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Abstract
The coronavirus pandemic has reignited the debate over urban density. Popular media has been
quick to blame density as a key contributor to rapid disease transmission, questioning whether
compact cities are still a desirable planning goal. Past research on the density–pandemic connec-
tion have produced mixed results. This article offers a critical perspective on this debate by
unpacking the effects of alternative measures of urban density, and examining the impacts of man-
datory lockdowns and the stringency of other government restrictions on cumulative Covid-19
infection and mortality rates during the early phase of the pandemic in the US. Our results show
a consistent positive effect of density on Covid-19 outcomes across urban areas during the first
six months of the outbreak. However, we find modest variations in the density–pandemic rela-
tionship depending on how densities are measured. We also find relatively longer duration man-
datory lockdowns to be associated with lower infection and mortality rates, and lockdown
duration’s effect to be relatively more pronounced in high-density urban areas. Moreover, we find
that the timing of lockdown imposition and the stringency of the government’s response addition-
ally influence Covid-19 outcomes, and that the effects vary by urban density. We argue that the
adverse impact of density on pandemics could be mitigated by adopting strict lockdowns and
other stringent human mobility and interaction restriction policies in a spatially targeted manner.
Our study helps to inform current and future government policies to contain the virus, and to
make our cities more resilient against future shocks and threats.
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Introduction

The Covid-19 pandemic has reignited the
debate about whether compact cities are still
a desirable planning goal. The opponents of
urban density claim that densely populated
and crowded places can catalyse the spread
of infectious diseases (e.g. Cox, 2020).
Density, according to them, is more of a lia-
bility than an asset during infectious disease
outbreaks. Others, however, argue that
urban density does not necessarily exacer-
bate the outbreak, citing several examples of
high-density Asian cities that have been rela-
tively successful in containing the virus (e.g.
Hamidi et al., 2020). Given the benefits of
density in terms of public service provision
in response to Covid-19 (e.g. sanitation and
health care) and the role of density in achiev-
ing larger sustainability goals, some others
have argued that it is more important to pay
attention to prudent pandemic management
in high-density places, rather than call for
de-densification of cities (Angel et al., 2020).

In urban studies, density is a contestable
concept, with multiple definitions and mea-
sures – capturing various dimensions of the
built environment and human activities or
interactions within cities (Boyko and
Cooper, 2011; McFarlane, 2016). For exam-
ple, the measure of urban density is typically
defined as the ratio of urban population to
total land area within the metropolitan
boundary. However, urban population is not
uniformly distributed within a city’s adminis-
trative boundaries, giving an incomplete pic-
ture of urban density. Alternatively, urban
density can be measured as a population-
weighted density that takes into account the
proportion of sub-regional population (e.g.
number of people in census tracts) to total
metropolitan population as weights, giving a
more accurate representation of urban den-
sity as experienced by the average person
(Rappaport, 2008). Moreover, density can
be defined as representing not only the
degree of population concentration but also
levels of job or building concentration. Yet,
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existing studies evaluating density impacts
on the pandemic seldom recognise this het-
erogeneity in the conceptualisation of urban
density. Consequently, we do not know
whether different types of density can have
different impacts on the pandemic.

Furthermore, even if density contributes
to virus transmission, the outcome of the
pandemic hinges on the effectiveness of gov-
ernment policies to contain the virus.
Lockdowns (i.e. mandatory stay-at-home
orders and closure of economic activities,
implemented at varying levels of geography,
lengths of time and severity) are a common
type of policy response globally and in the
US. The effects of lockdowns on economic
performance and public health have been
examined extensively (Flaxman et al., 2020;
Olney et al., 2021; Perra, 2021). We extend
that literature by analysing the effectiveness
of lockdowns (or mandatory stay-at-home
orders, measured in terms of duration and
start timing) and other government
responses (i.e. closures, restrictions and con-
trols related to economic activities and
human mobility) in managing the pandemic,
on average and across different levels of
urban density.

In this article, we primarily investigate
the effects of various measures of urban den-
sity and lockdown duration on Covid-19
infection and mortality rates during the early
phase of the pandemic in the US.
Specifically, we estimate and compare the
effects of different density measures and
governmental lockdown duration on Covid-
19 cases and deaths per 100,000 people
across US urban areas over the first six
months since the onset of the disease
(January to June 2020). We explore whether
the estimated lockdown effect varies by level
of urban density. We also examine the
effects of lockdown start time (early versus
late in terms of pandemic severity) and gov-
ernmental response stringency on Covid-19

infection and mortality rates, on average
and across different density levels.

Among novel findings, we show that the
density–pandemic relationship depends on
how densities are measured. Most impor-
tantly, while density seems to be a disadvan-
tage during pandemics, we find evidence
that strategic governmental action can help
effectively combat pandemics in cities.
Specifically, we find that longer duration
mandatory lockdowns are associated with
lower infection and mortality rates, and that
longer lockdowns are most effective in high-
density urban areas. Moreover, we find that
the timing of lockdown imposition and the
stringency of the government’s response
additionally influence Covid-19 infection
and death rates. All else equal, early lock-
downs (when cumulative cases per capita are
relatively low) and stringent responses seem
to help manage virus transmission more
effectively in relatively low-density urban
areas, and to help manage mortality rates in
relatively high-density urban areas.

This article makes significant and timely
contributions by critically examining the role
of urban density, lockdown and other gov-
ernmental policy responses in the context of
the pandemic crisis. Our findings will help
inform current and future government poli-
cies to contain the virus and to build
pandemic-resilient cities.

Literature review

Since the onset of the Covid-19 pandemic,
popular media (e.g. Kling, 2020) and scho-
lars (e.g. Hamidi et al., 2020) have explored
the impacts of urban population and job
density on disease transmission and mortal-
ity. This is not surprising given the common
sense regarding the density–pandemic rela-
tionship. More people living or working per
unit area, all else equal, can indeed increase
the likelihood of close encounters and face-
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to-face interactions, and potentially facilitate
human-to-human virus transmission. While
this density pathology dominated in the
early phase of the pandemic, the relationship
between density and pandemic is not
straightforward. On the one hand, we know
that population density and economic per-
formance reinforce each other (see e.g.
Becker et al., 1999). Therefore, more intra-
city human mobility and higher in- and
out-migration rates in denser, more econom-
ically active cities can accelerate virus trans-
mission, particularly during the early stages
of an outbreak. On the other hand, higher
population density is commonly associated
with stronger social networks that can pro-
mote pro-social and personal protective
behaviours, thereby slowing down virus
transmission and containing an outbreak.
Density can additionally help in the efficient
delivery of health care and social services
during pandemics.

The impact of population density on
infectious diseases has been the subject of
ongoing debate. Research has shown that
crowding and mass gatherings associated
with high density can increase the frequency
of human-to-human contact and facilitate
virus transmission (Hu et al., 2013). Sy et al.
(2021) find a positive association between
population density and the basic reproduc-
tive number (R0) of the SARS-CoV-2 virus
in the US, indicating that density has con-
tributed to virus transmission. Kadi and
Khelfaoui (2020) find a positive correlation
between population density and Covid-19
cases in Algeria. You et al. (2020) find higher
population density to be associated with a
higher Covid-19 morbidity rate in Wuhan,
China. Bhadra et al. (2021) report a similar
finding from India. A study by Carozzi et al.
(2020) finds that in the US, higher urban
population density is associated with earlier
arrival of the Covid-19 disease but not with
faster post-arrival transmission rates, and

that density is positively associated with
social distancing policy compliance.

However, empirical evidence on the
impact of population density on virus trans-
mission rates and mortality is mixed and
inconclusive. In the US, Hamidi et al. (2020)
find that population and job densities are
not significantly associated with infection
rate (i.e. per capita cases), and are, in fact,
negatively related to Covid-19 mortality
rate. The authors suspect greater adherence
to social distancing guidelines and better
health care systems in dense metropolitan
areas to have influenced their findings. Liu
et al. (2020) also report a negative associa-
tion between urban population density and
Covid-19 cases in China at the early stages
of the pandemic, largely due to the migra-
tion of workers from larger cities to smaller
towns and rural areas during the festival
period in spring. The mixed results are likely
due to differences in research approaches,
virus and disease characteristics and geo-
graphic contexts, and to the presence of a
large number of confounding variables (e.g.
sociodemographic factors, public health
parameters and public policies) that render
investigation of the density–disease relation-
ship challenging. Moreover, different argu-
ments around the density–pandemic
relationship have emerged, giving a more
nuanced understanding of density as both a
static and a dynamic concept as well as a
highly politicised space (McFarlane, 2021).

In addition to the debates around urban
density, there is a separate stream of research
underscoring the importance of urban public
policies that impose or promote social dis-
tancing and lockdown orders at certain
places and times to contain virus transmis-
sion and consequently reduce mortality
(Flaxman et al., 2020; Olney et al., 2021;
Perra, 2021). Past research involving the
influenza virus suggests that quarantining,
travel restrictions and the closure of
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economic activities can, in certain situations,
effectively contain virus transmission
(Ferguson et al., 2005, 2006). Specifically,
studies show that it is useful not only to rap-
idly identify and isolate infected persons, but
also to contain the movement of individuals,
particularly at early stages of the outbreak of
new viruses with potentially high human-to-
human transmissibility (Bonardi et al., 2020;
Haug et al., 2020). Quarantine and lock-
downs, however, are not easy tasks for gov-
ernments; and not all governments prefer
such strategies. Policy formulation and
implementation depend on various factors
such as political ideologies and priorities
(e.g. Tellis et al., 2020), and organisational
capacity and resources of various levels of
the government (e.g. Katz et al., 2019).

To summarise, the extant literature does
not help develop a clear and consistent
understanding of the causal impact of urban
density on the infection and mortality rates
of Covid-19. It is unclear whether different
conceptualisations of density that capture
various aspects of urban form and life can
have different impacts. It is also unknown
whether spatially and temporally targeted
lockdowns can be effective in managing pan-
demics in cities, and whether they can pro-
vide important insights into our
understanding of the density–pandemic rela-
tionship. There is also little evidence on the
role of lockdown start timing and the strin-
gency of the government’s restrictive
response policies on pandemic impacts in
urban areas. Our study addresses these gaps.

Methods

Objectives

Our principal objective is to analyse the
impacts of density (different measures,
weighted and unweighted as applicable, dis-
cussed later in the article) and lockdown
(mandatory stay-at-home order) duration
on Covid-19 cases and deaths per 100,000

people over our study period (January to
June 2020) across US urban areas. We also
examine whether the estimated lockdown
effects vary by different density types and
levels. We additionally test whether lock-
down start time (early versus late in terms of
cumulative cases at the time of lockdown
imposition) and the stringency of the gov-
ernment’s response (definition given later in
the article) over the study period affected
Covid-19 infection and death rates across
urban areas. Lastly, we examine whether
estimated effects of lockdown timing and
policy stringency vary by the level of popula-
tion density.

Study area

Our study area comprises all urbanised
counties in the contiguous US as of 1
January 2019 (Figure 1(a)). We define an
urbanised county as any county that over-
laps with one or more Census-designated
urbanised areas (UZAs). We only focus on
urbanised counties (2440 total) because of
our interest in examining the determinants
of Covid-19 infection and death rates in
urban areas.

Main outcome variables

Our main outcome variables are total con-
firmed Covid-19 cases and deaths per
100,000 people (ACS 2014–2018 five-year
estimates) from 1 January to 30 June 2020
(our study period) in urbanised counties. We
obtained the data from the Center for
Systems Science and Engineering at the
Johns Hopkins University, which provides
daily updates based on reports from state,
local and territorial health departments
(Dong et al., 2020).

We strategically chose our study period
from 1 January to 30 June 2020. Our pri-
mary interest is in exploring density and
early lockdown effects on Covid-19 infection
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and mortality rates during the initial waves
of the pandemic, when policies and practices
to effectively combat the disease were still

emerging. Moreover, except for California,
all states ended their stay-at-home/shelter-
in-place orders (our definition of lockdown)

Figure 1. Study area and comparison of different density measures in the US. (a) Counties overlapping 2010
Census-designated urbanised areas (UZAs). (b) Spatial representation of urban built-up intensity.
(c) Unweighted population density. (d) Weighted population density. (e) Unweighted job density. (f) Weighted
job density. (g) Example of unweighted and weighted population densities of all counties in Washington State.
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by the end of June 2020 (Raifman et al.,
2020). We did, however, consider shorter
and longer study periods in our robustness
checks.

We include both estimated cases and
deaths over the study period, expressed as
proportions of county population, in our
analysis. Confirmed Covid-19 cases per
100,000 people capture a county’s cumula-
tive Covid-19 infection rate over the study
period. This helps analyse the determinants
of the variation in infection rates across
counties. We speculate that the Covid-19
infection rate in a given county could depend
on the number of tests conducted per capita,
over the study period. We therefore control
for state-level testing rates by including the
total number of tests over the study period
in the constituent state (based on data from
the Covid Tracking Project, https://covid-
tracking.com) and state population (ACS
2014–2018 five-year estimates) as control
variables in our regression models. We also
control for county population, as population
size is hypothesised to determine the cumula-
tive infection rate, all else equal.

In addition to confirmed cases, we use
total Covid-19 deaths per 100,000 people at
the county level over the study period as a
more robust measure of Covid-19 impact.
Confirmed cases of Covid-19 include false
positives, and asymptomatic cases often go
unreported. This may lead to estimation
errors, and the total number of actual infec-
tions may remain unknown. In contrast, all
Covid-19 deaths must be certified by physi-
cians, unless the death occurs outside of the
hospital, in which case a medical examiner
or a coroner would investigate each case.
Therefore, Covid-19 death rates suffer less
from measurement errors. In general, the
number of deaths as a proportion of total
population in a given county over the study
period captures the county’s average (crude)
disease mortality rate, which is an important
metric to analyse.

Independent variables

Urban density measures. We use different indi-
cators of urban density in three domains:
population, employment and building. These
domains capture different dimensions of
urban density, representing concentrations of
functions (people and jobs) and structures
(gross floor area). Population density indica-
tors are computed based on total population
counts from the 2018 American Community
Survey (ACS) five-year estimates. Job
density indicators are calculated based on the
total number of jobs from the 2016 LEHD
Origin-Destination Employment Statistics
(LODES) from the US Bureau of Labor
Statistics. Building density is based on the
built-up intensity database which contains
the sum of indoor floor areas of all buildings
at 250 m spatial resolution across the entire
US (Leyk and Uhl, 2018).

For population and job densities, we cal-
culated both unweighted and weighted den-
sities. For example, unweighted population
density is computed by dividing the popula-
tion by the total area of land enclosed, which
is formally expressed as:

Unweighted population density

=
P0

A0

=
XN

k = 1

Pk

Ak

� Ak

A0

ð1Þ

P0 is population at the county level and A0 is
county area in hectares. Pk is population at the
tract level and Ak is tract area in hectares.

We also calculated weighted population
density as the weighted sum, where each
tract-level population density is multiplied
by the tract’s share of the county-level popu-
lation. This can be formalised as:

Weighted population density =
XN

k = 1

Pk

Ak

� Pk

P0

ð2Þ
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Unweighted population density can be
understood as ‘area-weighted density’, where
each tract-level density is weighted by the
tract’s share of the county area (equation
(1)). Similarly, weighted density can be
understood as ‘population-weighted den-
sity’, where each tract-level density is
weighted by the tract’s share of the county
population (equation (2)). The weighted
measures are aggregated from the tract-level
density, and therefore are more accurate
than the unweighted measures, which do not
account for density variations at the tract
level. The US Census recognises the differ-
ence between weighted and unweighted mea-
sures, and began to use weighted population
density as a more precise measure of density
(Wilson et al., 2012).

For job density, we used the same
approach as the population density but
replaced population with jobs. Note that the
building density was calculated without any
weighting mechanism. As shown in Figure 1(c)
to (f), weighted density tends to give more
weight to counties with a larger population
size. Figure 1(g) shows the difference
between weighted versus unweighted popu-
lation density for Washington State as an
example.

Measures of government response
policy. Lockdown duration: Our key variable
capturing government response policy is the
duration of lockdown or the number of days
lockdown was in effect during the study
period. These data were derived from the
Covid-19 US State Policy (CUSP) database
(Raifman et al., 2020). In the wake of the
Covid-19 outbreak around late February
2020, each state responded to the outbreak
differently, creating variation in lockdown
policy implementation across states. To
minimise ambiguity in determining the effect
of various lockdown measures, we focus on
the most stringent policies that include state-
wide mandates to stay at home, not advisory

orders that recommended people remain at
home. We are not trivialising the role of
other social distancing measures, but for the
purpose of this study, we focus on examin-
ing the effectiveness of mandatory stay-at-
home policy and urban density. Since this is
a state-level measure, all study counties in a
given state get the same lockdown duration
value.

Lockdown start time: As an indicator of
early versus late lockdown imposition, we
consider the cumulative number of con-
firmed Covid-19 cases per 100,000 people at
the county level on the date when the above-
mentioned state-wide lockdown (i.e. stay-at-
home order) was imposed. Counties where
such lockdowns were not imposed are
excluded from analyses involving this vari-
able. A relatively lower value indicates rela-
tively early (in terms of cumulative infection
rate) lockdown in a given county. Lockdown
start time enters our regression models as a
dummy (0/1) variable called ‘late lockdown’
that takes the value 1 if confirmed Covid-19
cases per 100,000 people are more than five
(i.e. above the median) on the lockdown
start date.

Stringency of government’s Covid-19
response: We include the ‘Covid-19
Government Response Stringency Index’
from the Oxford Covid-19 Government
Response Tracker (OxCGRT) project (Hale
et al., 2021), averaged over the study period
at the state level. The stringency index is a
composite measure of nine response metrics
involving closures, restrictions and controls
(see Roser, 2021). A relatively higher strin-
gency index value for a given state, and
hence for all its constituent counties, indi-
cates that relatively stricter governmental
restrictions were imposed there, on average,
over the study period.

Other covariates and controls. Our analysis
includes a number of county-level covariates
that are expected, based on the literature, to
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influence Covid-19 outcomes across study
counties over the study period. We include
demographic characteristics, such as the pro-
portion of older adults aged 65 or more, sex,
race/ethnicity and college education. We also
include median household income, and
income inequality, which is defined as the
ratio of household income at the 80th per-
centile to that at the 20th percentile. All these
data were obtained from the 2018 ACS five-
year estimates. Moreover, we test the influ-
ence of social capital measures, specifically,
the numbers of establishments in civic and
social associations (NAICS 813410), and
religious organisations (NAICS 813110).
These data are derived from the 2014 social
capital dataset from the Northeast Regional
Center for Rural Development (Rupasingha
et al., 2006). In addition, we also analyse the
effects of health factors on the Covid-19
death rate. We include the percentage of
adults with diagnosed diabetes, and the car-
diovascular disease mortality rate (per
100,000), as health variables. Diabetes preva-
lence data are based on the 2016 CDC
Diabetes Atlas (https://gis.cdc.gov/grasp/
diabetes/diabetesatlas.html), and the cardio-
vascular disease (CVD) mortality data are
based on the CDC’s Interactive Atlas of
Heart Disease and Stroke (2014–2016)
(https://nccd.cdc.gov/DHDSPAtlas).
County population, state population and
state-level number of Covid-19 tests per-
formed are used as control variables.
Rationale is given in the discussion on main
outcome variables.

Analytical approach

Effects of density and lockdown duration. First,
we estimate the effects of density and lock-
down duration on Covid-19 infection and
mortality rates at the study county level over
the study period. One can argue that states’
decisions regarding complete lockdowns
were based, in part, on the severity of the

pandemic at the county level, or on assess-
ments of the impacts of lockdown imposi-
tion on Covid-19 trends across counties. We
therefore adopt a two-stage least squares
(2SLS) regression modelling approach (i.e.
instrumental variables approach) to address
the possible endogeneity between lockdown
duration and the Covid-19 outcomes. The
five density measures are included individu-
ally, in separate regressions.

Ignoring the endogeneity issue potentially
renders the lockdown duration estimate
associative rather than causal. To address
this, we identified an appropriate instrumen-
tal variable that is expected to be correlated
with (and to influence) the lockdown dura-
tion variable, but is uncorrelated (i.e. no cau-
sal connection, in theory) with the error
term. Based on literature review and our
expert judgement, we identified an instru-
ment – party of state Governor (Republican
versus not Republican dummy variable) dur-
ing the study period – which captures politi-
cal support for (or lack thereof) using
lockdowns as tools for controlling the pan-
demic. The instrument helps address the
reverse causality problem linking higher
cases/deaths to the imposition of longer
lockdowns. Out of 2440 study counties, 1737
counties (71.19%) are located in Republican
party-governed states. The data source is
MIT’s Election Data and Science Lab (MIT
Election Data and Science Lab, 2018). The
instrument choice can be justified both theo-
retically and empirically. Emerging anecdo-
tal evidence and early findings suggest that
political beliefs are associated with support
for social distancing orders or other restric-
tions to reduce virus transmission (Painter
and Qiu, 2021; Pinsker, 2020). These findings
help understand the differences, primarily
along political party lines, in state govern-
ment support for imposition of lockdown
across states. President Donald Trump had
repeatedly dismissed concerns about the cor-
onavirus pandemic and publicly expressed
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his opposition to lockdown measures, and
Republican Governors and local leaders
have been relatively reluctant in imposing
social distancing or lockdown policies.

The 2SLS regression model is estimated
in two stages. In the first stage, the lock-
down duration variable is modelled as a
function of the instrumental variable, hold-
ing all other independent variables constant,
to obtain predicted values of lockdown
duration. In the second stage, we regress the
outcome variables on the predicted values of
lockdown duration from the first stage,
along with other independent variables. We
use a set of tests to determine if the 2SLS
approach provides a more robust and
unbiased estimate of the lockdown duration
variable.

We also stratify study counties into three
density levels (low, medium and high) for
select density measures (weighted population
and job densities, and building density), and
re-estimate the 2SLS models, to analyse
whether the estimated lockdown effects on
the outcome variables differ by density lev-
els, determined based on 25th and 75th per-
centile cut-offs.

Effects of lockdown start time and stringency of
government’s response. To test the effects of
lockdown start time (early/late, in terms of
cumulative infection rate on the lockdown
start date in a given county) and the strin-
gency of the government’s response on
Covid-19 outcomes, we use ordinary least
squares (OLS) regression models. We add
the usual control variables (as described ear-
lier in the article) in the regression models,
including weighted population density (as
the only density variable) and lockdown
duration. Since lockdown duration is
included as a control in these models (i.e.
causal connection is not analysed for the
lockdown duration variable), we do not use
the 2SLS approach. We additionally control
for lockdown start date as a variable that

takes integer values ranging from 1 to 20,
since lockdowns across all our study areas
started within a 20-day window from 19
March 2020 to 7 April 2020. All else equal,
we expect lockdown start date – a variable
that accounts for the nationwide pandemic
severity effect at the time of lockdown impo-
sition – to have a separate influence on
Covid-19 impacts in our study counties over
the study period. We also analyse whether
the estimated effects of lockdown start time
and stringency on the outcome variables dif-
fer by weighted population density levels
(above/below median). All statistical analy-
ses were performed in Stata version 14.2.
The maps and plots were produced using R
version 1.1.456 and QGIS version 3.14.

Results

Descriptive statistics

Descriptive statistics of the variables used in
our regression models are given in Table 1.
The average Covid-19 infection rate is about
548. On average, about 19 Covid-19 death
rates have been recorded across the study
counties. The number of days for which
state-level lockdowns were in effect ranges
from zero to 103 days, with an average of 39
days.

Regression analysis

Density effects. The results of two-stage least
square (2SLS) regression models are sum-
marised in Tables 2 and 3. The five density
measures are tested individually in separate
models, and the results are presented in col-
umns (1) to (5). In general, all five density
measures have statistically significant posi-
tive associations with both infection and
mortality rates.

Comparison of standardised (beta) coef-
ficients (not shown in the table) of variables
in the 2SLS model in Table 2 indicates that
the magnitude of influence of population
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density on the outcome variable (cases/
100,000 people) is higher if the weighted
measure is used rather than the unweighted
measure (b = 0.178 for weighted versus
0.173 for unweighted). The pattern is

opposite for job density (b = 0.213 for
weighted versus 0.241 for unweighted).
Comparison of beta coefficients of the
2SLS model in Table 3 shows similar
patterns. This suggests that the effect of

Table 1. Descriptive statistics of variables used in regression analysis.

Variable N Mean Std dev. Min. Max.

Confirmed cases (January–June 2020) 2440 1057.52 5942.86 0 215,179
Deaths (January–June 2020) 2440 51.36 507.72 0 23,096
Cumulative infection rate (January–
June 2020) (per 100,000 people)

2440 548.19 752.15 0 13,181.11

Mortality rate (January–June 2020)
(per 100,000 people)

2440 19.43 44.44 0 1414.78

Confirmed cases per 100,000 (on
lockdown start date)

1836 16.70 36.40 0 615.05

Stringency index (January–June 2020
average)

2440 34.78 5.29 17.52 46.17

Lockdown duration (January–June
2020)

2440 38.59 28.78 0 103

Population density, unweighted (per sq.
mi.)

2440 344.01 2040.76 0.11 72,052.96

Population density, weighted (per sq.
mi.)

2439 1136.55 3484.03 1.05 106,427.60

Job density, unweighted) (per sq. mi.) 2423 176.45 2148.86 0.12 101,698.80
Job density, weighted (per sq. mi.) 2422 1648.83 10,568.66 0.12 415,174.70
Building density (built-up intensity,
indoor building area in % pixel area)

2422 6314.59 49,241.64 0 2,092,758

% Age 65 or more 2440 0.18 0.04 0.05 0.57
% Female 2440 0.50 0.02 0.34 0.57
% Black or African-American 2440 0.10 0.14 0.00 0.82
% Asian 2440 0.02 0.03 0.00 0.43
% Hispanic 2440 0.10 0.14 0.01 0.96
% White 2440 0.75 0.20 0.03 0.98
% Mixed race 2440 0.03 0.07 0.00 0.91
% College educated 2440 0.58 0.11 0.19 0.90
Median income (US$) 2440 52,430.52 14,047.40 24,783 136,191
Income inequality 2440 4.53 0.72 2.67 9.15
Diabetes rate (per 100 people) 2440 12.12 3.92 1.90 34.10
Cardiovascular disease (CVD) death
rate (per 100,000 people)

2439 186.03 44.36 56.30 603.00

Religious establishment 2439 73.21 138.84 0 3275
Civic establishment 2439 10.52 23.19 0 546
County population (in ‘00,000s) 2440 1.30 3.70 0.02 100.98
State Covid-19 tests (January–June
2020) (in ‘00,000s)

2440 8.66 8.81 0.34 41.67

State population (in ‘00,000s) 2440 94.24 84.98 5.82 391.49

Note: Unit of observation is US county (urbanised counties only).
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density on Covid-19 infection and mortal-
ity rates depends on the type of density
used and the measurement approach.

Lockdown duration effects. Tables 2 and 3
show that the Republican Governor vari-
able is highly correlated (significantly nega-
tively associated) with lockdown duration
(refer to first-stage model results). The
model results show that once the endo-
geneity issue is addressed, lockdown dura-
tion has a statistically significant negative
effect on both Covid-19 infection and mor-
tality rates. Recall that in the first stage of
2SLS, we used political party of the state
Governor (Republican or not) as the
instrumental variable to model lockdown
duration. As explained in the methodology
section, the ‘Republican Governor’ dummy
variable is not expected to directly influ-
ence our outcome variables of interest, and
is therefore theoretically a valid instru-
ment. The Durbin and Wu–Hausman test
statistics are statistically significant at the
p \ 0.05 level (or better) for nine out of
10 models (note: significant at the 90%
confidence level for one model), indicating
that the null hypothesis of exogeneity of
the lockdown duration variable can be
rejected. The F-statistic of the test for joint
significance of instruments is statistically
significant at the p \ 0.001 level and
.10 for all 10 models, indicating that the
instrument is sufficiently strong.

Lockdown duration effects stratified by density
levels. Figure 2 shows the effect of lock-
down duration stratified by different den-
sity levels (low, medium and high density).
For this analysis, we only consider
weighted population and job density mea-
sures, and building density. Low-, medium-
and high-density bands are based on 25th
and 75th percentile cut-offs of the distribu-
tions of the chosen density measures. TheT
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strength of the association between lock-
down duration and Covid-19 outcomes
shows a dose–response relationship across
density level, with the largest effect in high-
density contexts.

Effects of lockdown start time and government’s
response stringency. Table 4 (columns 1 and
4) shows that, on average and all else
equal, a late lockdown start (i.e. at a time
when the number of confirmed cumulative
Covid-19 cases per 100,000 people is rela-
tively high in a given county) is associated
with relatively higher cases and deaths per
100,000 people over the study period.
Conversely, the stringency of the govern-
ment’s response is negatively associated
with both cases and deaths per 100,000
people. When counties are stratified by
weighted population density level (i.e.
above/below median), we find that the
effects of lockdown start time and

stringency on cases are more prominent in
low-density counties, while their effects on
deaths are more prominent in high-density
counties (see Table 4 columns 2, 3, 5 and
6).

Effects of other covariates. We find anticipated
signs and consistent results for all covari-
ates in our models (both 2SLS and OLS
models). Income level and number of civic
establishments have statistically significant
positive associations with Covid-19 out-
comes. The proportion of older persons is
positively associated with the mortality
rate, but negatively associated with the
infection. The proportion of college-
educated persons is negatively associated
with both outcomes. The ethnic/racial
composition of counties seems to determine
both outcomes. The rates of diabetes- and
heart disease-related deaths do not have
statistically significant associations with

Figure 2. Effects of lockdown by different density types and levels.
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the mortality rate once age and other
sociodemographic factors are controlled
for.

Robustness checks. In order to assess the
robustness of the estimated effects of the
principal independent variables of interest –
lockdown duration and density (different
measures) – we re-estimate the set of 10
2SLS regression models of county-level
Covid-19 outcomes using three alternative
approaches (regression results are available
upon request).

First, we consider all study counties
minus New York City (comprising five
counties: New York County, Kings County,
Bronx County, Richmond County and
Queens County). New York City, as an
urban area, is an outlier in terms of popula-
tion, jobs and the intensity of Covid-19 pan-
demic impact. Dropping the city, all else
equal, helps test the extent to which esti-
mated effects of the principal independent
variables are driven by New York City. This
approach results in a reduction in the esti-
mated magnitude of the impact of lockdown
duration on Covid-19 outcomes. Density
effects on both outcomes are also smaller in
models without New York City compared
to corresponding models with New York
City. This suggests that New York City
influences our nationwide average estimates
of the principal independent variables, but
the estimated effects are valid for the rest of
urban US.

Second, we shorten the study period to 1
January to 31 May 2020. This conservative
approach drops the period of protests fol-
lowing the George Floyd incident (see
Reuters, 2020). Specifically, the wave of
nationwide protests triggered by George
Floyd’s death in late May 2020 that
extended to June 2020 could potentially con-
found the relationship between the lock-
down duration and Covid-19 infection and
mortality rates. Mass gatherings as part of

the protests could have increased the risk of
infection spread and hence mortality, and
governments could have extended lockdown
orders as a reaction to the protests and their
likely implications during the pandemic.
This approach largely preserves the effects
of lockdown duration and density on Covid-
19 outcomes. Lockdown duration, however,
is not statistically significant at the p \
0.05 level in three out of 10 models.

Lastly, we extend the study period to 1
January to 15 September 2020. This covers
two full waves of the pandemic in the US.
This extension, all else equal, helps test
whether the estimated effects of the principal
independent variables could be different at
different stages of the pandemic. Using this
approach, the statistically significant lock-
down duration effect on the outcomes of
interest is observed across all models. None
of the density variables, however, are statis-
tically significant in the infection models.
Two out of five density measures are not
statistically significant at the p \ 0.05 level
in the mortality models.

Discussion

Our results suggest that the density effects
are more nuanced, especially when we com-
pare weighted versus unweighted measures.
Comparison of standardised (beta) coeffi-
cients (for the models presented in Tables 2
and 3) shows that compared to the crude
unweighted measures, the effect of weighted
measures is smaller for population density
and larger for job density. The magnitudes
of estimation differences, however, are rela-
tively modest. Unweighted density measures
do not accurately represent the actual per-
ceived density (Rappaport, 2008), and thus
may not actually capture the essence of what
we want to measure – that is, the concentra-
tions of people and the potential pathogen.
Weighted density, we argue, captures more
realistic density perceived by the average
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person, and is therefore considered an
improvement over the crude unweighted
density measure (Eidlin, 2010). The esti-
mated effect of density, therefore, depends
on how density is conceptualised and mea-
sured, which could explain the conflicting
findings in the literature (Hamidi et al.,
2020; Rocklöv and Sjödin, 2020).

While the incongruent findings may stem
from the use of different density measures,
recent research provides important insights,
suggesting that crowding may be more
important than density itself (Hamidi and
Hamidi, 2021). This implies that static den-
sity measures would be insufficient to cap-
ture the complex dynamics of disease
transmission (McFarlane, 2021). Our results
are in line with this recent finding that there
are varied meanings and interpretations of
density, and that density alone cannot fully
explain the spread of Covid-19 (McFarlane,
2021). Future studies, therefore, should take
into account the heterogeneity in conceptua-
lising and measuring urban density, as well
as exploring a more precise measure of den-
sity that can effectively capture human
crowding and interactions that contribute to
disease transmission. This may require mov-
ing beyond traditional measures of density,
and leveraging new data sources and compu-
tational techniques (e.g. Hong et al., 2021)
to provide a more accurate assessment of
the density–pandemic relationship.

The magnitude of the density effect varies
by the type of density we use in our analysis.
For example, considering standardised
(beta) coefficients of the 2SLS model in
Table 2 (cases/100,000 people), job density
has a larger effect size than population and
building densities (b = 0.213 for weighted
job density; b = 0.178 for weighted popula-
tion density; b = 0.204 for building den-
sity). The effect differences, however, seem
to be modest in terms of magnitude. One
possible explanation for this finding is that a
higher concentration of jobs would occur in

places where most economic activities take
place, such as central business districts and
commercial districts. This suggests that cap-
turing the functional aspect of urban density,
rather than a simple measure of population
concentration, is more useful because certain
kinds of human interactions can potentially
facilitate virus spread more efficiently, for
example indoor dining. From the perspective
of urban planners and decision makers, it
would be critical to identify the types of
urban forms and associated human activities
that could increase the risk of disease trans-
mission and develop effective mitigation
strategies.

We find lockdown duration to have had a
statistically significant and sizeable effect in
reducing infection and mortality rates across
US urban areas. We also find evidence that
early lockdowns and more stringent govern-
ment responses, all else equal, were associ-
ated with fewer Covid-19 infection and
mortality rates across urban areas over the
study period. These findings are generally
consistent with previous research which
examined different types of government
responses to Covid-19 (e.g. Flaxman et al.,
2020). Compared to less stringent measures,
such as educational campaigns, research has
shown that stay-at-home orders were most
effective in ‘flattening the curve’ (Fowler
et al., 2021; Saez et al., 2020). Our finding
provides further evidence that it is not only
different types of government response that
matter but also the duration of such
measures.

Our results suggest that the effect of lock-
down duration was most potent in urbanised
counties that have the highest levels of den-
sity in terms of population, jobs and build-
ings. When it comes to lockdown start
timing and the stringency of the govern-
ment’s response policy, evidence is mixed.
Relatively lower-density urban areas seem to
have benefitted more from early lockdown
impositions and stringent response policies
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in terms of total Covid-19 infections per
capita over the study period, in the early
phase of the pandemic. Higher-density
urban areas benefitted more in terms of total
deaths per capita over the study period from
early lockdowns and stringent responses.

We know that densely populated and
well-connected metropolitan areas (e.g. New
York) had the most severe cases in the begin-
ning, but there was a lot of uncertainty and
lack of guidance, leading to haphazard gov-
ernment responses (Abutaleb et al., 2020).
Our study shows that early lockdown (when
per capita cases are low) helped cities keep
the virus under control. Urban areas that
prolonged lockdowns or imposed more strin-
gent restrictions performed better in terms of
containing virus transmission and mortality.
Similar results of greater lockdown effects in
urban areas were found in the Netherlands,
as the author notes that the potential to
reduce virus transmission was much greater
in urban areas than in low-density provinces
(Boterman, 2022). While urban densities cre-
ate more opportunities for interactions and
thus virus transmission, our results suggest
that the disadvantage of urban density can
be counteracted with more proactive policy
response. While prudent policy action clearly
benefits high-density urban areas, we also
find, for the first time in the literature to our
knowledge, that early lockdown imposition
is critical for containing virus spread in low-
density areas. Future research on land use
and human behaviour interactions during
pandemics should explore why late lock-
downs in low-density areas can potentially
lead to rapid virus transmission.

This study has some limitations. First, we
focus on the initial phase of the coronavirus
outbreak in the US. Our estimated density
and lockdown effects are therefore valid for
the pandemic onset period only. It is possible
that the effects vary across different stages of
the pandemic. Second, we are not sure about
the extent to which our findings are

transferable to other geographic contexts
beyond the US because US urban areas are
unique in terms of their urban forms, popu-
lation characteristics and governance styles.
Finally, we use a simple definition of lock-
down (mandatory stay-at-home order) in
our analysis. It is possible that different types
of mobility restrictions, and the closures of
different types of activities (economic, social,
recreational, religious, cultural establish-
ments) will have different effects on virus
transmission and mortality.

Conclusion

Our results suggest that density worsens
pandemic impacts, but that the effect of den-
sity likely depends on how we define and
measure urban density. Even if density con-
tributes to virus transmission and mortality,
we find that the adverse impact can be miti-
gated by adopting strict lockdown measures,
especially in highly urbanised areas in the
early phase of an outbreak. Early rather
than late lockdowns, longer rather than
shorter lockdowns and more- rather than
less-stringent government response in the
form of restrictions on economic activities
and mobility seem to help, although their
efficacy levels vary by urban density.

We are, however, mindful of the side
effects of lockdowns. Lockdowns can have a
disproportionate impact on the most disad-
vantaged and marginalised groups. Research
has shown that people living in wealthier
neighbourhoods were more likely to reduce
mobility significantly more than those in
poorer neighbourhoods (Weill et al., 2020).
Better-educated and higher-earning employ-
ees were more likely to work from home
than low-wage earners (Bloom, 2020). To
make matters worse, lower-income commu-
nities have higher disease burdens due to
higher levels of pre-existing health condi-
tions and lower levels of health care access
(Adhikari et al., 2020). Combined with the
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disproportionate impact of Covid-19, low-
income and minority groups have to bear
the brunt of strict lockdown measures.

As evidenced in the 2020 US Presidential
election, the argument over lockdown is
often dichotomised as the ‘health versus
economy’ rhetoric. This is unfortunate. On
the one hand, the side effects of unplanned,
prolonged lockdowns can deeply hurt
economies, and exacerbate health problems
of vulnerable populations who experience
unequal burdens. On the other hand, the
protection of health and life from the
onslaught of Covid-19 or other pandemics
through social distancing and lockdown
measures is often a prerequisite for rebuild-
ing the economy. Policymakers need to con-
sider these costs and benefits, and make
careful decisions. There is increasing evi-
dence suggesting that aggressive and early
control strategies work best when the situa-
tion calls for drastic interventions to contain
a virus (e.g. during periodic infection or
mortality rate spikes in specific hotspots), or
in order to break the virus transmission
chain early on during an outbreak (Gibney,
2020). Our study shows that spatially tar-
geted lockdowns can be highly effective.
Context-sensitive approaches to post-
pandemic recovery will be necessary to not
only overcome the current pandemic crisis
more effectively, but also rebuild our cities
and economies to be more equitable, inclu-
sive and resilient against future shocks.
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