatbed Trucks typically have a
carrying capacity of 26,000–52,000 lbs. The trucks have a threshold load limit before
they leave the origin dispatch unit. The performance analysis problem (such as the
number and quantity of loads waiting at a depot before being dispatched) can be mod-
eled using heterogeneous capacity resources (multiple types of trucks). However, the
literature on performance analysis of bulk-service queues with heterogeneous servers
and threshold service is scarce.

In Arora [3], a heterogeneous two-server queueing process fed by Poisson arrivals
and exponential service time distributions has been considered under the bulk-service
discipline. Time-dependent probabilities for the queue length have been obtained in
terms of Laplace transforms, fromwhich differentmeasures associatedwith the queue-
ing process, like the mean queue-length, could be determined. Goswami and Samanta
[8] analyzed a discrete-time bulk-service queueing system with two heterogeneous
servers, i.e., two batch servers working with different service rates. They assumed the
interarrival times of customers and service times of batches to be independent and
geometrically distributed. They obtain closed-form expressions for the steady-state
probabilities at an arbitrary epoch with the help of the displacement operator method
and derive the outside observer’s observation epoch probabilities and waiting time dis-
tribution measured in slots. Chakka and Van Do [4] proposed a new HetSigma queue
for performance analysis of wireless communication systems. They use negative cus-
tomers to model server failures, packet losses, and load balancing in networks. They
analyze joint Markov modulation of the arrival and service processes, superposition
of K Compound Poisson Process (CPP) streams of positive customer arrivals and a
CPP of negative customer arrivals in each modulating phase for a multi-server queue
with c non-identical servers, and generalized exponential service times.

Using a matrix geometric method, Kumar and Madheswari [10] obtained the sta-
tionary queue length distribution and mean system size for a Markovian queue with
two heterogeneous servers and multiple vacations. Using a generating function tech-
nique, Ammar [2] analyzed the transient behavior (exact time dependent solutions) of
a two-processor heterogeneous system with catastrophes, server failures and repairs.
The tasks arrive according to a Poisson process and service times are exponentially
distributed. Each task requires exactly one processor for its execution and the schedul-
ing policy is FCFS. Using the embeddedmethod, Keaogile et al. [9] presented an exact
analysis for finding the probability generating function of the steady state number of
customers in a discrete time queue with two heterogeneous servers.

While there are several studies that analyze batch service queues with single or
multiple homogeneous servers, studies on analysis of batch service queues with het-
erogeneous server systems are limited (for example, see Chang and Harn [5], Chen
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et al. [6], Gold and Tran-Gia [7], Aalto [1]). We contribute to the literature in the
following ways: (1) we analyze batch service systems with heterogeneous servers and
threshold service capacity. In many practical settings, the server may have a large
service capacity; however, the service is initiated only when a threshold capacity of
the server is utilized. Such settings are commonly observed in amusement parks, bus
services, multi-trailer systems due to revenue or system functionality considerations.
(2) We perform an exact analysis of batch service systems using a combination of
Markov chains and system state decomposition. We decompose the system using a
free and busy periods state of the system, perform separate analysis, and then combine
the results from the free and the busy periods to obtain the joint probability of the
number of free servers and the number of customers waiting in the queue. This joint
probability leads both to thewaiting time distribution of a customer and to performance
measures such as used server capacity, expected throughput time, expected waiting
time, and expected queue lengths. Such measures are useful for batch service system
design. Due to the complexity of the analysis, we show the results for exponential
service times only. However, our work can be extended to batch service queues with
heterogeneous servers and service times which have a phase-type distribution, albeit
with significant numerical costs associated with a large system state space.

The rest of the paper is organized as follows: In Sect. 2, we describe the queueing
model. In Sect. 3, we perform the analysis of the queueing system with two types of
servers and batch service. We extend our analysis to more than two server types with
batch services in Sect. 4. Results from numerical experiments are included in Sect. 5.
Finally, we draw our conclusions in Sect. 6.

2 Model

We consider a system with S types of batch servers characterized by their rates and
capacity, denoted as the Mλ/

∑S
σ=1 M

Tσ ,Bσ
μσ /

∑S
σ=1 Nσ queue. Here λ denotes the

Poisson customer arrival rate; for σ = 1, . . . , S, let Nσ denote the number of servers
of type σ , each with a bulk exponential service rate ofμσ , with a maximum batch size
Bσ and a minimum batch size Tσ . The service times are assumed to be independent
of the batch sizes in process. Furthermore, we assume that if a type σ server is free,
there are fewer than Tσ customers in the queue. We assume for 1 ≤ τ < σ ≤ S that
Tτ ≤ Tσ ; if Tτ = Tσ then we assume that type τ servers have priority.

In the following section, we analyze the system with S = 2 types of servers. In
Sect. 4, we give some results for the general case S ≥ 2.

3 Analysis of theM�/M
T1,B1
�1

+ MT2,B2
�2

/N1 + N2 queue

We analyze the Mλ/M
T1,B1
μ1 + MT2,B2

μ2 /N1 + N2 queue to find the waiting time dis-
tribution. We first concentrate on the joint probability function of the number of busy
servers of type σ = 1, 2 and the queue length. We then find the residual waiting time
distribution of a tagged customer, conditional on the free servers and the number of
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Table 1 Transition from state (n1, n2, nQ)

To state Rates conditional on

n1 < N1 n1 = N1, n2 < N2 n1 = N1, n2 = N2

(n1, n2, nQ + 1) λ1{nQ+1<T1} λ1{nQ+1<T2} λ

(n1 + 1, n2, 0) λ1{nQ+1=T1}
(n1, n2 + 1, 0) λ1{nQ+1=T2}
(n1 − 1, n2, nQ) n1μ1 N1μ11{nQ<T1} N1μ11{nQ<T1}
(n1, n2, (nQ − B1)

+) N1μ11{nQ≥T1} N1μ11{nQ≥T1}
(n1, n2 − 1, nQ) n2μ2 n2μ2 N2μ21{nQ<T2}
(n1, n2, (nQ − B2)

+) N2μ21{nQ≥T2}

waiting customers who arrived either before or after the tagged customer. The waiting
time of a customer equals the residual waiting time given the number of busy servers
and the queue length at arrival and that there are no waiting customers who arrived
after this customer. By the fact that ‘Poisson arrivals see time averages’, the joint
probability function of the number of busy servers and the queue length at arrival was
already determined, so we can find the unconditional waiting time distribution.

3.1 The joint probability function of the number of busy servers of each type and
the queue length

The state space for this queue can be expressed using a three-tuple (n1, n2, nQ), with
nσ = 0, . . . , Nσ , σ = 1, 2 and nQ = 0, 1, . . ., where n1 and n2 denote the number of
busy servers of type 1 and type 2 respectively and nQ denotes the number of waiting
customers. Note that if nσ < Nσ then nQ < Tσ . Due to our assumptions, we can find
the transition rates from (n1, n2, nQ); these transition rates are given in Table 1. The
rate of service completion is proportional to the number of type 1 and type 2 busy
servers, i.e., n1μ1 + n2μ2. If there are fewer than Tσ customers in the queue, a type
σ server will not begin its service.

To analyze the continuous time Markov chain (CTMC), we split the state space
into a free period and a busy period (see Fig. 1). During the free period (FP) at least
one server is free. The states (n1, n2, nQ) with n1 + n2 < N1 + N2, and nQ < Tσ and
nσ < Nσ , σ = 1, 2 correspond to the free period. During the busy period (BP), all
servers are busy, i.e., the states (N1, N2, nQ) with nQ = 0, 1, . . .. When a BP starts,
we know that nQ = 0.When a FP starts, we know that either n1 = N1−1 and n2 = N2
or n1 = N1 and n2 = N2 − 1. However, when we enter a FP, the distribution of nQ
is unknown. We now discuss the free and the busy period analysis in the following
sections.

Fig. 1 Timeline of free and busy
periods
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Busy period analysis

During the BP, all the servers are busy. Therefore, we only have to focus on the queue
length, which, together with the state ‘−1’ representing the FP, can be described by a
CTMC process.

The transition rate from ‘−1’ (the state representing the FP) to ‘0’ is arbitrarily
chosen since the sojourn time in ‘−1’ in combination with the probability that the
process is in state ‘−1’ is only used to compute the expected length of the BP. A BP
starts always with NQ = 0 customers in the queue. We are interested in πBP(n), the
conditional probability of being in state ‘n’ given that all servers are busy, and E(TB),
the expected length of a BP. The rate up from any state is λ and the rate down to or
below state n = 0, 1, . . . equals N1μ1

∑B1
k=1 π(n+ k)+ N2μ2

∑B2
k=1 π(n+ k), where

we used that during a BP all servers are busy (see Fig. 2). The steady state probabilities
for the queue length NQ are defined by the following balance equations:

λπ(−1) = N1μ1

T1−1∑

k=0

π(k) + N2μ2

T2−1∑

k=0

π(k),

λπ(n) = N1μ1

B1∑

k=1

π(n + k) + N2μ2

B2∑

k=1

π(n + k).

It is easily checked that the steady state probabilities for the states ‘−1’ and ‘n’ (i.e.,
π(−1) and π(n)) are provided by

π(−1) = N1μ1(1 − αT1) + N2μ2(1 − αT2)

N1μ1(1 − αT1) + N2μ2(1 − αT2) + λ
, (1)

π(n) = αn(1 − α)(1 − π(−1)) for n = 0, 1, . . . , (2)

with α equal to the unique solution in (0, 1) of the equation

λ(1 − α) = N1μ1α(1 − αB1) + N2μ2α(1 − αB2), (3)

for λ < N1μ1B1 + N2μ2B2.
The length of the BP and its expectation can be found by considering the above

described Markov chain as a regenerative process, which regenerates when it enters
state ‘−1’. The number of consecutive times that the states are positive equals the

Fig. 2 CTMC for the busy
period where N1 = 4, T1 = 2,
B1 = 3, N2 = 2, T2 = 3,
B2 = 5
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length of a BP. The theory of regenerative processes now gives

π(−1) = 1/λ

1/λ + E(TBP)
,

which, combined with (1), leads to

E(TBP) = 1 − π(−1)

λπ(−1)
= 1

N1μ1(1 − αT1) + N2μ2(1 − αT2)
. (4)

The conditional distribution of the queue length during a BP is found by (2). This
gives

πBP(n) = αn(1 − α), n = 0, 1, . . . . (5)

In the analysis of the FP, we need to know in which states this FP starts, or, equiv-
alently, how the BP ends. The probability that the BP is ended by a type σ server
becoming free which sees nQ < Tσ customers at the end of the BP is denoted by
P(type σ server, nQ). Note that the end of a BP corresponds to entering state −1. By
conditioning on entering state −1, we find that

P(type σ server, nQ) = Nσ μσ αnQ (1 − α)

N1μ1(1 − αT1) + N2μ2(1 − αT2)
(6)

for nQ = 0, . . . , Tσ − 1 and σ = 1, 2.

Free period analysis

In the free period, we not only need to keep track of how many customers are waiting,
but also how many servers of each type are busy. The state space for the free period
can be described as follows:

{
(n1, n2, nQ)

∣
∣n1 = 0, . . . , N1 − 1, n2 = 0, . . . , N2, nQ = 0, . . . , T1 − 1

} ∪
{
(N1, n2, nQ)

∣
∣n2 = 0, . . . , N2 − 1, nQ = 0, . . . , T2 − 1

} ∪
{(N1, N2, 0)}.

The state (N1, N2, 0) represents the BP, with some arbitrary total rate out. As in the
analysis of the BP, the sojourn time in this extra state is only used to find the length of
the FP. The transition rates are given in Table 1, except for the extra state (N1, N2, 0).
The transition rates from (N1, N2, 0) to (N1 − 1, N2, nQ) and to (N1, N2 − 1, nQ)

equal, respectively, N1μ1α
nQ (1 − α) and N2μ2α

nQ (1 − α) for nQ = 0, . . . , Tσ − 1
and σ = 1, 2. Note that the rates are proportional to the exit probability of the BP
given in (6).

The expected length of a FP can be found analogously to the derivation of the length
of the BP, cf. (4),

E(TFP) = 1 − π(N1, N2, 0)

π(N1, N2, 0)(N1μ1(1 − αT1) + N2μ2(1 − αT2))
.
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For the FP, however, no simple expression exists for π(N1, N2, 0) or for E(TFP). We
have to use numerical methods to compute these probabilities.

Combining the results for the busy period and the free period leads to the steady
state joint probability of the number of busy servers of each type and the number of
waiting customers:

π(n1, n2, nQ) =
{

πBP(nQ)P(BP), n1 = N1, n2 = N2,

πFP(n1, n2, nQ)P(FP), n1 + n2 < N1 + N2,
(7)

where P(BP) and P(FP), the probabilities that the system is in a BP, resp. an FP, are
given by

P(BP) = E(TBP)

E(TBP) + E(TFP)
and P(FP) = 1 − P(BP).

This joint probability distribution is used in the next section to find the waiting time
distribution.

3.2 Waiting time

In this section, we find the steady-statewaiting time distribution of a customer. First the
special case T2 = 1 is analyzed. In this case a server cannot be idle when a customer is
waiting. It is clear that a customer can only wait when all the servers are busy and that
a waiting time ends at a service completion. In case that T2 > 1, it might happen that
a waiting time ends at an arrival of a new customer. This requires a totally different
analysis.

The special case T2 = 1

For the special case where a server will not be free when there are customers waiting,
that is, the minimal batch sizes T1 = T2 = 1, we can find the waiting time distribution
as follows.

Consider ND , the number of arrivals during a waiting time. ND , given that the
waiting time has length d, has a Poisson distribution with END = λd. Unconditioning
gives us that the z-transform of ND is given by E

(
zND

) = Ŵ (λ(1 − z)), where

Ŵ denotes the Laplace Stieltjes transform (LST) of the steady-state waiting time
distribution. An up-down crossing argument gives that ND is identically distributed
to NA, where NA denotes the number of customers waiting at an arrival epoch (here
we assume that customers enter a batch one by one in order of arrival). By the PASTA
property, NA and NQ are identically distributed.Using the time stationary probabilities
π(nQ) found in the previous subsection, we can find an expression for the LST of the
waiting time:

Ŵ (s) = P(FP) + P(BP)
λ(1 − α)

λ(1 − α) + αs
.
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The general case T2 ≥ 1

In the case T2 > 1, it can happen that a type 2 server is free because there are fewer than
T2 customers waiting. Once the threshold is met by an arrival, the server starts working
and the waiting of the customers in the queue ends. This phenomenon prevents us from
employing the technique used for the case T2 = 1.

Thewaiting time of an arriving customer depends not only on the number of waiting
customers, but also whether there is a type 1 server free or (only) a type 2 server. Sup-
pose there is a type 1 server free, then we know that the number of waiting customers
at arrival nQ < T1. It is readily seen that if nQ = T1 − 1, the arriving customer has
no waiting time. If nQ = T1 − 1 − k, with k = 1, . . . , T1 − 1, the waiting time of
the customer ends after k new arrivals and therefore has a Erlang-k distribution. If no
type 1 server is free but a type 2 server is free, it becomes a bit more complicated.
We can have the same reasoning as in the previous case, but now it can happen that a
type 1 server becomes free, the number of waiting customers exceeds T1, and the type
1 server starts a new service. Even then it is possible that the waiting of our tagged
customer does not end, because he did not fit in the type 1 batch. Thus, to decide
whether its waiting time ends, we need to know both the number of waiting customers
which arrived before him and after him. If no server is free at the arrival, the customer
first has to wait until he fits in the batch of a server that becomes free. Even if that is
the case, it might be possible that he still has to wait, because the threshold batch size
of the server is not reached.

To analyze the waiting time of an arbitrary customer, we first concentrate on the
remaining waiting time of this tagged customer at some time point. As observed, the
remaining waiting time depends on whether a type 1 server is free, or only a type
2 server, or no server at all, and on the number of waiting customers which arrived
before, respectively after, the tagged customer.

Remaining waiting time

Suppose we follow a customer during its waiting. We will decompose the remaining
waiting time of this customer into two parts, namely the time until a new customer
arrives (this event is denoted by A) or a type σ server ends its service (denoted by Fσ ),
and the remaining waiting time after this event. We denote the remaining waiting time
of the customer when there are n − 1 waiting customers who arrived before him and
� who arrived after him by Wn,� if there is no server free, by W (1)

n,� if there is a type 1

server free and by W (2)
n,� if there is only a type 2 server free.

When a customer has to wait while a type 1 server is free, it has to wait at least until
a customer arrives (Exp(λ)) and then it either is taken into service or has to wait with
one customer more behind him in the queue. This gives us the following relation:

W (1)
n,� =

{
Exp(λ) + W (1)

n,�+1, n + � < T1,

0, n + � ≥ T1,
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where Exp(λ) denotes a random variable with an exponential distribution and mean
1/λ.

If only a type 2 server is free, there are more relevant events, namely an arrival of a
customer or the end of a type 1 service. In the first event (A), the number of customers
behind him is increased (recorded until T2 − 1 is reached). In the second event (F1),
the customer might be taken into service (when he is at the head of the line and there
are enough customers in queue to fill the batch threshold), or the number of customers
in front of him is decreased by Bσ and the type 1 server is busy. This gives

W (2)
n,� =

⎧
⎪⎨

⎪⎩

0, n + � ≥ T2,

Exp(λ + N1μ1) + W (2)
n,�+11{A}

+W (1)
n,�1{F1,n≤B1} + W (2)

n−B1,�
1{F1,n>B1},

n + � < T2.

Finally, for the case where no server is free, the system is in a BP. When a customer
waits during a BP, the first part of its waiting time ends either by an arrival, or the end
of a service by a type 1 or type 2 server. In the first case, the number of customers
behind him is increased. In the second case the customer is either taken into service
(when he is at the head of the line and there are enough customers in the queue to fill
the batch threshold), or the number of customers in front of him is decreased by Bσ ,
or an FP starts. This gives

Wn,� = Exp(Mλ) + Wn,�+11{A} +
2∑

σ=1

(
W (σ )

n,� 1{Fσ ,n≤Bσ } + Wn−Bσ ,�1{Fσ ,n≤Bσ }
)

,

where Mλ = N1μ1 + N2μ2 + λ. Note that Wn,� = Wn,�+1 for � ≥ T2 − 1 since the
threshold of any batch is always met when � ≥ T2 − 1.

Now that we have the relations for the remaining waiting time of a customer, we
can derive relations for the corresponding Laplace Stieltjes transforms (LST)

φn,�(s) = E
(
e−sWn,�

)
and φ

(σ)
n,� (s) = E

(

e−sW (σ )
n,�

)

, σ = 1, 2.

If a type 1 server is free we find

φ
(1)
n,�(s) =

⎧
⎨

⎩

λφ(1)n,�+1(s)

λ + s
, n + � < T1,

1, n + � ≥ T1,
(8)

If only a type 2 server is free we find

φ
(2)
n,�(s) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λφ
(2)
n,�+1(s) + N1μ1

(
φ

(1)
n,�(s)1{n≤B1} + φ

(2)
n−B1,�

(s)1{n>B1}
)

λ + N1μ1 + s
,

n + � < T2,

1 n + � ≥ T2.

(9)
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φn,�(s) = Mλ

Mλ + s

(
λ

Mλ

φn,�+1(s)

+N1μ1

Mλ

(
φn−B1,�(s)1{n>B1} + φ

(1)
n,�(s)1{n≤B1}

)

+N2μ2

Mλ

(
φn−B2,�(s)1{n>B2} + φ

(2)
n,�(s)1{n≤B2}

) )

.

Finally, we define the double generating function φ�(z, s) for � = 0, 1, . . . by

φ�(z, s) = (1 − z)
∞∑

n=1

zn−1φn,�(s) (10)

= (1 − z)
∑2

σ=1 Nσ μσ

∑Bσ

n=1 φ
(σ)
n,� (s)zn−1 + λφ�+1(z, s)

∑2
σ=1 Nσ μσ (1 − zBσ ) + λ + s

.

Note that φ�+1(z, s) = φ�(z, s) for � = T2 − 1, T2, . . .. Therefore, we will use (10)
only for � = 0, . . . , T2 − 1 and set φT2(z, s) = φT2−1(z, s).

Waiting time

In this section, we concentrate on the waiting time of an arriving customer. On arrival
of a customer, we see that this waiting time is the remaining waiting time of this
customer with the same state of the servers, the same queue length and no waiting
customers who arrived after him. So we can write

W =

⎧
⎪⎨

⎪⎩

WnQ+1,0 if all servers busy,

W (1)
nQ+1,0 if a type 1 server is free,

W (2)
nQ+1,0 if only a type 2 server is free,

By these equations, we find the LST for W as

E(e−sW ) = P(BP)

∞∑

nQ=0

πBP(nQ)φnQ+1,0(s)

+P(FP)

( T1−2∑

nQ=0

N1−1∑

n1=0

N2∑

n2=0

πFP(n1, n2, nQ)φ
(1)
nQ+1,0(s)

+
T2−2∑

nQ=0

N2−1∑

n2=0

πFP(N1, n2, nQ)φ
(2)
nQ+1,0(s)

)

= P(BP) φ0(α, s)
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+P(FP)

( T1−2∑

nQ=0

N1−1∑

n1=0

N2∑

n2=0

πFP(n1, n2, nQ)φ
(1)
nQ+1,0(s)

+
T2−2∑

nQ=0

N2−1∑

n2=0

πFP(N1, n2, nQ)φ
(2)
nQ+1,0(s)

)

,

where the double generating function φ0(α, s) is defined in (10). With this expression
for the LST of the waiting time and (8, 9), it is easy to show the next theorem.

Theorem 1 The waiting time in the Mλ/M
T1,B1
μ1 + MT2,B2

μ2 /N1 + N2 queue can be
considered as an absorption time of a Markov chain with state space

S = {0, (1,m, �1), (2,m, �2), (0, �2)|m = 0, . . . , Tσ − �σ , �σ = 0, . . . , Tσ − 1, σ = 1, 2},

where ‘0’ is the absorbing state, with initial probabilities

PI (1,m, 0) = P(FP)

N1−1∑

n1=0

N2∑

n2=0

πFP(n1, n2,m − 1), m = 1, . . . T1 − 1,

PI (2,m, 0) = P(FP)

N2−1∑

n2=0

πFP(N1, n2,m − 1), m = 1, . . . T2 − 1,

PI (0, 0) = P(BP),

PI (0) = 1 −
T1−1∑

m=1

PI (1,m, 0) −
T2−1∑

m=1

PI (2,m, 0) − PI (0, 0),

and transition rates

From To Transition rate

(1,m, �) (1,m, � + 1) 1{m+�<T1−1}λ,
0 1{m+�≥T1−1}λ,

(2,m, �) (2,m, � + 1) 1{m+�<T2−1}λ,
(1,m, �) 1{m+�<T1}N1μ1,
(2,m − B1, �) 1{m>B1}N1μ1,
0 1{m+�=T2−1}λ + 1{m+�≥T1}1{m≤B1}N1μ1,

(0, �) (0, � + 1) 1{�<T2−1}λ,
(1,m, �) αm−1(1 − α)N1μ1, for m = 1, . . . , T1 − 1 − �,
(2,m, �) αm−1(1 − α)N2μ2, for m = 1, . . . , T2 − 1 − �,

0
(
α[T1−�−1]+ − αB1

)
N1μ1 +

(
αT2−�−1 − αB2

)
N2μ2,

where [n]+ = max(0, n).
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3.3 Other useful performancemeasures

Apart from the waiting time, there are also other interesting performance measures
such as the throughput of servers per type per period, the throughput of customers per
type of server per period, the used capacity per type of server per period, the fraction
of used capacity per type of server, and the expected waiting and throughput time. In
this section, we give an expression for these performance measures in terms of the
steady state probabilities πFP(n1, n2, nQ), πBP(nQ), P(FP) and P(BP).

To find the throughput of servers per type in the free period (T Hσ (FP)), we use the
interpretation that the steady state distribution also represents the fraction of time the
system is in a certain state. For any state we know the departure rate of the servers.
This gives

T H1(FP) =
N1−1∑

n1=0

N2∑

n2=0

λπFP(n1, n2, T1 − 1) +
N2−1∑

n2=0

T2−1∑

nQ=T1

N1μ1πFP(N1, n2, nQ),

T H2(FP) =
N2−1∑

n2=0

λπFP(N1, n2, T2 − 1).

For the busy period we do the same; here the server only starts a service when at least
his threshold is met and we find for the throughput of servers per type in the busy
period

T Hσ (BP) = Nσ μσ αTσ for σ = 1, 2.

The throughput of customers per type of server per period (T HC
σ (P), P = BP,FP)

can be found in a similar way as the throughput of servers, but here we also have to
count the number of customers being served simultaneously by a server. This gives

T HC
1 (FP) =

N1−1∑

n1=0

N2∑

n2=0

λπFP(n1, n2, T1 − 1)T1

+
N2−1∑

n2=0

T2−1∑

nQ=T1

N1μ1πFP(N1, n2, nQ)min(nQ, B1),

T HC
2 (FP) =

N2−1∑

n2=0

λπFP(N1, n2, T2 − 1)T2,

and

T HC
σ (BP) = Nσ μσ

⎛

⎝Bσ αBσ +
Bσ −1∑

nQ=Tσ

αnQ (1 − α)nQ

⎞

⎠ for σ = 1, 2.
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Nowwe have the throughput of both servers and customers, we can look at the average
used capacity per type of server per period:

UCσ (P) = T HC
σ (P)

T Hσ (P)
for σ = 1, 2 and P = BP,FP,

and the fraction of used capacity per type of server:

UCσ = T HC
σ (FP)E(TFP) + T HC

σ (BP)E(TBP)

(T Hσ (FP)E(TFP) + T Hσ (BP)E(TBP))Bσ

for σ = 1, 2.

Finally, we also find the expected waiting time and the expected throughput time
without computing their respective distribution. For the expected waiting time, we use
Little’s Law to find

E(W ) = 1

λ

⎛

⎝P(BP)
1 − α

α

+P(FP)

⎛

⎝
N1−1∑

n1=0

N2∑

n2=0

T1−1∑

nQ=0

nQπFP(n1, n2, nQ)

+
N2−1∑

n2=0

T2−1∑

nQ=0

nQπFP(N1, n2, nQ)

⎞

⎠

⎞

⎠ .

To find the expected throughput time, the sum of the waiting time (W ) and the
service time (TS), we now only need to find the expected service time

E(TS) =
2∑

σ=1

P(served by type σ server)/μσ ,

where

P(served by type σ server) = T HC
σ (FP)E(TFP) + T HC

σ (BP)E(TBP)
∑2

σ=1 T HC
σ (FP)E(TFP) + T HC

σ (BP)E(TBP)
.

4 Analysis of queue withmulti-type of servers

In this section, we give some results for the case where S ≥ 2. We refer to the
corresponding formulas and the given arguments in the previous sections. The state
space for the queue can be expressed using a vector (n1, . . . , nS, nQ), with nσ =
0, . . . , Nσ , σ = 1, . . . , S and nQ = 0, 1, . . ., where nσ denote the number of busy
servers of type σ and nQ denotes the number of waiting customers. Note that if
nσ < Nσ then nQ < Tσ . The rates between these states can be found analogously to
the rates given in Table 1.
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For the busy period we can derive that

π(−1) =
∑S

σ=1 Nσ μσ (1 − αTσ )

λ + ∑S
σ=1 Nσ μσ (1 − αTσ )

,

π(n) = αn(1 − α)(1 − π(−1)), (11)

for n = 0, 1, . . ., with α equal to the unique solution in (0, 1) of the equation

λ(1 − α) = α

S∑

σ=1

N1μ1(1 − αBσ ), (12)

for λ <
∑S

σ=1 Nσ μσ Bσ . We then find, similarly to the derivation in the case S = 2,
that

E(TBP) = 1
∑S

σ=1 Nσ μσ (1 − αTσ )
. (13)

For the transition rates used in the analysis of the FP, we need to know the probability
that a busy period ends with the end of service of a type σ server, finding nQ < Tσ

customers in the queue, given by

P(type σ server, nQ) = Nσ μσ αnQ (1 − α)
∑S

σ=1 Nσ μσ (1 − αTσ )
. (14)

For the free period we describe the state space by

{
(n1, . . . , nS, nQ)

∣
∣n1 = 0, . . . , N1 − 1, nσ = 0, . . . , Nσ , nQ = 0, . . . , T1 − 1

}

∪ {
(N1, n2, . . . , nS, nQ) |n2 = 0, . . . , N2 − 1, nσ = 0, . . . , Nσ ,

nQ = 0, . . . , T2 − 1
}

...

∪ {
(N1, . . . , NS−1, nS, nQ)

∣
∣nS = 0, . . . , N2 − 1, nQ = 0, . . . , TS − 1

}

∪{(N1, . . . , NS, 0)}.

The transition rates from the extra state (N1, . . . , NS, 0) are again proportional to
the exit probabilities from the busy period given in Eq. (14). Again, similarly to the
previous section, we have

E(TFP) = 1 − π(N1, . . . , NS, 0)

π(N1, . . . , NS, 0)
∑S

σ=1 Nσ μσ (1 − αTσ )
.
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Finally, wemention some relations forW (σ )
n,� , the remaining waiting time of a customer

who has position n in the queue, with � customers behind him and the lowest type of
free servers σ . In this case the remaining waiting time might be influenced by arriving
customers or by the end of a higher priority type of service. We find that

W (σ )
n,� =

⎧
⎪⎪⎨

⎪⎪⎩

0, n + � ≥ Tσ ,

Exp
(
λ + ∑σ−1

τ=1 Nτμτ

)
+ W (σ )

n,�+11{A}
+∑σ

τ=1

(
W (τ )

n,�1{Fτ ,n≤Bτ } + W (σ )
n−Bτ ,�1{Fτ ,n>Bτ }

)
, n + � < Tσ .

If no servers are free, we get

Wn,� = Exp

(

λ +
S∑

σ=1

Nσ μσ

)

+ Wn,�+11{A}

+
S∑

σ=1

(
W (σ )

n,� 1{Fσ ,n≤Bσ } + Wn−Bσ ,�1{Fσ ,n≤Bσ }
)

.

Eventually we find that the waiting time in this system has a phase type distribution,
as stated in the following theorem:

Theorem 2 The waiting time in the Mλ/
∑S

σ=1 M
Tσ ,Bσ
μσ /

∑S
σ=1 Nσ queue can be con-

sidered as the absorption time of a Markov chain with state space

S = {0, (σ,m, �σ ), (0, �σ )|m = 1, . . . , Tσ − �σ , �σ = 0, . . . , Tσ − 1, σ = 1, . . . , S},

where ‘0’ is the absorbing state, with initial probabilities

PI (σ,m, 0) = P(FP)

Nσ −1∑

nσ =0

Nσ+1∑

nσ+1=0

. . .

NS∑

nS=0

πFP(N1, . . . , Nσ−1, nσ , . . . , nS,m − 1),

for m = 1, . . . , Tσ − 1 and σ = 1, . . . , S,

PI (0, 0) = P(BP),

PI (0) = 1 −
S∑

σ=1

Tσ −1∑

m=1

PI (σ,m, 0) − PI (0, 0),
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and transition rates

From To Transition rate

(σ,m, �) (σ,m, � + 1) 1{m+�<Tσ −1}λ,

(σ1,m, �) 1{m+�<Tσ1 }Nσ1μσ1 ,

(σ1,m − Bσ1 , �) 1{m>Bσ1 }Nσ1μσ1 ,

0
σ−1∑

τ=1

1{m+�≥Tτ }1{m≤Bτ }Nτ μτ + 1{m+�=Tσ −1}λ,

(0, �) (0, � + 1) 1{�<Tσ −1}λ,
(σ,m, �) αm−1(1 − α)N1μ1, for m = 1, . . . , Tσ − 1 − �,

0
S∑

σ=1

(
α[Tσ −�−1]+ − αBσ

)
Nσ μσ ,

for σ1 = 1, . . . , σ − 1 and σ = 1, . . . , S.

Remark 1 We can also prove that, for an arbitrary customer, the sojourn time in the
system has a phase type distribution by adding extra states ‘1’,. . .,‘S’ to the state space
of the previous theorem, where ‘σ ’ indicates that the tagged customer is being served
by a type σ server. Then we split the rate at which the original Markov chain enters
the absorbing states over these new states. Furthermore, PI (0), the initial probability
that the waiting time is 0, splits over the states ‘σ ’ as

PI (‘σ ’) = P(FP)

Nσ −1∑

nσ =0

Nσ+1∑

nσ+1=0

. . .

NS∑

nS=0

πFP(N1, . . . , Nσ−1, nσ , . . . , nS, Tσ − 1).

From state ‘σ ’, the rate to the absorbing state ‘0’ is μσ . The absorption time of
this newly defined Markov chain has the same distribution as the sojourn time of an
arbitrary customer.

5 Numerical experiments

To give some results of the method presented in this paper, we consider the system
depicted in Fig. 3. In this system, there are two types of servers, say type A and B.
The number of type A servers is NA = 4, with processing rate μA = 0.4 and capacity
BA = 5; the number of type B servers is NB = 2, with characteristics μB = 0.2 and
BB = 9. The arrival rate λ = 6. In Table 2 we provide the expected queue length
for different threshold values. Note that the server type with the lowest threshold has
priority.When the thresholds of both server types are equal, we have a choice to decide
which server has priority over the other. In Table 3, we provide the probability of a zero
waiting time in the queue. For three combinations of TA and TB , we show the graphs
of the probability density function and the cumulative distribution function (cdf) of
the waiting times in Figs. 4 and 5, respectively. Note the jump of the cdf at t = 0 with
height the probability of a zero waiting time in the queue.
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Fig. 3 The Mλ/M3,5
μ1 + M6,9

μ2 /4 + 2 Queue

Table 2 The expected queue length in the M6/M
TA,5
0.4 + M

TB ,9
0.2 /4 + 2. In the upper right corner, type B

servers have priority over type A servers

TB

TA 1 2 3 4 5

1 4.074
4.072 3.604 3.066 2.657 2.506

2 3.953 3.454
3.430 2.928 2.548 2.426

3 3.791 3.258 2.785
2.692 2.445 2.360

4 3.598 3.066 2.526 2.389
2.236 2.337

5 3.391 2.875 2.378 2.148 2.382
2.247

6 3.193 2.707 2.266 2.094 2.230
7 3.074 2.625 2.234 2.099 2.248
8 3.031 2.622 2.266 2.147 2.291
9 3.062 2.682 2.348 2.225 2.350

Table 3 The probability of a zero waiting time in the M6/M
TA,5
0.4 +M

TB ,9
0.2 /4+2. In the upper right corner,

type B servers have priority over type A servers

TB

TA 1 2 3 4 5

1 0.077
0.076 0.124 0.155 0.165 0.157

2 0.086 0.146
0.143 0.171 0.178 0.168

3 0.094 0.153 0.194
0.186 0.188 0.176

4 0.100 0.157 0.194 0.205
0.195 0.180

5 0.103 0.158 0.193 0.201 0.188
0.182

6 0.103 0.157 0.190 0.196 0.184
7 0.100 0.153 0.185 0.191 0.180
8 0.095 0.146 0.178 0.186 0.176
9 0.089 0.139 0.171 0.180 0.173
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Fig. 4 The probability density functions

Fig. 5 The cumulative probability functions

To obtain the results, we carried out several experiments. For low and high arrival
rates, both the expected queue length and the zero waiting time probability were
monotone with increase in threshold. In the case where λ = 6, we see that there is a
threshold setting that minimizes the expected queue length (TA = 4 and TB = 6) and
another setting that maximizes the probability of zero waiting time (TA = TB = 4,
type A servers have priority).

6 Conclusion

In this paper, we have shown that the waiting time in a queue with Poisson arrivals
and exponential servers of different types has a phase type distribution. To show this
result, we split the state space into two parts, the BP and FP, and analyzed these parts
separately. This splittingworks sowell since entering theBP is always at the same state.
To find thewaiting time distribution, we have to analyze the FP numerically. A possible
numerical problem may arise since there are many states corresponding to the FP (in
the order of T1∗∏S

σ=1 Nσ states). Futurework could include numerical investigation of
the threshold quantity for batch service that can trade-offwaiting time vs. used resource
capacity. We also hope that this study will find applications in analysis of container
terminal systems where there are different types of vehicles for internal container
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transport, and container handling responsiveness is a key performance measure for
the terminal.
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