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The spread of epidemics is a common societal problem across the world. Can operational research be
used to predict such outbreaks? While equation-based approaches are used to model the trajectory of
epidemics, can a network-based approach also be used? This paper presents an innovative application
of epidemic modelling through the design of both approaches and compares between the two. The
network-based approach proposed in this paper allows implementing heterogeneity at the level of in-
dividuals and incorporates flexibility in the variety of situations the model can be applied to. In contrast
to the equation-based approach, the network-based approach can address the role of individual differ-
ences, network properties, and patterns of social contacts responsible for the spread of epidemics but
are much more complex to implement. In this paper, we simulated the spread of infection at the be-
ginning of Covid-19 (Coronavirus disease 2019) using both approaches. The results are showcased using
empirical data for eight countries. Sophisticated measures, including partial curve mapping, are used to
compare the simulated results with the actual number of infections. We find that the plots generated by
the network-based approach match the empirical data better than the equation-based approach. While
both approaches can be used to predict the spread of infections, we conclusively show that the proposed
network-based approach is better suited with its ability to model the spread of epidemics at the level of
an individual. Hence, this can be a model of choice for epidemiologists who are interested to model the

spread of an epidemic.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

The outbreak of infectious diseases like SARS, HIN1, and Ebola
have been frequent occurrences in recent years. What has been un-
common till the outbreak of Covid-19 (Coronavirus disease 2019)
is the scale and magnitude of its spread. Covid-19, which emerged
first in December 2019 in Wuhan, China, has affected millions and
has caused damage to life and livelihood worldwide. Understand-
ing the spread of infection in a complex system such as society
is difficult and accurate forecasting of an epidemic is particularly
challenging (Hofman et al., 2017; Jasny & Stone, 2017). It is impor-
tant to model the early spread of an epidemic since such a model
enables us to understand the scale, and is necessary for estimating
the facilities required to control the spread of disease in the future
(Lotfi et al., 2022; J. W. Taylor & Taylor, 2023). In this context, it is
also noted that the growth pattern of this infection varied across
the countries (Wilinski & Szwarc, 2021). As shown in Fig. 1, during
December 2019 to February 2020, Covid-19 began as an epidemic
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in China and started spreading to other parts of the world through
Europe.

Given the catastrophic impact of Covid-19 and the relevance
of operational research to address global health issues using its
problem-solving techniques (Silal, 2021), it is logical to ask how
we can use the innovative applications of operational research to
fight the spread of such an epidemic? In this paper, our first re-
search question is:

RQ1: How can we realistically model the spread of the infection at
the onset of an epidemic?

There are existing approaches to study the spread of infectious
diseases. However, these approaches either focus on a specific re-
gion (Renardy et al.,, 2020) or a country (Alrasheed et al., 2020)
and are limited by their assumptions. For example, well-known
epidemic models often make assumptions such as fixed transmis-
sion rate of infection which do not hold in the current context (J. T.
Chang & Kaplan, 2023). There are studies that analyse the spread of
epidemics across multiple countries (Appadu et al., 2021) but they
primarily rely on techniques that forecast macro-level outcomes
rather than micro-level interactions. This creates a research gap
and provides a scope for creating a bottom-up approach that can
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Fig. 1. Spread of Covid-19 at the beginning of the epidemic across the globe.

be applied to study macro-level outcomes based on micro-level in-
teractions and which can be tested for multiple scenarios through
simulations (Gupta et al., 2021; Ma & Nakamori, 2005). We fulfil
the gap in this paper by first implementing a top-down equation-
based approach to model the spread of an epidemic using homoge-
nous parameters values at an aggregate population level. Then we
propose a bottom-up network-based approach using heterogeneous
values of parameters at an individual level. The parameters used to
describe the contagiousness of the epidemic and the mechanism of
its spread are discussed in detail. This leads us to our next research
question:

RQ2: What would be the impact of varying the parameters of in-
terest in the equation- and network-based approaches on the
predicted trajectory of the epidemic?

In modelling the spread of epidemics, multiple input parame-
ters are used. The choice of the value of these parameters, such
as the size of the population, the fraction of infected individuals
at the beginning, basic reproductive number to describe the con-
tagiousness of the epidemic, and the type of underlying contact
network structure, play a vital role in determining its spread. In
this regard, we performed simulations using the equation- and the
network-based approaches and studied the effect of varying the
parameters of interest. We observed the changes in the predicted
trajectory of number of infections in response to the variation of
the values of parameters for each approach. In our third research
question we ask:

RQ3: How can we determine the best fit model based on a com-
parison between the trajectory of the spread of infections?

To determine the best fit model, we compared the results
of the equation- and network-based approaches using empirical
data from different countries. For this purpose, we first collected
data about the trajectory of newly infected cases for eight coun-
tries. These countries are compared using relevant country-level
attributes. We formulated a dissimilarity index to assess the sim-
ilarities between the countries. We used this knowledge to deter-
mine if the Covid-19 infections of countries which are similar or
dissimilar in terms of their dissimilarity index followed the same
pattern for their spread of the epidemic. These countries are fur-
ther grouped into four clusters based on the visual similarity be-
tween their trajectory of newly infected cases. To determine the
extent of this visual similarity, we used quantitative measures to
compare the trajectory of newly infected cases under various sce-
narios. We compared the similarity between the patterns of the
curves using partial curve mapping (Jekel et al, 2019). A model
is considered best fit if it matched the empirical data consistently
based on the proposed measures. We found that the trajectories
generated by the network-based approach matched the empirical
data more closely than the equation-based approach.

This paper contributes to the development and implementation
of a novel network-based approach and compares its performance
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with that of the equation-based approach under different scenar-
ios. We contribute by modelling heterogeneity at the level of an
individual in the proposed network-based approach. Second, we
incorporate flexibility by running simulations with different con-
tact network structures, different values of parameters describing
the infection, and individual attributes. Third, we simulate differ-
ent scenarios and compare the results with empirical data for eight
countries. Apart from contributing to the development of a novel
network-based approach, the findings from our research help us
identify the spread of infections at the initial stage of an epidemic.

The rest of this paper is structured as follows. Section 2 de-
scribes the literature review. The following methodology section
describes the assumptions and the techniques of simulation for
both the equation- and the network-based approaches. The fourth
section is dedicated to the description of data used in imple-
menting the simulations using various parameters. Section 5 re-
ports the results and compares them with empirical data. Section
6 discusses the implications and limitations of this study. Finally,
Section 7 summarizes the contribution of this study and concludes
the paper.

2. Literature review

Epidemic models are widely used across multiple disciplines
(Adly et al., 2020; Bozzani et al., 2021; Camacho et al., 2020), but
are less explored in operational research (Pazoki & Samarghandi,
2021; Yaesoubi & Cohen, 2011). Data-driven research using tech-
niques of operational research is relevant for the study of the out-
break of Covid-19, and as such operational researchers are now fo-
cussing on ways to fight the epidemic (Choi, 2021; Farahani et al.,
2023). Existing epidemic models have been used to forecast ag-
gregate outcomes like the number of infections (Nikolopoulos et
al,, 2021). The methods employed by the existing models can be
grouped under mathematical, computational, and machine learn-
ing approaches. Mathematical models that are easier to understand
and require low computational power are dominant (Duan et al.,
2015), whereas advanced machine learning models have been gain-
ing popularity in recent years.

Mathematical models are the earliest approaches used in epi-
demic modelling. They are well-established and have been used
for modelling the spread of Covid-19, and many other infectious
diseases (Brauer et al., 2019; Capasso, 2008; Grave et al., 2021;
Martcheva, 2015). Forecasting methods such as time-series, ARIMA,
exponential smoothing have been used as well and ARIMA has
often outperformed the others (Petropoulos & Makridakis, 2020).
However, forecasting the spread of infection in a society can
be challenging without observing the system’s evolution. Under
mathematical models, the most commonly used method is or-
dinary differential equations (ODEs). Such models have been in
great demand since the outbreak of Covid-19 (Grave et al., 2021;
Martcheva, 2015). However, such models are limited by their con-
sideration of variations over time and not space and homogenous
treatment of individuals. To address the variation between individ-
uals, these models divide the population into subgroups based on
the individual’s age, infectivity, and occupation (Duan et al., 2015)
but are limited in their capability to represent the spread of infec-
tion in detail. Finally, these models are also highly dependant on
model assumptions and fitting techniques (Alahmadi et al., 2020;
Vytla et al., 2021) and so they do not reveal the dynamic depen-
dency of parameters on the epidemic (Masum et al., 2022). For ex-
ample, these models assume a fixed rate of transmission of an in-
fection which is seldom the case in reality (Chang & Kaplan, 2023).
Thus, although equation-based approaches are the natural choice
of researchers to capture macro-level dynamics of an epidemic at a
low computational cost, these models may not be the best choice
to understand how the infection spreads. Machine learning mod-
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els are gaining popularity in recent years. A study (Ribeiro et al.,
2020), that focussed on comparing the performance of a mathe-
matical model based on ARIMA with a machine learning model
based on support vector machines, found the machine learning
counterpart to have higher accuracy (Masum et al., 2022). Extant
studies have demonstrated the superiority of deep learning tech-
niques such as recurrent neural networks in accurately predicting
the spread of infection. However, they do not reveal the transmis-
sion mechanism of an infection (Alahmadi et al., 2020).

We may look at another set of methods that may be better in
exploring the dynamics behind the spread of infection. Computa-
tional models that explore the spread of infection at a micro-level
are increasingly used to study epidemic outbreaks (Duan et al.,
2015). Such models like the metapopulation model provide a de-
tailed representation of realities (Duan et al., 2015). This model has
the advantage of describing the spread of infection spatially across
regions. However, it assumes well-mixed, homogenous subpopula-
tions and is limited in explaining the spread of infection. On the
other hand, agent-based models are a promising and well-known
bottom-up approach under computational models that model each
individual or agent in a population and their interactions defined
by some rules. They can incorporate the heterogeneity at the level
of individuals and their interactions through micro-level analysis.
These models delineate the stochastic nature of the spread of in-
fection (Duan et al.,, 2015). However, they are much more complex
to understand and implement. Under the computational approach,
there exists another type known as network-based approaches,
which can handle heterogeneity at the individual level and can
model the spread of infection in a population (Duan et al.,, 2015;
Kiss et al.,, 2017). Compared to mathematical models, a network-
based approach can represent the heterogeneous environment in
which an infection spreads by controlling the parameters of nodes
and links. Using simulations, these models can explore how the in-
fection spreads and how the network evolves over time. However,
most of them consider unweighted networks, thereby losing sight
of the interaction patterns (Duan et al., 2015). Therefore, the classi-
fication of extant studies based on a single dimension (i.e., method
of analysis) is not straightforward. Some recent studies (Du et al.,
2021; Hunter et al., 2020; Miranda et al., 2021) have combined and
contrasted multiple methods by proposing hybrid models.

Epidemic models can also be further classified based on
whether they have used commercial software (Aggarwal et al.,
2020), custom-built simulation tools (Appadu et al., 2021), or
standardized techniques (Alenezi et al., 2021) for implementation.
However, irrespective of their choice of software, they generally
lack a flexible model that can be used to model various scenarios
by selecting different underlying contact network structures. In this
regard, a hybrid simulation modelling approach (Brailsford et al.,
2019) may be useful. The underlying epidemic model that is used
in most of these studies divides the population into compartments.
The standard compartmental model (Brauer et al., 2019; Capasso,
2008; Kermack & McKendrick, 1927; Martcheva, 2015; Treibert,
2021) i.e., Susceptible-Infected-Removed (SIR) assumes that indi-
viduals in the population under study can be categorized into one
of the compartments S, I, or R. There are many variations to the
standard compartmental model based on the number and descrip-
tion of compartments. However, all rely on the premise of dividing
the population into compartments and studying the transitions be-
tween them. The models used to study epidemics can also be clas-
sified into deterministic models (Alenezi et al., 2021; Shapiro et al.,
2021) and stochastic models (Yaesoubi & Cohen, 2011; Zhang et al.,
2020). Deterministic models such as those based on ODEs are top-
down and primarily focused on macro-level analysis. They are use-
ful for predicting aggregate outcomes but do not provide insights
about how the infection is transmitted from one individual to an-
other. Stochastic approaches, such as the network-based approach,
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are bottom-up. They are less common but are better suited to re-
alistically capture the transmission of an infectious disease (Zhang
et al., 2020). The literature on epidemic models is vast (Lu & Bor-
gonovo, 2023) with high-quality papers getting published on a va-
riety of research problems associated with the Covid-19 pandemic
(Farahani et al., 2023). Our study aims to address the inherent gaps
in the literature by developing a network-based approach that ef-
fectively captures heterogeneity at the level of individuals and can
be broadly applied across various situations. Table 1 provides a
glimpse of existing methods, some key references, the key con-
tributions, gaps in existing studies, and explains how the current
research aims to fill those gaps.

3. Methodology

In this section we discuss a standard SIER compartmental
model for studying the spread of epidemics using an equation-
based approach. In our study, we select SEIR over SIR because there
exists an incubation period for Covid-19. Our choice of SEIR over
SIR is further strengthened by the results of a recent study (Alenezi
et al., 2021) that showed SEIR is better suited than SIR to predict
infections for Covid-19. This discussion is followed up by the de-
sign and implementation of the proposed network-based approach.

3.1. Studying the spread of the epidemic using the equation-based
approach

Although there can be many variations of the equation-based
approach (Basnarkov, 2021; Gwizdatta, 2020), we study a represen-
tation that retains the properties of an ODE and can be compared
with the network-based approach. The equation-based approach is
defined below:

On day t, S(t), E(t), I(t), and R(t) denote the number of people
in susceptible, exposed, infected and recovered states respectively.
Those in state R are infected earlier and are assumed to have either
recovered or died. If N denotes the size of the population, then on
any given day t,

N =S(t) +E(t) +I(t) +R(t) (1)

The rate at which S transitions to E by coming in contact with
infected individuals is denoted as f§, the rate at which E transi-
tions to I after spending an incubation period is denoted as §, and
the rate at which I transitions to R depending on the number of
days an individual can spread the disease before either recovery or
death is denoted as y. The following relationships can be used to
define § and y.

1
" incubation period

(2)

1
" number of days an infected person can spread the disease

3)

The basic reproductive number R, that denotes the total num-
ber of individuals an infected person infects can be defined as:

14

Ro:ﬁ/y (4)

The value of B, can be derived from Ry and y. The SEIR model
is expressed by the following ODEs (Please refer to Appendix A for
further details):

ds/dt = — BxI1xS/N (5)

dE/dt = B*IxS/N — §+E (6)
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Table 1

A glimpse of extant literature on epidemic models.
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Methods of
Analysis

Key Reference

Key Contribution

Gap

Contribution of Current Research

Forecasting

ODEs

Agent-based

(Ding et al., 2021)

(Appadu et al., 2021)

(Gebremeskel et al.,
2021)
(Ajelli et al., 2010)

Provides long-term prediction and
analysis of epidemic dynamics

Conducts multi-country analysis
using forecasting methods

Studies a compartmental epidemic
model with sensitivity analysis
Compares agent-based and
metapopulation stochastic model for
a pandemic event in Italy

Proposes agent-based modelling
using computational simulation of
the pandemic in Australia

Study is specific to
South Africa

Does not focus on
micro-level interactions
Study is specific to
Ethiopia

Difficulty in gathering
datasets for most
regions of the world
Does not explicitly
model the underlying
contact network

It models the spread of infection
by considering variations over
time and space for micro-level
interactions. It incorporates
heterogeneity at the level of
network, infection, and
individuals. It adds flexibility in
the choice of input parameters,
including the selection of the
underlying network structure. It
allows a comparison of the
simulated outcome of model

Network-based (Alrasheed et al., 2020)

social dynamics
(Renardy et al., 2020)

disease progression

Provides a contact network-based
approach that captures realistic

Proposes a network based on
synthetic population and models of

scenarios with empirical data
for multiple countries using
sophisticated measures in an
uncertain situation like the
beginning of an epidemic when
limited information is available.

Model is specific to
Saudi Arabia

The underlying contact
network is static

Table 2
Relationships defining the membership of a node to a compartment.

Compartment  Description

Susceptible, S No infectioni.e., VL; = 0

Exposed, E Not infectious i.e., VL; > 0 but VL; <= IL;
Infected, 1 Infect othersi.e., VL; > IL; and VL; < VUL;
Removed, R VL; > VUL; or after remaining infectious for dg consecutive days

Note: The value of VL;, IL;and VUL; is normalized between 0 and 1.

Table 3
Differences between the equation-based approach and the network-based approach.

Characteristics Equation-based Network-based

Complexity Simple Complex

Availability of dynamic model ~Common Rare

Execution time per run* Fast Slow

(N=10,000) (Few seconds) (Few minutes to
several hours)

Application Homogenous Heterogenous

population population
Network structure Not explicit Can support any type

Individual level attributes Not applicable Can support any
attribute

Nature of output Deterministic Stochastic
Number of inputs Few Many

Number of test-cases Relatively smaller  Relatively larger

Note: * The execution time is dependant on the processing capability of the plat-
form where the model is executed.

dljdt = 8§ xE — y =1 (7)
dR/dt = y xI (8)

3.2. Simulation of the equation-based approach

To simulate the equation-based approach described in the
previous section we choose a variety of parameters. The output
is sensitive to the choice of input parameters. The equation-based
approach accepts the size of the population N, the number of
infected I(0) and exposed E(0) at the beginning, incubation period
1/ 8, number of days an infected person can spread the disease
1/y and the basic reproductive number Ry. The equation-based
approach is top-down and assumes individuals in a population
are homogenous and interactions are implicit (Edoh & Maccarthy,
2018). In general, ODEs are used to model the spread of epidemics

in the equation-based approach, and the results are deterministic.
The equation-based approach is simple to use but have its limita-
tions. It is sensitive to the choice of parameters determining the
probability of infection and the heterogeneity of the population.
Except for few studies (Gwizdatta, 2020; Miranda et al., 2021), this
approach fails to address any difference arising from the under-
lying contact structure. In this study we compare two different
models that use separate values of Ry, under the equation-based
approach and have the same initial conditions.

3.3. Studying the spread of the epidemic using the network-based
approach

The spread of an epidemic in a networked environment is
shown in Fig. 2. This figure illustrates a simple network with nine
individuals represented by the nodes and connected by the links.
On day 1, node 1 represents an infectious individual, and its two
neighbouring nodes 2 and 3 that are exposed. The rest of the in-
dividuals in the network, denoted as nodes 4 to 9, who are not
in direct contact with the infectious node, are susceptible to infec-
tions in future. On day 2, one of the exposed neighbours, i.e., node
2 becomes infectious and its neighbouring node 4 is now exposed.
With the progress of time, the disease spreads through the net-
work. An infected individual either dies or recovers and becomes
disconnected from the network like node 1 on day 3.

The following paragraphs elaborate how the transmission of the
epidemic is modelled realistically in the network-based approach.
The process consists of describing the model assumptions, defin-
ing the model parameters, creating the contact network, configur-
ing the parameters, and implementing the logic for updating the
network. Although the network-based approach is similar to the
homogenous compartmental models, it considers an individual to
be different from others in their ability to withstand the virus. It is
assumed that this variation arises from the difference in the level
of immunity and exposure to the virus. The spread of infection in
a connected network environment is described at the level of the
network, individual nodes, and links.

The network level parameters are taken as inputs from the user
at the beginning of the simulation. These parameters include the
number of nodes (n), the type of network (T), days to gain recov-
ery (dg), load reduction factor (lz), and the fraction of nodes that
are considered infected (f). The parameters may include network
characteristics such as degree distribution and the probability of
link formation depending on the type of network. The attributes
of an individual i, in the network are represented by node level
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Network at Day 3

Fig. 2. Transmission of infections during an epidemic on a network.

parameters. These parameters correspond to viral load (VL;), im-
munity level (IL;), upper limit of viral load (VUL;,) and days in-
fected (d;). A link represents the contact between two individuals
i and j. The characteristics of the link is captured by the link level
parameters. In this model, weight; ; is the only link level param-
eter. The value of weight; ; is set between O and 1 at the time of
network configuration and is directly proportional to the probabil-
ity of transmission of infection between the connecting nodes. The
weight; ; is a normalized value based on the nature of contact be-
tween the connecting nodes. Appendix B provides further details
about the assumptions of the network-based approach. The mem-
bership of an individual node to one of the four compartments is
based on the relationships summarized in the following table.

It must be noted that in the proposed approach, an individual
getting sick may get re-infected even after recovery depending on
the value of node level attributes and their relationship.

3.4. Simulation of the network-based approach

In this paper, the network-based approach is simulated using
synthetic contact networks. The proposed model is stochastic. The
initial conditions set at the beginning of the simulation play an
important role in determining the spread of the epidemic. The
network-level parameters are set to values that are taken as inputs
from the user. The link-level parameters are randomly assigned
based on an algorithm following a uniform distribution within a
pre-defined range. A combination of user input and algorithm-
based assignment is used to set the initial values of the node
level parameters. In case of the node level parameters, a minimum
threshold value of immunity, min; and the upper limit of viral load
minyy;, are taken as user inputs. The individual values of VL;, IL;
and VUL; are randomly assigned to each node by the algorithm fol-
lowing a uniform distribution. In this study, we compare between
two different models under the network-based approach by vary-
ing only the contact network structure and keeping the remaining
input parameters unchanged. The simulation runs in a loop such
that at each iteration, the logic to update the network is executed
once. In the first stage, the algorithm creates the underlying con-
tact network structure and configures its properties as specified by
the user. The algorithm iterates over each node and link to set the
attributes at this stage. The second stage starts by accepting the
duration to simulate the spread of disease as an input from the
user. The logic for updating the network (Please refer to Appendix
C for details) in order to simulate the spread of the epidemic exe-
cutes within a loop. The user can simulate the spread over succes-
sive periods to observe how the network evolves with time.

3.5. Difference between the two approaches

To conclude the discussion on methodology, we present a sum-
mary of the differences between the two approaches used in this
study.

The comparison between the two approaches reveals that the
choice of the approach depends on multiple factors. Both ap-
proaches can be used to model the spread of an epidemic. The

equation-based approach works on a macro level and is simpler,
faster, and easier to implement. On the other hand, the network-
based approach works at an individual level and is preferable for
studying a heterogeneous population. In modelling the spread of
an epidemic, the nature of the contact network plays an impor-
tant role, and this can be investigated using the network-based ap-
proach.

4. Numerical experimentation
4.1. Data consolidation and pre-processing

In the proposed network-based approach the network struc-
ture can be generated using synthetic generators or by accept-
ing inputs to define any specific network structure from the user.
There are several software packages available for network gen-
eration, analysis and visualization (Camacho et al., 2020). How-
ever, the choice of the programming tool based on suitable cri-
teria (Fumagalli et al.,, 2019) is important to build the simulation
model. In this study, the Python programming language is used
to create, simulate, and analyse the network-based and equation-
based approaches. To create and manipulate networks we used
the NetworkX package (Hagberg et al., 2008). This package allows
the creation of a network from scratch as well as by using syn-
thetic generators. The synthetic generators are library functions de-
fined under the package that accepts predefined inputs and returns
network structure based on those inputs. The integrate library
under scipy.integrate (SciPy Documentation: Scipy.Integrate.Odeint,
2020) is used for defining and solving equation-based approaches
in Python. Similarly, other libraries in Python are used for fea-
ture selection and for calculating additional measures to compare
the similarity between curves. The code used for modelling and
analysis is written and executed on the Google Colaboratory cloud
servers (Google, 2018, 2021). Appendix D provides details about
the choice of software, hardware and synthetic generators that are
used in implementing the simulations.

The initial value of the parameters used in the network-based
approach can also be set using default parameters or can be taken
as user input. Similarly, to run the simulation using the equation-
based approach, the initial values of the parameters need to be set.
The implementation of the network-based approach requires data
for network generation and the values of various parameters. We
searched open-access public datasets on Covid-19, and the dataset
used by Appel et al.,, (2020) is found to be suitable for validation
of the two approaches. This dataset shows the number of individ-
uals infected by Covid-19 for various countries across the world.
It also contains country-wise data on development index, demo-
graphics, health conditions, hospital facilities, etc. We have denoted
the date on which the number of newly infected cases in a country
reached 20 at the beginning of the spread of Covid-19. The choice
of 8 different countries is made from different regions of the world.
Please refer to Appendix E for details on the choice of these coun-
tries. The daily number of newly infected cases is considered for
60 days starting from the beginning of the epidemic for Australia
(AUS), South Korea (KOR), Germany (DEU), Iran (IRN), Spain (ESP),
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Fig. 3. Similarity in newly infected cases of Covid-19 for different countries.

Switzerland (CHE), India (IND) and United States (US). Although
there exist studies (Wilinski & Szwarc, 2021) with a longer du-
ration of analysis, we have chosen 60 days for this study as we
are interested in predicting the spread of newly infected cases at
the beginning of an epidemic. The choice is consistent with ear-
lier studies (Appadu et al., 2021) on short, medium, and long-term
predictions of an infectious disease. The choice of 60 days is also
important as the contact network underlying the population may
change beyond this time. We calculated a moving average of the
data with an interval of 3 days to remove anomalies due to miss-
ing values and human errors. The data is then normalized within
a range from 0 to 1 to compare the patterns in the outbreak tra-
jectories. Based on similarity in patterns we divided the countries
into four groups, as shown in Fig. 3.

4.2. Similarity between countries in terms of country level attributes

We calculated a dissimilarity index to compare between coun-
tries. Using extant literature (Atalan, 2020; Kadi & Khelfaoui, 2020;
Zadori et al., 2020) we identified various attributes that are consid-
ered responsible for the spread of Covid-19. The relevant country-
level attributes included size of population, density of population,
median age of population, gross domestic product per capita, car-
diovascular death rate, prevalence of diabetes, number of hospital
beds per thousand people, life expectancy, human development in-
dex, and average stringency index. To decide about the attributes
for calculating the dissimilarity index, we implemented a feature
selection process. In this process, we computed the correlation be-
tween all the attributes and removed correlated ones based on
a threshold correlation value. The process is repeated for differ-
ent threshold values. At a threshold of 0.65 representing moder-
ate correlation, we found that all attributes other than the size of
the population and stringency index were dropped. The stringency
index is a composite measure of a government’s response at the
country level to control the spread of Covid-19 with a value from
0 to 100 (Hale et al., 2021). Please refer to Appendix F for further
details on the calculation of the dissimilarity index.

A lower value of this index depicts greater similarity between
countries. According to the calculated value of this index, AUS
is most similar to DEU and CHE, with values 0.06 and 0.08,
respectively. However, their trajectories for newly infected cases of
Covid-19 shown in Fig. 3 does not match. On a similar note, DEU
is most similar to CHE and KOR, with the dissimilarity index value
of 0.13 and 0.15 respectively, but their trajectories do not match.
Thus, the country-level attributes such as the size of the popula-
tion and stringency index can be used to group countries together
although the pattern of the spread of newly infected cases remains
dissimilar.

4.3. Data for simulations of the equation-based approach

The input parameters in the case of the equation- and the
network-based approaches are not the same. This poses a challenge
in selecting the input parameters for the simulation. We selected
the same values during the simulation of both approaches for the
common input parameters. In contrast, the values of the remaining
parameters are selected based on earlier studies. Previous studies
(Burda, 2020; Alenezi et al., 2021) have shown that the value of Ry
plays an interesting role in the spread of an epidemic. In this study,
we varied the value of Ry as mentioned in Section 3.2 to generate
two scenarios under the equation-based approach and observed
the outcomes. These two scenarios corresponded to the value of
Ro = 15 and 2.5 respectively. The value of Ry is varied because ear-
lier studies (Burda, 2020; Renardy et al., 2020) on Covid-19 have
used values around 2.5. However, Covid-19 has some strains that
are highly infectious and so a value of 15 is more appropriate to
model the spread of highly infectious disease like measles (S. L.
Chang et al., 2020). Since the equation-based approach is deter-
ministic, the simulation is executed once for each scenario with
the choice of initial parameters as shown in Table 4. To begin
the simulation, we entered the population size N of 10,000, the
number of initial infections I(0) as 20 and number of exposed ini-
tially, E(0) as 400. The value of the remaining parameters for the
equation-based approach is selected as shown in Table 4.
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Table 4

The parameters used for simulation of the equation-based approach.
Parameter Value References
Incubation period, 1/ 8 5 (Burda, 2020; Renardy et al., 2020)
Number of days an 10 (Burda, 2020)

infected person can spread
the disease,1/ y

Basic reproductive 15, 2.5 (Chang, Piraveenan, et al., 2020;
number, Ry Burda, 2020),
Table 5

Choice of initial parameters of the two models using the equation-based approach.

Highly Contagious Model A1l
N=S(t) +E(t) +1(t) +R(t) =

Moderately Contagious Model A2

N =S(t) + E(t) + [(t) + R(t) = 10,000

10,000 §=1/5

§=1/5 1/y=10

1/ y=10 Ro = 2.5

Ro = 15 B=Ry*y=025
B=Ry*y=15 S0, EO, 10, RO=N-420, 400, 20, 0

S0, EO, 10, RO =N-420, 400, 20,
0

Table 5 shows a comparison between the two model scenar-
ios. In summary, model scenarios A1 and A2 are equation-based
approaches that have the same choice of initial parameters except
the value of the parameter of interest Rg.

4.4. Data for simulations of the network-based approach

To simulate the spread of Covid-19 at the country level, we as-
sumed there are multiple clusters of a population where the dis-
ease spreads. In this study, we consider 10 such clusters with a
size of 1000 where the infection begins. Earlier studies have used
similar initial sizes of clusters (Basnarkov, 2021; Kim et al., 2021).
The total size of the population is 10,000. It is kept the same at
the beginning of simulations for each scenario under the equation-
and network-based approaches to prevent the size of the network
(Gwizdalta, 2020) from affecting the result. It is also assumed that
the number of infected individuals in each cluster at the beginning
of the simulation is 2. It corresponded to our choice of 20 newly
infected cases as the beginning of the spread of Covid-19. In ad-
dition, the clusters are assumed to be in different locations of a
country, and separated from each other. Thus, each cluster is rep-
resented by a separate network, and it is assumed that the con-
tact networks across the different clusters are of the same type.
The simulation is repeated 10 times with the same initial condi-
tions to mimic the spread of the disease. The nature of the un-
derlying contact network in a country is not known and so we
simulated two distinct types of contact network structure. It con-
sidered them as two different scenarios under the network-based
approach. The choice of contact network types used in the simu-
lation is consistent with earlier studies (Dong et al., 2019; Edoh &
Maccarthy, 2018; Gwizdatta, 2020; Jorritsma et al., 2020; Kim et al.,
2021). The choice of the values of input parameters helped to cre-
ate two different types of networks and the small-world network-
based approach is labelled as B1 and the preferential attachment
network-based approach is labelled as B2. Table 6 shows a compar-
ison between the two models based on different underlying con-
tact network structure. Please refer to Appendix G for details on
the type of network structures used.

In a nutshell, model scenarios B1 and B2 are network-based ap-
proaches that differ in the underlying network structure. After cre-
ating the synthetic networks for the two scenarios, the values of
the parameters that are fixed at the beginning of the simulation
are shown in Table 7.

The value of f is set to 0.002 so that at the beginning of the
simulation any 2 nodes in the network of 1000 nodes are infec-
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tious. The choice of this value is based on the fact that in a net-
worked environment, it is better to presume that the infection
starts spreading when the number of infected is more than one.
A larger value is not considered as we studied the spread of the
epidemic in its early stage. The choice of the value of I, and dg
are based on guidance (NCIRD, 2021) indicating that the time to
recovery from Covid-19 even for critical adult patients is within 20
days. The minimum threshold value of immunity is kept at 0.5. The
minimum threshold of the upper limit of viral load is kept above
the minimum immunity threshold at 0.7. During each run of the
simulation, the viral load of nodes is updated 60 times to mimic
the growth of the Covid-19 infection over 60 days.

5. Results

In this section we report the impact of varying the parame-
ters of interest on the number of infections. First, we plot the
outcome of the equation- and network-based approaches with the
given choice of parameters. We demonstrate the effect of vary-
ing the parameter Ry for the equation-based approach and show
the results as the highly contagious equation-based approach Al
and the moderately contagious equation-based approach A2 re-
spectively. Next, we present the results of the two different sce-
narios obtained by varying the type of the underlying network
in the network-based approach and denote them as the small-
world network-based approach B1 and the preferential attachment
network-based approach B2 respectively. In the subsequent sec-
tions, we compare the results of these models with the empirical
data using different measures in order to determine the models
with the best fit.

5.1. Outcome of the approaches

5.1.1. Equation-based approach

Fig. 4 shows the variation of infections for highly conta-
gious equation-based approach Al and the moderately contagious
equation-based approach A2, by varying the value of Ry and keep-
ing all other parameters constant. In the plots, the x-axis denotes
the day in progression of infection and the y-axis denotes the
number of newly infected individuals on that day normalized be-
tween 0 and 1.

In Fig. 4, models A1 and A2 are obtained using the values of
Rg=15, and 2.5 respectively. It is observed that with a decrease
in the value of Ry the curve shifts to the right and the epidemic
continues beyond the time period of 60 days. On the other hand,
for a higher value of Ry the epidemic reaches its peak and dies
down faster. Although, it may seem counter-intuitive that reduc-
ing the transmission rate is key to controlling the disease based
on sensitivity analysis performed on the value of Ry in an earlier
study (Gebremeskel et al., 2021), our result points to an interest-
ing aspect of epidemic models. While Ry=2.5 is in the range of
values used in earlier studies (Burda, 2020; Renardy et al., 2020)
on Covid-19, Ry = 15 corresponds to the spread of highly infec-
tious disease like measles (S. L. Chang et al., 2020). It is interest-
ing to note that given a population of 10,000, the equation-based
approach reaches a saturation point in which majority of the pop-
ulation gets infected and is subsequently removed earlier due to a
higher value of Rg.

5.1.2. Network-based approach

The network-based approach models the spread of epidemic
realistically by incorporating the characteristics of the entire
population, disease at the level of an individual, and underlying
contact network structure through user-defined input parameters.
To demonstrate how this approach can be applied to various
situations, we vary the underlying contact network structures
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Table 6
Properties of the two models using the network-based approach.
Model Type of Network Parameter Value Links Average
Degree
Small-world network-based Newman-Watts-Strogatz Size 1000 10,000 20
approach B1 small-world graph: NWSG
K 10
Probability of link creation 1
Preferential attachment Barabasi-Albert preferential Size 1000 9900 19.8
network-based approach B2 attachment model.: BAG
Number of links to preferentially 10
attach
Note: The value of K is such that each node is joined with its K nearest neighbours forming a ring topology.
MODEL Al MODEL A2
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Fig. 4. Simulation results for models A1 and A2 using the equation-based approach.
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Fig. 5. Simulation results based for models B1

Table 7
Values of various parameters.

Parameter Value
Fraction infected, f 0.002
Load reduction, I 0.05
Number of days to gain recovery, dg 20
Minimum threshold of immunity, min; 0.5
Minimum threshold of upper limit of viral load, minyy, 0.7
Duration of simulation, t (in days) 60

Note: The simulation is repeated 10 times for given initial conditions.

keeping all other input parameters constant. We plot the results
of the simulation using the small-world network-based approach
B1 and the preferential attachment network-based approach B2, as
shown in Fig. 5. The plots show how the spread of the epidemic
varies with the underlying contact network structure.

In order to investigate the sensitivity of the output of the pro-
posed model with respect to other input parameters, we vary the
value of minyy; between 0.5 to 0.9 for each of the above scenar-
ios. In the preferential-attachment based model B2, we observe no
significant difference. However, some changes are observed for the
small-world network-based approach B1.

MODEL B2

NEW CASES
o © <]
> o o

o
Y

0
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58
DAY

and B2 using the network-based approach.

5.2. Comparison between the trajectory of the outbreak and actual
infections

In order to compare between the outputs corresponding to the
approaches and identify to what extent the outputs match the data
corresponding to the eight different countries, a number of simi-
larity measures are used. These include comparing the peak, cal-
culating the error based on sum-of-squares based difference, and
correlation between the slope of the curves. Furthermore, sophisti-
cated measures like partial curve mapping, dynamic time warping,
and curve length approach are used.

5.2.1. Comparison based on peak

To compare the simulation results with the empirical data, we
first compare the day when the peak is reached. The comparison is
made by identifying the day on which the maximum normalized
value of the newly infected case is registered over the period of
60 days for each country. Please refer to Appendix H for details on
how the actual number of cases are normalized and the peak is
calculated for each country. It is observed that model B2 exactly
matches KOR in terms of the day on which the peak is reached.
We also find that the highly contagious model A1 matches AUS
with a difference of 1 day and the small-world network-based
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Table 8
Calculation of the sum-of-square based difference corresponding to AUS.
Day 1 2 3 4 5 6 7 8 9 10 1 12 13 14
Al 0.00 0.02 0.02 0.04 0.06 0.09 0.13 0.18 0.26 0.35 0.45 0.56 0.68 0.78
A2 0.00 0.04 0.04 0.07 0.10 0.12 0.14 0.16 0.18 0.19 0.21 0.23 0.25 0.27
B1 0.09 0.30 0.28 0.43 0.53 0.61 0.63 0.68 0.70 0.71 0.71 0.72 0.75 0.78
B2 0.1 0.30 0.30 0.49 0.64 0.76 0.82 0.83 0.85 0.88 0.95 0.99 1.00 1.00
AUS 0.02 0.01 0.01 0.02 0.04 0.07 0.09 0.11 0.13 0.18 0.23 0.30 0.38 0.74
(A1-AUS) "2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.05 0.07 0.09 0.00
(A2-AUS) "2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.22
(B1-AUS) "2 0.00 0.09 0.07 0.17 0.23 0.29 0.29 0.32 0.32 0.28 0.23 0.18 0.14 0.00
(B2-AUS) "2 0.01 0.08 0.08 0.22 0.36 0.47 0.53 0.51 0.51 0.49 0.52 0.48 0.38 0.07
Note: All values are rounded to two decimal places.
approach B1 matches ESP and CHE with a difference of 1 and 3 ~ Table 9 ' ‘
days, respectively. In terms of predicting when the peak is reached, Similarity scores using the sum-of-square based difference.
the network-based approaches (model B1 and model B2) yield Model-Country Sum of Square of Normalized Similarity
better results for the given dataset. One limitation of matching Differences Difference Score
the peak is that while the peak of the trajectory of newly infected Al - AUS 1.72 0.03 97.13
cases for a scenario and country may match, the pattern of their A2 - AUS 25.07 0.42 58.21
growth and decline may be different. B1 - AUS 9.31 0.16 84.48
B2 - AUS 6.07 0.10 89.88
5.2.2. Comparison based on sum-of-square based difference :; i Egﬁ 2'52‘216 g'gg g;;z
To further compare between trajectories, we galculate the sum- B1 - KOR 11.64 019 80,59
of-squares-based difference between the normalized values corre- B2 - KOR 2.18 0.04 96.36
sponding to data points for 60 days for each of the 32 pairs, i.e., a Al - DEU 13.14 0.22 78.11
combination of the 4 model scenarios and 8 countries. Table 8 pro- A2 - DEU 5.68 0.09 90.53
vides a snapshot of the calculation of the difference between the B1 - DEU 11.74 0.20 80.43
normalized values corresponding to the 4 scenarios and AUS for B2 - DEU 24.60 0.41 59.00
the first 14 days. The detailed table with calculation for all coun- :; - iﬁg 114-?5 8-33 gg-gi
tries is shown in Appendix I. . B1 - IRN 11.86 020 80.23
In Table 8, the value 0.00 for the cell corresponding to the row B2 - IRN 19.65 0.33 67.24
(A1-AUS) ~2 and collumn 1 denotes the square of the difference A1 - ESP 8.60 014 85.67
between the normalized values of model A1 and AUS on day 1. Al- A2 - ESP 8.41 0.14 85.98
though not shown in Table 8, this calculation is repeated for AUS B1 - ESP 7.99 0.13 86.68
for 60 days. Similarly, it is repeated for the other 7 countries for 60 B2 - ESP 20.54 0.34 65.77
days as well. Finally, the sum of the differences for each scenario- Al - CHE 2.91 0.05 95.14
country pair is taken, and a similarity score is calculated to iden- Q]Z - 8;[: ;‘;io 8'(2)2 ;(3;-513(73
tify Fhe best ﬁt._l;Flhe sum—_of-square ofhdlfggfrfence is divided b.y tlhe B2 - CHE 1512 025 74.81
maximum possible sum, i.e., 60, as the difference at a particular Al - IND 19.10 032 68.16
cell can t.ake' a maximum value of 1 to cglculate the score. The A2 - IND 939 0.16 84.36
result which is a number between 0 and 1 is a measure of the dif- B1 - IND 24.55 0.41 59.08
ference. It is subtracted from 1 and multiplied by 100 to obtain a B2 - IND 21.09 0.35 64.85
percentage value to convert the result to a similarity score. Al -US 25.45 0.42 57.58
o ) A2 - US 5.56 0.09 90.73
Similarity Score={1— (Sum of square based difference/60)}x100 B1-US 28.57 0.48 52.39
. ) o B2 - US 29.18 0.49 51.36
In this way we obtain a similarity score for each model-country
pair and identify the model which fits a country best. Table 9 pro- ~ Note: All values are rounded to two decimal places.
vides a snapshot of the scores for the 8 countries corresponding t0  p3pe 10
each of the models. Correlation between the slope of curves for country-model pairs.
From Table 9 we find that the highly contagious equation-based Country Model Al Model A2 Model B1 Model B2
approach A1 matches AUS and model B2 matches KOR the best
with a score of 97.13 and 96.36, respectively. This measure using AUS 0.43 —0.08 0.08 0.15
m-of-square of difference, despite being simple to use, has its KOR 038 0.00 0.12 0-58
sum-ol-square -nce, desp & Simple | ' DEU ~0.06 025 0.16 ~0.14
limitations. It is not reliable as it can provide a high score even IRN 0.02 022 0.07 0.00
when the model’s output does not match the empirical data visu- ESP 0.05 0.23 0.19 -0.24
ally, as in the case of IND and US. For example, if we calculate the CHE 0.29 0.06 0.21 0.01
: : IND -021 -0.33 -0.19 -0.07
score for a model that predicts all newly infected cases from day Us 028 026 028 005

1 to day 60 as zero, the similarity score obtained is 85.85 for AUS
and 88.23 for KOR. Similarly, the trajectory of model A2 does not
match IND and US when inspected visually, but has a high similar-
ity score of 84.36 and 90.73, respectively.

5.2.3. Comparison based on correlation between slopes
To quantify the similarity between the plots we examine the
correlation between the corresponding slope of each curve. The

correlations between the slope of the curves of selected countries
and models are presented in Table 10.

It is observed from Table 10 that the value of correlation for the
country-model pairs is low and may not be suitable to identify the
best fit. If we take a cut-off of 0.5, only the (KOR, model B2) pair
is above the cut-off.



JID: EOR

S. Das, I. Bose and U.K. Sarkar

[m5G;January 29, 2023;16:10]

European Journal of Operational Research xxx (XXxx) Xxx

Table 11
Calculated values of the additional measures of similarity.
Measure Model/ Country AUS KOR DEU IRN ESP CHE IND us
PCM Al 4.15 5.35 7.44 9.73 5.25 3.82 23.22 23.23
A2 27.37 28.93 8.02 7.46 10.88 16.32 6.63 3.20
B1 6.25 8.35 5.71 9.20 412 3.04 20.39 18.49
B2 4.37 3.01 11.03 12.47 8.70 8.10 31.33 32.56
DF Al 0.38 0.67 0.87 0.83 0.77 0.66 0.98 1.00
A2 0.99 0.95 0.62 0.50 0.79 0.85 0.61 0.54
B1 0.82 0.90 0.76 0.66 0.68 0.61 1.00 0.95
B2 0.73 0.59 0.98 0.99 0.91 0.83 1.00 1.00
AREA Al 8.12 12.52 23.82 23.39 19.50 10.54 27.84 33.65
A2 31.62 33.82 14.20 11.77 16.82 23.06 21.05 14.93
B1 19.79 20.70 23.30 24.90 17.40 10.15 34.07 38.02
B2 12,55 7.53 35.40 30.72 31.58 26.01 30.56 37.13
CL Al 2.15 2.86 3.97 5.04 2.80 2.09 7.18 7.07
A2 4.97 5.15 3.48 2.64 4,03 3.81 3.13 2.33
B1 247 2.91 2.79 3.88 231 1.60 5.90 5.56
B2 3.13 1.95 6.61 7.96 5.11 4.84 9.78 9.97
DTW Al 8.13 1253 23.93 23.55 19.58 10.58 28.33 34.05
A2 32.02 34.24 14.49 12.02 17.16 23.44 21.14 14.94
B1 19.84 20.75 23.47 25.11 17.53 10.24 34.61 38.48
B2 12.61 7.71 35.58 30.94 31.72 26.11 31.11 37.60
5.2.4. Comparison based on additional measures Table 12
The measures discussed so far have their limitations and this Comparison between the scenarios to determine best fit for each measure.
leads us to search for additional similarity measures between Equation-based Network-based
curves. Jekel et al. (2019) have identified five such measures, PCM Measure (cut-off) Approach Approach
(partial curve mapping), area method, DF (discrete Fréchet) dis- Model Al A2 B1 B2
tance, CL (curve length), apd DTW‘(dynamlc time warping). These Peak (<= 3 days) AUS _ ESP, CHE KOR
measures use a combination of distance, area, and arc length to Correlation (> 0.5) _ _ _ KOR
measure the similarity between curves and can be used to identify PCM (<= 5) AUS us ESP, CHE KOR
the best fit. DF (<=0.6) AUS IRN, US - KOR
The PCM method calculates the similarity based on arc length Area (<= 10) AUS - - KOR
d th bet the short d1 Th CL (<= 2.5) AUS us ESP, CHE KOR
an e area between the shorter and longer curve. The area DTW (<= 10) AUS _ i KOR

method, on the other hand, finds the mismatch between curves
based on the area determined by constructing quadrilaterals be-
tween the curves. The DF method is another measure of similarity
based on a walking dog analogy. The CL method calculates devia-
tions between the corresponding values of points on both curves
that are compared. Similarly, the DTW method calculates the dis-
tance between each point of both the curves that are compared.
However, it determines the optimal path with the smallest cu-
mulative distance to measure the similarity between curves. Com-
pared to the similarity measures based on peak, sum-of-square-
based distance, and correlation between slopes discussed in the
previous section, the additional measures based on features of a
curve are likely to be more reliable. Appendix ] provides further
details about the additional measures. In each of these similarity
measures, a smaller value is considered better. We calculate the
value for each of the 5 measures for the 32 model-country pairs,
as shown in Table 11.

Table 11 tells us which scenario fits the country best for a
given measure. It is clear from the values that the highly conta-
gious equation-based model A1 fits AUS the best when PCM is
considered. The best fit between the model and the country can
be identified for each measure. It is found during the analysis that
not all values of the measures are acceptable for the comparison.
For example, in case of IND, although a simple visual inspection
reveals that none of the models match reality, Table 11 shows
moderately contagious model A2 as the best fit when DF is used
as the measure.

5.2.5. Best fit approach based on the measures
Table 12 summarizes the best fit between the trajectory of
newly infected cases corresponding to the 4 models and the 8

10

countries studied in this paper. The curves are compared in terms
of the similarity measures that are reliable, as discussed in the pre-
vious sections. The best fit is considered if the similarity measure
meets the cut-off.

It is observed that in terms of the similarity measures with
given cut-offs, the models considered under the network-based ap-
proach are better in predicting the pattern of newly infected cases
in KOR, ESP, and CHE. On the other hand, the models considered
under the equation-based approach are better in predicting the
infection for AUS, US, and IRN. A closer inspection reveals that
the network-based approach is more consistent in its performance
as model B2 matches KOR across all the measures. Similarly, the
small-world network-based approach B1 matches ESP and CHE for
measures using Peak, PCM, and CL, whereas models A1 and A2 un-
der the equation-based approach are less consistent in matching
countries. It shows that underlying contact network structure may
play an important role in the mechanism behind the spread of in-
fection. The findings are encouraging from an academic and prac-
tical point of view since it suggests that well-informed decisions
can be made in future crises by engaging appropriate modelling
approach depending on the specific context.

6. Implications and limitations of research
6.1. Academic implications
The study in this paper has several implications. As for aca-

demic implications, this study distinguishes itself by implement-
ing and comparing two contrasting epidemic approaches, using the
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top-down equation-based approach and the bottom-up network-
based approach. Most of the earlier studies have focused on ei-
ther of the two approaches. However, we believe in this study a
comparison between the two approaches better explains why the
network-based approach is needed. Second, while some earlier re-
searchers have used multi-country data, they have used top-down
approaches for analysis. This study demonstrates the application
of the network-based approach and compares the results with the
empirical data for 8 countries from different regions of the world.
Third, in this study we introduce the comparison of the trajectory
of curves based on eight different measures. ‘While literature per-
taining to material models have used the measures, PCM, DF, Area,
CL, and DTW for comparing between curves, they are new to the
literature on epidemic modelling. Finally, we introduce heterogene-
ity in the choice of networks, infection parameters, and individual-
level attributes, which are unique and have not been addressed in
earlier studies, to the best of our knowledge.

6.2. Practical implications

The findings of this paper have practical implications as well.
First, the proposed network-based approach can help policymak-
ers and health service providers identify the disease’s spread at
its initial stage and plan accordingly. Second, being a bottom-up
individual-based approach, it can be customized to identify indi-
viduals who are most vulnerable to contracting the disease and
can be used for the early detection of clusters of severe cases. It
can benefit authorities who can customize this approach to im-
pose localised restrictions. They can also use this approach to pri-
oritize who would be vaccinated first, not just based on age but
also based on the overall vulnerability of an individual to an infec-
tious disease. Finally, although this study has utilized the two most
relevant types of networks as underlying contact network struc-
tures, the proposed network-based simulation can also generate a
wide variety of network structures. We recommend that the prac-
titioner should be aware of the variation in underlying contact net-
work structure while considering the different model scenarios. Al-
though, we do not have sufficient information to suggest whether
a particular country has the same type of network structure as an-
other, the close match between the model scenarios B2 and KOR
is particularly encouraging. It is interesting to note that an ear-
lier study investigating the underlying contact network structure
in a population using sample from KOR had shown it to be indeed
scale-free (Kim et al., 2021). In future, if data of a more realistic
network structure is available, practitioners can use this approach
to create a network based on its properties to study the spread of
infections during an epidemic.

6.3. Limitations of proposed approach

The network-based approach proposed in this study also has
a set of limitations. First, scaling up the network-based approach
is expensive in terms of time and space. This study has executed
the proposed approach using limited processing capacity by divid-
ing the population into 10 clusters and simulating these clusters
separately. A state-of-the-art distributed simulation approach (S. J.
Taylor, 2019) can be used to address this limitation. Second, it uses
a network that has a semi-static nature. As a result, the analysis
period of this study is fixed at 60 days, within which the network
allows only deletion of nodes and links. Future research can in-
clude the option to add new individuals to the contact network
due to birth and emigration by adding nodes and links to the given
network at specific time intervals. Third, in this study we do not
consider vaccinated individuals since the study is focused on the
early period of Covid-19 when the possibility of vaccinated individ-
uals did not arise. However, the proposed network-based approach
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can be modified to incorporate immunity acquired through vacci-
nation by manipulating the value of the node level attribute IL;,
that determines the immunity of a node.

Since neither the equation- or the network-based approaches
are found to be superior for modelling all possible scenarios, an-
other direction for future researchers could be to create a hybrid
approach that switches between the equation- and network-based
approaches. The switching can be based on a specific country or an
available scenario to capture the advantages of both approaches.

7. Conclusion

A global catastrophe like Covid-19 necessitated the study of epi-
demics using operational research techniques. Researchers and pol-
icymakers are interested in knowing the mechanism behind the
transmission of an epidemic and investigating its relationship with
patterns of social interaction. It is important to apply the network-
based approach to anticipate the trajectory at the beginning of the
outbreak for a country. The network-based approach allows mod-
elling the heterogeneity amongst individuals and interaction pat-
terns not addressed by the equation-based approach. Unlike the
traditional well-mixed compartmental models, the network-based
approach does not assume the population to be homogenous even
within a compartment. In this paper, the individuals are not only
distinguished by their level of infection denoted by the concept of
viral load but also by their level of immunity and the upper limit
of the viral load that they can withstand. A complex yet realistic
relationship that is conceptualized while developing the proposed
approach helps to determine whether an individual infects others,
recovers, or is removed from the network. In future, the network-
based approach can be used to model policy interventions, such as
lockdown, social distancing, and vaccination, by manipulating the
node and link-level parameters of the network.

Operational research is called the ’'science of better’ (Mingers,
2007; Nikolopoulos, 2021). Consequently, researchers working on
epidemic models use operational research techniques to search for
a better model. However, a single model may not be relevant in
all contexts. Some papers have reported accurate forecasts em-
ploying several time-series, epidemiological, machine learning, and
deep learning methods (Nikolopoulos et al., 2021; Petropoulos &
Makridakis, 2020). A closer inspection reveals that models based
on macro-level analysis are not directly comparable and may be
complementary to methods based on micro-level analysis. Macro-
level analyses are simpler, faster, and suitable for specific practical
use like what-if scenarios.

In contrast, micro-level analyses are far more complex and
slower to execute but more relevant in accommodating individ-
ual differences. Researchers find methods with accurate predictions
useful. Some may additionally need a flexible model to study an
epidemic’s emerging behaviour, which can be applied to various
situations and yet can capture micro-level details realistically. This
paper aims not to perform an exhaustive numerical comparison of
these methods but to provide a viable alternative of a flexible and
realistic approach to model epidemics, that the researchers may
prefer under some situations. It highlights that researchers may
prefer one approach over another depending on the context. Op-
erational research, with its bouquet of techniques, can lead the
way in epidemic modelling, where different approaches can co-
exist and can be a part of a decision support toolkit for epidemic
modelling.
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