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a b s t r a c t 

The spread of epidemics is a common societal problem across the world. Can operational research be 

used to predict such outbreaks? While equation-based approaches are used to model the trajectory of 

epidemics, can a network-based approach also be used? This paper presents an innovative application 

of epidemic modelling through the design of both approaches and compares between the two. The 

network-based approach proposed in this paper allows implementing heterogeneity at the level of in- 

dividuals and incorporates flexibility in the variety of situations the model can be applied to. In contrast 

to the equation-based approach, the network-based approach can address the role of individual differ- 

ences, network properties, and patterns of social contacts responsible for the spread of epidemics but 

are much more complex to implement. In this paper, we simulated the spread of infection at the be- 

ginning of Covid-19 (Coronavirus disease 2019) using both approaches. The results are showcased using 

empirical data for eight countries. Sophisticated measures, including partial curve mapping, are used to 

compare the simulated results with the actual number of infections. We find that the plots generated by 

the network-based approach match the empirical data better than the equation-based approach. While 

both approaches can be used to predict the spread of infections, we conclusively show that the proposed 

network-based approach is better suited with its ability to model the spread of epidemics at the level of 

an individual. Hence, this can be a model of choice for epidemiologists who are interested to model the 

spread of an epidemic. 

© 2023 Elsevier B.V. All rights reserved. 
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. Introduction 

The outbreak of infectious diseases like SARS, H1N1, and Ebola 

ave been frequent occurrences in recent years. What has been un- 

ommon till the outbreak of Covid-19 (Coronavirus disease 2019) 

s the scale and magnitude of its spread. Covid-19, which emerged 

rst in December 2019 in Wuhan, China, has affected millions and 

as caused damage to life and livelihood worldwide. Understand- 

ng the spread of infection in a complex system such as society 

s difficult and accurate forecasting of an epidemic is particularly 

hallenging ( Hofman et al., 2017 ; Jasny & Stone, 2017 ). It is impor-

ant to model the early spread of an epidemic since such a model 

nables us to understand the scale, and is necessary for estimating 

he facilities required to control the spread of disease in the future 

 Lotfi et al., 2022 ; J. W. Taylor & Taylor, 2023 ). In this context, it is 

lso noted that the growth pattern of this infection varied across 

he countries ( Wilinski & Szwarc, 2021 ). As shown in Fig. 1 , during

ecember 2019 to February 2020, Covid-19 began as an epidemic 
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n China and started spreading to other parts of the world through 

urope. 

Given the catastrophic impact of Covid-19 and the relevance 

f operational research to address global health issues using its 

roblem-solving techniques ( Silal, 2021 ), it is logical to ask how 

e can use the innovative applications of operational research to 

ght the spread of such an epidemic? In this paper, our first re- 

earch question is: 

RQ1: How can we realistically model the spread of the infection at 

the onset of an epidemic? 

There are existing approaches to study the spread of infectious 

iseases. However, these approaches either focus on a specific re- 

ion ( Renardy et al., 2020 ) or a country ( Alrasheed et al., 2020 )

nd are limited by their assumptions. For example, well-known 

pidemic models often make assumptions such as fixed transmis- 

ion rate of infection which do not hold in the current context (J. T. 

hang & Kaplan, 2023 ). There are studies that analyse the spread of 

pidemics across multiple countries ( Appadu et al., 2021 ) but they 

rimarily rely on techniques that forecast macro-level outcomes 

ather than micro-level interactions. This creates a research gap 

nd provides a scope for creating a bottom-up approach that can 
outbreak of epidemics using a network-based approach, European 

1 

https://doi.org/10.1016/j.ejor.2023.01.021
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
mailto:indranil_bose@yahoo.com
https://doi.org/10.1016/j.ejor.2023.01.021
https://doi.org/10.1016/j.ejor.2023.01.021


S. Das, I. Bose and U.K. Sarkar European Journal of Operational Research xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: EOR [m5G; January 29, 2023;16:10 ] 

Fig. 1. Spread of Covid-19 at the beginning of the epidemic across the globe. 
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e applied to study macro-level outcomes based on micro-level in- 

eractions and which can be tested for multiple scenarios through 

imulations ( Gupta et al., 2021 ; Ma & Nakamori, 2005 ). We fulfil

he gap in this paper by first implementing a top-down equation- 

ased approach to model the spread of an epidemic using homoge- 

ous parameters values at an aggregate population level. Then we 

ropose a bottom-up network-based approach using heterogeneous 

alues of parameters at an individual level. The parameters used to 

escribe the contagiousness of the epidemic and the mechanism of 

ts spread are discussed in detail. This leads us to our next research 

uestion: 

RQ2: What would be the impact of varying the parameters of in- 

terest in the equation- and network-based approaches on the 

predicted trajectory of the epidemic? 

In modelling the spread of epidemics, multiple input parame- 

ers are used. The choice of the value of these parameters, such 

s the size of the population, the fraction of infected individuals 

t the beginning, basic reproductive number to describe the con- 

agiousness of the epidemic, and the type of underlying contact 

etwork structure, play a vital role in determining its spread. In 

his regard, we performed simulations using the equation- and the 

etwork-based approaches and studied the effect of varying the 

arameters of interest. We observed the changes in the predicted 

rajectory of number of infections in response to the variation of 

he values of parameters for each approach. In our third research 

uestion we ask: 

RQ3: How can we determine the best fit model based on a com- 

parison between the trajectory of the spread of infections? 

To determine the best fit model, we compared the results 

f the equation- and network-based approaches using empirical 

ata from different countries. For this purpose, we first collected 

ata about the trajectory of newly infected cases for eight coun- 

ries. These countries are compared using relevant country-level 

ttributes. We formulated a dissimilarity index to assess the sim- 

larities between the countries. We used this knowledge to deter- 

ine if the Covid-19 infections of countries which are similar or 

issimilar in terms of their dissimilarity index followed the same 

attern for their spread of the epidemic. These countries are fur- 

her grouped into four clusters based on the visual similarity be- 

ween their trajectory of newly infected cases. To determine the 

xtent of this visual similarity, we used quantitative measures to 

ompare the trajectory of newly infected cases under various sce- 

arios. We compared the similarity between the patterns of the 

urves using partial curve mapping ( Jekel et al., 2019 ). A model 

s considered best fit if it matched the empirical data consistently 

ased on the proposed measures. We found that the trajectories 

enerated by the network-based approach matched the empirical 

ata more closely than the equation-based approach. 

This paper contributes to the development and implementation 

f a novel network-based approach and compares its performance 
2 
ith that of the equation-based approach under different scenar- 

os. We contribute by modelling heterogeneity at the level of an 

ndividual in the proposed network-based approach. Second, we 

ncorporate flexibility by running simulations with different con- 

act network structures, different values of parameters describing 

he infection, and individual attributes. Third, we simulate differ- 

nt scenarios and compare the results with empirical data for eight 

ountries. Apart from contributing to the development of a novel 

etwork-based approach, the findings from our research help us 

dentify the spread of infections at the initial stage of an epidemic. 

The rest of this paper is structured as follows. Section 2 de- 

cribes the literature review. The following methodology section 

escribes the assumptions and the techniques of simulation for 

oth the equation- and the network-based approaches. The fourth 

ection is dedicated to the description of data used in imple- 

enting the simulations using various parameters. Section 5 re- 

orts the results and compares them with empirical data. Section 

 discusses the implications and limitations of this study. Finally, 

ection 7 summarizes the contribution of this study and concludes 

he paper. 

. Literature review 

Epidemic models are widely used across multiple disciplines 

 Adly et al., 2020 ; Bozzani et al., 2021 ; Camacho et al., 2020 ), but

re less explored in operational research ( Pazoki & Samarghandi, 

021 ; Yaesoubi & Cohen, 2011 ). Data-driven research using tech- 

iques of operational research is relevant for the study of the out- 

reak of Covid-19, and as such operational researchers are now fo- 

ussing on ways to fight the epidemic ( Choi, 2021 ; Farahani et al., 

023 ). Existing epidemic models have been used to forecast ag- 

regate outcomes like the number of infections ( Nikolopoulos et 

l., 2021 ). The methods employed by the existing models can be 

rouped under mathematical, computational, and machine learn- 

ng approaches. Mathematical models that are easier to understand 

nd require low computational power are dominant ( Duan et al., 

015 ), whereas advanced machine learning models have been gain- 

ng popularity in recent years. 

Mathematical models are the earliest approaches used in epi- 

emic modelling. They are well-established and have been used 

or modelling the spread of Covid-19, and many other infectious 

iseases ( Brauer et al., 2019 ; Capasso, 2008 ; Grave et al., 2021 ;

artcheva, 2015 ). Forecasting methods such as time-series, ARIMA, 

xponential smoothing have been used as well and ARIMA has 

ften outperformed the others ( Petropoulos & Makridakis, 2020 ). 

owever, forecasting the spread of infection in a society can 

e challenging without observing the system’s evolution. Under 

athematical models, the most commonly used method is or- 

inary differential equations (ODEs). Such models have been in 

reat demand since the outbreak of Covid-19 ( Grave et al., 2021 ; 

artcheva, 2015 ). However, such models are limited by their con- 

ideration of variations over time and not space and homogenous 

reatment of individuals. To address the variation between individ- 

als, these models divide the population into subgroups based on 

he individual’s age, infectivity, and occupation ( Duan et al., 2015 ) 

ut are limited in their capability to represent the spread of infec- 

ion in detail. Finally, these models are also highly dependant on 

odel assumptions and fitting techniques ( Alahmadi et al., 2020 ; 

ytla et al., 2021 ) and so they do not reveal the dynamic depen-

ency of parameters on the epidemic ( Masum et al., 2022 ). For ex- 

mple, these models assume a fixed rate of transmission of an in- 

ection which is seldom the case in reality ( Chang & Kaplan, 2023 ).

hus, although equation-based approaches are the natural choice 

f researchers to capture macro-level dynamics of an epidemic at a 

ow computational cost, these models may not be the best choice 

o understand how the infection spreads. Machine learning mod- 
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ls are gaining popularity in recent years. A study ( Ribeiro et al., 

020 ), that focussed on comparing the performance of a mathe- 

atical model based on ARIMA with a machine learning model 

ased on support vector machines, found the machine learning 

ounterpart to have higher accuracy ( Masum et al., 2022 ). Extant 

tudies have demonstrated the superiority of deep learning tech- 

iques such as recurrent neural networks in accurately predicting 

he spread of infection. However, they do not reveal the transmis- 

ion mechanism of an infection ( Alahmadi et al., 2020 ). 

We may look at another set of methods that may be better in 

xploring the dynamics behind the spread of infection. Computa- 

ional models that explore the spread of infection at a micro-level 

re increasingly used to study epidemic outbreaks ( Duan et al., 

015 ). Such models like the metapopulation model provide a de- 

ailed representation of realities ( Duan et al., 2015 ). This model has 

he advantage of describing the spread of infection spatially across 

egions. However, it assumes well-mixed, homogenous subpopula- 

ions and is limited in explaining the spread of infection. On the 

ther hand, agent-based models are a promising and well-known 

ottom-up approach under computational models that model each 

ndividual or agent in a population and their interactions defined 

y some rules. They can incorporate the heterogeneity at the level 

f individuals and their interactions through micro-level analysis. 

hese models delineate the stochastic nature of the spread of in- 

ection ( Duan et al., 2015 ). However, they are much more complex 

o understand and implement. Under the computational approach, 

here exists another type known as network-based approaches, 

hich can handle heterogeneity at the individual level and can 

odel the spread of infection in a population ( Duan et al., 2015 ;

iss et al., 2017 ). Compared to mathematical models, a network- 

ased approach can represent the heterogeneous environment in 

hich an infection spreads by controlling the parameters of nodes 

nd links. Using simulations, these models can explore how the in- 

ection spreads and how the network evolves over time. However, 

ost of them consider unweighted networks, thereby losing sight 

f the interaction patterns ( Duan et al., 2015 ). Therefore, the classi- 

cation of extant studies based on a single dimension (i.e., method 

f analysis) is not straightforward. Some recent studies ( Du et al., 

021 ; Hunter et al., 2020 ; Miranda et al., 2021 ) have combined and

ontrasted multiple methods by proposing hybrid models. 

Epidemic models can also be further classified based on 

hether they have used commercial software ( Aggarwal et al., 

020 ), custom-built simulation tools ( Appadu et al., 2021 ), or 

tandardized techniques ( Alenezi et al., 2021 ) for implementation. 

owever, irrespective of their choice of software, they generally 

ack a flexible model that can be used to model various scenarios 

y selecting different underlying contact network structures. In this 

egard, a hybrid simulation modelling approach ( Brailsford et al., 

019 ) may be useful. The underlying epidemic model that is used 

n most of these studies divides the population into compartments. 

he standard compartmental model ( Brauer et al., 2019 ; Capasso, 

008 ; Kermack & McKendrick, 1927 ; Martcheva, 2015 ; Treibert, 

021 ) i.e., Susceptible-Infected-Removed (SIR) assumes that indi- 

iduals in the population under study can be categorized into one 

f the compartments S, I, or R. There are many variations to the 

tandard compartmental model based on the number and descrip- 

ion of compartments. However, all rely on the premise of dividing 

he population into compartments and studying the transitions be- 

ween them. The models used to study epidemics can also be clas- 

ified into deterministic models ( Alenezi et al., 2021 ; Shapiro et al., 

021 ) and stochastic models ( Yaesoubi & Cohen, 2011 ; Zhang et al.,

020 ). Deterministic models such as those based on ODEs are top- 

own and primarily focused on macro-level analysis. They are use- 

ul for predicting aggregate outcomes but do not provide insights 

bout how the infection is transmitted from one individual to an- 

ther. Stochastic approaches, such as the network-based approach, 
3 
re bottom-up. They are less common but are better suited to re- 

listically capture the transmission of an infectious disease ( Zhang 

t al., 2020 ). The literature on epidemic models is vast ( Lu & Bor-

onovo, 2023 ) with high-quality papers getting published on a va- 

iety of research problems associated with the Covid-19 pandemic 

 Farahani et al., 2023 ). Our study aims to address the inherent gaps

n the literature by developing a network-based approach that ef- 

ectively captures heterogeneity at the level of individuals and can 

e broadly applied across various situations. Table 1 provides a 

limpse of existing methods, some key references, the key con- 

ributions, gaps in existing studies, and explains how the current 

esearch aims to fill those gaps. 

. Methodology 

In this section we discuss a standard SIER compartmental 

odel for studying the spread of epidemics using an equation- 

ased approach. In our study, we select SEIR over SIR because there 

xists an incubation period for Covid-19. Our choice of SEIR over 

IR is further strengthened by the results of a recent study ( Alenezi 

t al., 2021 ) that showed SEIR is better suited than SIR to predict

nfections for Covid-19. This discussion is followed up by the de- 

ign and implementation of the proposed network-based approach. 

.1. Studying the spread of the epidemic using the equation-based 

pproach 

Although there can be many variations of the equation-based 

pproach ( Basnarkov, 2021 ; Gwizdałła, 2020 ), we study a represen- 

ation that retains the properties of an ODE and can be compared 

ith the network-based approach. The equation-based approach is 

efined below: 

On day t , S(t) , E(t) , I(t) , and R(t) denote the number of people

n susceptible, exposed, infected and recovered states respectively. 

hose in state R are infected earlier and are assumed to have either 

ecovered or died. If N denotes the size of the population, then on 

ny given day t , 

 = S(t) + E(t) + I(t) + R (t) (1) 

The rate at which S transitions to E by coming in contact with 

nfected individuals is denoted as β , the rate at which E transi- 

ions to I after spending an incubation period is denoted as δ, and 

he rate at which I transitions to R depending on the number of 

ays an individual can spread the disease before either recovery or 

eath is denoted as γ . The following relationships can be used to 

efine δ and γ . 

= 

1 

incubation period 
(2) 

= 

1 

number of days an infected person can spread the disease 

(3) 

The basic reproductive number R 0 that denotes the total num- 

er of individuals an infected person infects can be defined as: 

 o = β/γ (4) 

The value of β , can be derived from R 0 and γ . The SEIR model 

s expressed by the following ODEs (Please refer to Appendix A for 

urther details): 

 S/d t = − β ∗ I ∗ S/N (5) 

 E/d t = β ∗ I ∗ S/N − δ ∗ E (6) 



S. Das, I. Bose and U.K. Sarkar European Journal of Operational Research xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: EOR [m5G; January 29, 2023;16:10 ] 

Table 1 

A glimpse of extant literature on epidemic models. 

Methods of 

Analysis 

Key Reference Key Contribution Gap Contribution of Current Research 

Forecasting ( Ding et al., 2021 ) Provides long-term prediction and 

analysis of epidemic dynamics 

Study is specific to 

South Africa 

It models the spread of infection 

by considering variations over 

time and space for micro-level 

interactions. It incorporates 

heterogeneity at the level of 

network, infection, and 

individuals. It adds flexibility in 

the choice of input parameters, 

including the selection of the 

underlying network structure. It 

allows a comparison of the 

simulated outcome of model 

scenarios with empirical data 

for multiple countries using 

sophisticated measures in an 

uncertain situation like the 

beginning of an epidemic when 

limited information is available. 

( Appadu et al., 2021 ) Conducts multi-country analysis 

using forecasting methods 

Does not focus on 

micro-level interactions 

ODEs ( Gebremeskel et al., 

2021 ) 

Studies a compartmental epidemic 

model with sensitivity analysis 

Study is specific to 

Ethiopia 

Agent-based ( Ajelli et al., 2010 ) Compares agent-based and 

metapopulation stochastic model for 

a pandemic event in Italy 

Difficulty in gathering 

datasets for most 

regions of the world 

Proposes agent-based modelling 

using computational simulation of 

the pandemic in Australia 

Does not explicitly 

model the underlying 

contact network 

Network-based ( Alrasheed et al., 2020 ) Provides a contact network-based 

approach that captures realistic 

social dynamics 

Model is specific to 

Saudi Arabia 

( Renardy et al., 2020 ) Proposes a network based on 

synthetic population and models of 

disease progression 

The underlying contact 

network is static 

Table 2 

Relationships defining the membership of a node to a compartment. 

Compartment Description 

Susceptible, S No in fection i.e., V L i = 0 

E xposed, E Not in fectious i.e., V L i > 0 but V L i < = I L i 
I n fected, I I n fect others i.e., V L i > I L i and V L i ≤ VUL i 
Remov ed, R V L i > V U L i or a f ter remaining in fectious f or d R consecuti v e days 

Note: The value of V L i , I L i and VUL i is normalized between 0 and 1. 

Table 3 

Differences between the equation-based approach and the network-based approach. 

Characteristics Equation-based Network-based 

Complexity Simple Complex 

Availability of dynamic model Common Rare 

Execution time per run ∗

( N = 10,000) 

Fast 

(Few seconds) 

Slow 

(Few minutes to 

several hours) 

Application Homogenous 

population 

Heterogenous 

population 

Network structure Not explicit Can support any type 

Individual level attributes Not applicable Can support any 

attribute 

Nature of output Deterministic Stochastic 

Number of inputs Few Many 

Number of test-cases Relatively smaller Relatively larger 

Note: ∗ The execution time is dependant on the processing capability of the plat- 

form where the model is executed. 
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 I/d t = δ ∗ E − γ ∗ I (7) 

 R/d t = γ ∗ I (8) 

.2. Simulation of the equation-based approach 

To simulate the equation-based approach described in the 

revious section we choose a variety of parameters. The output 

s sensitive to the choice of input parameters. The equation-based 

pproach accepts the size of the population N, the number of 

nfected I ( 0 ) and exposed E ( 0 ) at the beginning, incubation period

/ δ, number of days an infected person can spread the disease 

 / γ and the basic reproductive number R 0 . The equation-based 

pproach is top-down and assumes individuals in a population 

re homogenous and interactions are implicit ( Edoh & Maccarthy, 

018 ). In general, ODEs are used to model the spread of epidemics 
4 
n the equation-based approach, and the results are deterministic. 

he equation-based approach is simple to use but have its limita- 

ions. It is sensitive to the choice of parameters determining the 

robability of infection and the heterogeneity of the population. 

xcept for few studies ( Gwizdałła, 2020 ; Miranda et al., 2021 ), this

pproach fails to address any difference arising from the under- 

ying contact structure. In this study we compare two different 

odels that use separate values of R 0 under the equation-based 

pproach and have the same initial conditions. 

.3. Studying the spread of the epidemic using the network-based 

pproach 

The spread of an epidemic in a networked environment is 

hown in Fig. 2 . This figure illustrates a simple network with nine 

ndividuals represented by the nodes and connected by the links. 

n day 1, node 1 represents an infectious individual, and its two 

eighbouring nodes 2 and 3 that are exposed. The rest of the in- 

ividuals in the network, denoted as nodes 4 to 9, who are not 

n direct contact with the infectious node, are susceptible to infec- 

ions in future. On day 2, one of the exposed neighbours, i.e., node 

 becomes infectious and its neighbouring node 4 is now exposed. 

ith the progress of time, the disease spreads through the net- 

ork. An infected individual either dies or recovers and becomes 

isconnected from the network like node 1 on day 3. 

The following paragraphs elaborate how the transmission of the 

pidemic is modelled realistically in the network-based approach. 

he process consists of describing the model assumptions, defin- 

ng the model parameters, creating the contact network, configur- 

ng the parameters, and implementing the logic for updating the 

etwork. Although the network-based approach is similar to the 

omogenous compartmental models, it considers an individual to 

e different from others in their ability to withstand the virus. It is 

ssumed that this variation arises from the difference in the level 

f immunity and exposure to the virus. The spread of infection in 

 connected network environment is described at the level of the 

etwork, individual nodes, and links. 

The network level parameters are taken as inputs from the user 

t the beginning of the simulation. These parameters include the 

umber of nodes (n ) , the type of network (T ) , days to gain recov-

ry ( d R ) , load reduction factor ( l R ) , and the fraction of nodes that

re considered infected ( f ) . The parameters may include network 

haracteristics such as degree distribution and the probability of 

ink formation depending on the type of network. The attributes 

f an individual i, in the network are represented by node level 
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Fig. 2. Transmission of infections during an epidemic on a network. 
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(

arameters. These parameters correspond to viral load ( V L i ) , im- 

unity level ( I L i ) , upper limit of viral load ( V U L i , ) and days in-

ected ( d i ) . A link represents the contact between two individuals 

 and j. The characteristics of the link is captured by the link level 

arameters. In this model, weigh t i, j is the only link level param- 

ter. The value of weigh t i, j is set between 0 and 1 at the time of

etwork configuration and is directly proportional to the probabil- 

ty of transmission of infection between the connecting nodes. The 

eigh t i, j is a normalized value based on the nature of contact be- 

ween the connecting nodes. Appendix B provides further details 

bout the assumptions of the network-based approach. The mem- 

ership of an individual node to one of the four compartments is 

ased on the relationships summarized in the following table. 

It must be noted that in the proposed approach, an individual 

etting sick may get re-infected even after recovery depending on 

he value of node level attributes and their relationship. 

.4. Simulation of the network-based approach 

In this paper, the network-based approach is simulated using 

ynthetic contact networks. The proposed model is stochastic. The 

nitial conditions set at the beginning of the simulation play an 

mportant role in determining the spread of the epidemic. The 

etwork-level parameters are set to values that are taken as inputs 

rom the user. The link-level parameters are randomly assigned 

ased on an algorithm following a uniform distribution within a 

re-defined range. A combination of user input and algorithm- 

ased assignment is used to set the initial values of the node 

evel parameters. In case of the node level parameters, a minimum 

hreshold value of immunity, mi n IL and the upper limit of viral load 

i n V UL , are taken as user inputs. The individual values of V L i , I L i 
nd VUL i are randomly assigned to each node by the algorithm fol- 

owing a uniform distribution. In this study, we compare between 

wo different models under the network-based approach by vary- 

ng only the contact network structure and keeping the remaining 

nput parameters unchanged. The simulation runs in a loop such 

hat at each iteration, the logic to update the network is executed 

nce. In the first stage, the algorithm creates the underlying con- 

act network structure and configures its properties as specified by 

he user. The algorithm iterates over each node and link to set the 

ttributes at this stage. The second stage starts by accepting the 

uration to simulate the spread of disease as an input from the 

ser. The logic for updating the network (Please refer to Appendix 

 for details) in order to simulate the spread of the epidemic exe- 

utes within a loop. The user can simulate the spread over succes- 

ive periods to observe how the network evolves with time. 

.5. Difference between the two approaches 

To conclude the discussion on methodology, we present a sum- 

ary of the differences between the two approaches used in this 

tudy. 

The comparison between the two approaches reveals that the 

hoice of the approach depends on multiple factors. Both ap- 

roaches can be used to model the spread of an epidemic. The 
5 
quation-based approach works on a macro level and is simpler, 

aster, and easier to implement. On the other hand, the network- 

ased approach works at an individual level and is preferable for 

tudying a heterogeneous population. In modelling the spread of 

n epidemic, the nature of the contact network plays an impor- 

ant role, and this can be investigated using the network-based ap- 

roach. 

. Numerical experimentation 

.1. Data consolidation and pre-processing 

In the proposed network-based approach the network struc- 

ure can be generated using synthetic generators or by accept- 

ng inputs to define any specific network structure from the user. 

here are several software packages available for network gen- 

ration, analysis and visualization ( Camacho et al., 2020 ). How- 

ver, the choice of the programming tool based on suitable cri- 

eria ( Fumagalli et al., 2019 ) is important to build the simulation 

odel. In this study, the Python programming language is used 

o create, simulate, and analyse the network-based and equation- 

ased approaches. To create and manipulate networks we used 

he NetworkX package ( Hagberg et al., 2008 ). This package allows 

he creation of a network from scratch as well as by using syn- 

hetic generators. The synthetic generators are library functions de- 

ned under the package that accepts predefined inputs and returns 

etwork structure based on those inputs. The integrate library 

nder scipy.integrate ( SciPy Documentation: Scipy.Integrate.Odeint , 

020 ) is used for defining and solving equation-based approaches 

n Python. Similarly, other libraries in Python are used for fea- 

ure selection and for calculating additional measures to compare 

he similarity between curves. The code used for modelling and 

nalysis is written and executed on the Google Colaboratory cloud 

ervers ( Google, 2018 , 2021 ). Appendix D provides details about 

he choice of software, hardware and synthetic generators that are 

sed in implementing the simulations. 

The initial value of the parameters used in the network-based 

pproach can also be set using default parameters or can be taken 

s user input. Similarly, to run the simulation using the equation- 

ased approach, the initial values of the parameters need to be set. 

he implementation of the network-based approach requires data 

or network generation and the values of various parameters. We 

earched open-access public datasets on Covid-19, and the dataset 

sed by Appel et al., (2020) is found to be suitable for validation 

f the two approaches. This dataset shows the number of individ- 

als infected by Covid-19 for various countries across the world. 

t also contains country-wise data on development index, demo- 

raphics, health conditions, hospital facilities, etc. We have denoted 

he date on which the number of newly infected cases in a country 

eached 20 at the beginning of the spread of Covid-19. The choice 

f 8 different countries is made from different regions of the world. 

lease refer to Appendix E for details on the choice of these coun- 

ries. The daily number of newly infected cases is considered for 

0 days starting from the beginning of the epidemic for Australia 

AUS), South Korea (KOR), Germany (DEU), Iran (IRN), Spain (ESP), 
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Fig. 3. Similarity in newly infected cases of Covid-19 for different countries. 
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witzerland (CHE), India (IND) and United States (US). Although 

here exist studies ( Wilinski & Szwarc, 2021 ) with a longer du- 

ation of analysis, we have chosen 60 days for this study as we 

re interested in predicting the spread of newly infected cases at 

he beginning of an epidemic. The choice is consistent with ear- 

ier studies ( Appadu et al., 2021 ) on short, medium, and long-term 

redictions of an infectious disease. The choice of 60 days is also 

mportant as the contact network underlying the population may 

hange beyond this time. We calculated a moving average of the 

ata with an interval of 3 days to remove anomalies due to miss- 

ng values and human errors. The data is then normalized within 

 range from 0 to 1 to compare the patterns in the outbreak tra- 

ectories. Based on similarity in patterns we divided the countries 

nto four groups, as shown in Fig. 3 . 

.2. Similarity between countries in terms of country level attributes 

We calculated a dissimilarity index to compare between coun- 

ries. Using extant literature ( Atalan, 2020 ; Kadi & Khelfaoui, 2020 ; 

ádori et al., 2020 ) we identified various attributes that are consid- 

red responsible for the spread of Covid-19. The relevant country- 

evel attributes included size of population, density of population, 

edian age of population, gross domestic product per capita, car- 

iovascular death rate, prevalence of diabetes, number of hospital 

eds per thousand people, life expectancy, human development in- 

ex, and average stringency index. To decide about the attributes 

or calculating the dissimilarity index, we implemented a feature 

election process. In this process, we computed the correlation be- 

ween all the attributes and removed correlated ones based on 

 threshold correlation value. The process is repeated for differ- 

nt threshold values. At a threshold of 0.65 representing moder- 

te correlation, we found that all attributes other than the size of 

he population and stringency index were dropped. The stringency 

ndex is a composite measure of a government’s response at the 

ountry level to control the spread of Covid-19 with a value from 

 to 100 ( Hale et al., 2021 ). Please refer to Appendix F for further

etails on the calculation of the dissimilarity index. 
6 
A lower value of this index depicts greater similarity between 

ountries. According to the calculated value of this index, AUS 

s most similar to DEU and CHE, with values 0.06 and 0.08, 

espectively. However, their trajectories for newly infected cases of 

ovid-19 shown in Fig. 3 does not match. On a similar note, DEU 

s most similar to CHE and KOR, with the dissimilarity index value 

f 0.13 and 0.15 respectively, but their trajectories do not match. 

hus, the country-level attributes such as the size of the popula- 

ion and stringency index can be used to group countries together 

lthough the pattern of the spread of newly infected cases remains 

issimilar. 

.3. Data for simulations of the equation-based approach 

The input parameters in the case of the equation- and the 

etwork-based approaches are not the same. This poses a challenge 

n selecting the input parameters for the simulation. We selected 

he same values during the simulation of both approaches for the 

ommon input parameters. In contrast, the values of the remaining 

arameters are selected based on earlier studies. Previous studies 

 Burda, 2020 ; Alenezi et al., 2021 ) have shown that the value of R 0 
lays an interesting role in the spread of an epidemic. In this study, 

e varied the value of R 0 as mentioned in Section 3.2 to generate 

wo scenarios under the equation-based approach and observed 

he outcomes. These two scenarios corresponded to the value of 

 0 = 15 and 2.5 respectively. The value of R 0 is varied because ear- 

ier studies ( Burda, 2020 ; Renardy et al., 2020 ) on Covid-19 have

sed values around 2.5. However, Covid-19 has some strains that 

re highly infectious and so a value of 15 is more appropriate to 

odel the spread of highly infectious disease like measles (S. L. 

hang et al., 2020 ). Since the equation-based approach is deter- 

inistic, the simulation is executed once for each scenario with 

he choice of initial parameters as shown in Table 4 . To begin 

he simulation, we entered the population size N of 10,0 0 0, the 

umber of initial infections I(0) as 20 and number of exposed ini- 

ially, E(0) as 400. The value of the remaining parameters for the 

quation-based approach is selected as shown in Table 4 . 



S. Das, I. Bose and U.K. Sarkar European Journal of Operational Research xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: EOR [m5G; January 29, 2023;16:10 ] 

Table 4 

The parameters used for simulation of the equation-based approach. 

Parameter Value References 

Incubation period, 1/ δ 5 ( Burda, 2020 ; Renardy et al., 2020 ) 

Number of days an 

infected person can spread 

the disease, 1 / γ

10 ( Burda, 2020 ) 

Basic reproductive 

number, R 0 

15, 2.5 (Chang, Piraveenan, et al., 2020; 

Burda, 2020 ), 

Table 5 

Choice of initial parameters of the two models using the equation-based approach. 

Highly Contagious Model A1 Moderately Contagious Model A2 

N = S(t) + E(t) + I(t) + R (t) = 

10,000 

δ = 1 / 5 

1 / γ = 10 

R 0 = 15 

β = R 0 
∗ γ = 1.5 

S0, E0, I0, R0 = N-420, 400, 20, 

0 

N = S(t) + E(t) + I(t) + R (t) = 10,000 

δ = 1 / 5 

1 / γ = 10 

R 0 = 2.5 

β = R 0 
∗ γ = 0.25 

S0, E0, I0, R0 = N-420, 400, 20, 0 
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Table 5 shows a comparison between the two model scenar- 

os. In summary, model scenarios A1 and A2 are equation-based 

pproaches that have the same choice of initial parameters except 

he value of the parameter of interest R 0 . 

.4. Data for simulations of the network-based approach 

To simulate the spread of Covid-19 at the country level, we as- 

umed there are multiple clusters of a population where the dis- 

ase spreads. In this study, we consider 10 such clusters with a 

ize of 10 0 0 where the infection begins. Earlier studies have used 

imilar initial sizes of clusters ( Basnarkov, 2021 ; Kim et al., 2021 ).

he total size of the population is 10,0 0 0. It is kept the same at

he beginning of simulations for each scenario under the equation- 

nd network-based approaches to prevent the size of the network 

 Gwizdałła, 2020 ) from affecting the result. It is also assumed that 

he number of infected individuals in each cluster at the beginning 

f the simulation is 2. It corresponded to our choice of 20 newly 

nfected cases as the beginning of the spread of Covid-19. In ad- 

ition, the clusters are assumed to be in different locations of a 

ountry, and separated from each other. Thus, each cluster is rep- 

esented by a separate network, and it is assumed that the con- 

act networks across the different clusters are of the same type. 

he simulation is repeated 10 times with the same initial condi- 

ions to mimic the spread of the disease. The nature of the un- 

erlying contact network in a country is not known and so we 

imulated two distinct types of contact network structure. It con- 

idered them as two different scenarios under the network-based 

pproach. The choice of contact network types used in the simu- 

ation is consistent with earlier studies ( Dong et al., 2019 ; Edoh &

accarthy, 2018 ; Gwizdałła, 2020 ; Jorritsma et al., 2020 ; Kim et al.,

021 ). The choice of the values of input parameters helped to cre- 

te two different types of networks and the small-world network- 

ased approach is labelled as B1 and the preferential attachment 

etwork-based approach is labelled as B2. Table 6 shows a compar- 

son between the two models based on different underlying con- 

act network structure. Please refer to Appendix G for details on 

he type of network structures used. 

In a nutshell, model scenarios B1 and B2 are network-based ap- 

roaches that differ in the underlying network structure. After cre- 

ting the synthetic networks for the two scenarios, the values of 

he parameters that are fixed at the beginning of the simulation 

re shown in Table 7 . 

The value of f is set to 0.002 so that at the beginning of the

imulation any 2 nodes in the network of 10 0 0 nodes are infec-
7 
ious. The choice of this value is based on the fact that in a net-

orked environment, it is better to presume that the infection 

tarts spreading when the number of infected is more than one. 

 larger value is not considered as we studied the spread of the 

pidemic in its early stage. The choice of the value of l R , and d R 
re based on guidance ( NCIRD, 2021 ) indicating that the time to 

ecovery from Covid-19 even for critical adult patients is within 20 

ays. The minimum threshold value of immunity is kept at 0.5. The 

inimum threshold of the upper limit of viral load is kept above 

he minimum immunity threshold at 0.7. During each run of the 

imulation, the viral load of nodes is updated 60 times to mimic 

he growth of the Covid-19 infection over 60 days. 

. Results 

In this section we report the impact of varying the parame- 

ers of interest on the number of infections. First, we plot the 

utcome of the equation- and network-based approaches with the 

iven choice of parameters. We demonstrate the effect of vary- 

ng the parameter R 0 for the equation-based approach and show 

he results as the highly contagious equation-based approach A1 

nd the moderately contagious equation-based approach A2 re- 

pectively. Next, we present the results of the two different sce- 

arios obtained by varying the type of the underlying network 

n the network-based approach and denote them as the small- 

orld network-based approach B1 and the preferential attachment 

etwork-based approach B2 respectively. In the subsequent sec- 

ions, we compare the results of these models with the empirical 

ata using different measures in order to determine the models 

ith the best fit. 

.1. Outcome of the approaches 

.1.1. Equation-based approach 

Fig. 4 shows the variation of infections for highly conta- 

ious equation-based approach A1 and the moderately contagious 

quation-based approach A2, by varying the value of R 0 and keep- 

ng all other parameters constant. In the plots, the x-axis denotes 

he day in progression of infection and the y-axis denotes the 

umber of newly infected individuals on that day normalized be- 

ween 0 and 1. 

In Fig. 4 , models A1 and A2 are obtained using the values of 

 0 = 15, and 2.5 respectively. It is observed that with a decrease 

n the value of R 0 the curve shifts to the right and the epidemic 

ontinues beyond the time period of 60 days. On the other hand, 

or a higher value of R 0 the epidemic reaches its peak and dies 

own faster. Although, it may seem counter-intuitive that reduc- 

ng the transmission rate is key to controlling the disease based 

n sensitivity analysis performed on the value of R 0 in an earlier 

tudy ( Gebremeskel et al., 2021 ), our result points to an interest- 

ng aspect of epidemic models. While R 0 = 2.5 is in the range of 

alues used in earlier studies ( Burda, 2020 ; Renardy et al., 2020 )

n Covid-19, R 0 = 15 corresponds to the spread of highly infec- 

ious disease like measles (S. L. Chang et al., 2020 ). It is interest- 

ng to note that given a population of 10,0 0 0, the equation-based 

pproach reaches a saturation point in which majority of the pop- 

lation gets infected and is subsequently removed earlier due to a 

igher value of R 0 . 

.1.2. Network-based approach 

The network-based approach models the spread of epidemic 

ealistically by incorporating the characteristics of the entire 

opulation, disease at the level of an individual, and underlying 

ontact network structure through user-defined input parameters. 

o demonstrate how this approach can be applied to various 

ituations, we vary the underlying contact network structures 
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Table 6 

Properties of the two models using the network-based approach. 

Model Type of Network Parameter Value Links Average 

Degree 

Small-world network-based 

approach B1 

Newman–Watts–Strogatz 

small-world graph: NWSG 

Size 1000 10,000 20 

K 10 

Probability of link creation 1 

Preferential attachment 

network-based approach B2 

Barabási–Albert preferential 

attachment model.: BAG 

Size 1000 9900 19.8 

Number of links to preferentially 

attach 

10 

Note: The value of K is such that each node is joined with its K nearest neighbours forming a ring topology. 

Fig. 4. Simulation results for models A1 and A2 using the equation-based approach. 

Fig. 5. Simulation results based for models B1 and B2 using the network-based approach. 

Table 7 

Values of various parameters. 

Parameter Value 

Fraction infected, f 0.002 

Load reduction, l R 0.05 

Number of days to gain recovery, d R 20 

Minimum threshold of immunity, mi n IL 0.5 

Minimum threshold of upper limit of viral load, mi n VUL 0.7 

Duration of simulation, t (in days) 60 

Note: The simulation is repeated 10 times for given initial conditions. 
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eeping all other input parameters constant. We plot the results 

f the simulation using the small-world network-based approach 

1 and the preferential attachment network-based approach B2, as 

hown in Fig. 5 . The plots show how the spread of the epidemic

aries with the underlying contact network structure. 

In order to investigate the sensitivity of the output of the pro- 

osed model with respect to other input parameters, we vary the 

alue of mi n V UL between 0.5 to 0.9 for each of the above scenar- 

os. In the preferential-attachment based model B2, we observe no 

ignificant difference. However, some changes are observed for the 

mall-world network-based approach B1. 
8 
.2. Comparison between the trajectory of the outbreak and actual 

nfections 

In order to compare between the outputs corresponding to the 

pproaches and identify to what extent the outputs match the data 

orresponding to the eight different countries, a number of simi- 

arity measures are used. These include comparing the peak, cal- 

ulating the error based on sum-of-squares based difference, and 

orrelation between the slope of the curves. Furthermore, sophisti- 

ated measures like partial curve mapping, dynamic time warping, 

nd curve length approach are used. 

.2.1. Comparison based on peak 

To compare the simulation results with the empirical data, we 

rst compare the day when the peak is reached. The comparison is 

ade by identifying the day on which the maximum normalized 

alue of the newly infected case is registered over the period of 

0 days for each country. Please refer to Appendix H for details on 

ow the actual number of cases are normalized and the peak is 

alculated for each country. It is observed that model B2 exactly 

atches KOR in terms of the day on which the peak is reached. 

e also find that the highly contagious model A1 matches AUS 

ith a difference of 1 day and the small-world network-based 
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Table 8 

Calculation of the sum-of-square based difference corresponding to AUS. 

Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

A1 0.00 0.02 0.02 0.04 0.06 0.09 0.13 0.18 0.26 0.35 0.45 0.56 0.68 0.78 

A2 0.00 0.04 0.04 0.07 0.10 0.12 0.14 0.16 0.18 0.19 0.21 0.23 0.25 0.27 

B1 0.09 0.30 0.28 0.43 0.53 0.61 0.63 0.68 0.70 0.71 0.71 0.72 0.75 0.78 

B2 0.11 0.30 0.30 0.49 0.64 0.76 0.82 0.83 0.85 0.88 0.95 0.99 1.00 1.00 

AUS 0.02 0.01 0.01 0.02 0.04 0.07 0.09 0.11 0.13 0.18 0.23 0.30 0.38 0.74 

(A1-AUS) ̂  2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.05 0.07 0.09 0.00 

(A2-AUS) ̂  2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.22 

(B1-AUS) ̂  2 0.00 0.09 0.07 0.17 0.23 0.29 0.29 0.32 0.32 0.28 0.23 0.18 0.14 0.00 

(B2-AUS) ̂  2 0.01 0.08 0.08 0.22 0.36 0.47 0.53 0.51 0.51 0.49 0.52 0.48 0.38 0.07 

Note: All values are rounded to two decimal places. 
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Table 9 

Similarity scores using the sum-of-square based difference. 

Model-Country Sum of Square of 

Differences 

Normalized 

Difference 

Similarity 

Score 

A1 - AUS 1.72 0.03 97.13 

A2 - AUS 25.07 0.42 58.21 

B1 - AUS 9.31 0.16 84.48 

B2 - AUS 6.07 0.10 89.88 

A1 - KOR 5.24 0.09 91.27 

A2 - KOR 25.26 0.42 57.91 

B1 - KOR 11.64 0.19 80.59 

B2 - KOR 2.18 0.04 96.36 

A1 - DEU 13.14 0.22 78.11 

A2 - DEU 5.68 0.09 90.53 

B1 - DEU 11.74 0.20 80.43 

B2 - DEU 24.60 0.41 59.00 

A1 - IRN 11.95 0.20 80.09 

A2 - IRN 4.41 0.07 92.64 

B1 - IRN 11.86 0.20 80.23 

B2 - IRN 19.65 0.33 67.24 

A1 - ESP 8.60 0.14 85.67 

A2 - ESP 8.41 0.14 85.98 

B1 - ESP 7.99 0.13 86.68 

B2 - ESP 20.54 0.34 65.77 

A1 - CHE 2.91 0.05 95.14 

A2 - CHE 14.30 0.24 76.17 

B1 - CHE 3.84 0.06 93.60 

B2 - CHE 15.12 0.25 74.81 

A1 - IND 19.10 0.32 68.16 

A2 - IND 9.39 0.16 84.36 

B1 - IND 24.55 0.41 59.08 

B2 - IND 21.09 0.35 64.85 

A1 - US 25.45 0.42 57.58 

A2 - US 5.56 0.09 90.73 

B1 - US 28.57 0.48 52.39 

B2 - US 29.18 0.49 51.36 

Note: All values are rounded to two decimal places. 

Table 10 

Correlation between the slope of curves for country-model pairs. 

Country Model A1 Model A2 Model B1 Model B2 

AUS 0.43 −0.08 0.08 0.15 

KOR 0.38 0.00 0.12 0.58 

DEU −0.06 0.25 0.16 −0.14 

IRN 0.02 0.22 0.07 0.00 

ESP 0.05 0.23 0.19 −0.24 

CHE 0.29 0.06 0.21 0.01 

IND −0.21 −0.33 −0.19 −0.07 

US −0.28 0.26 −0.28 −0.05 

c

a

c

b

i

pproach B1 matches ESP and CHE with a difference of 1 and 3 

ays, respectively. In terms of predicting when the peak is reached, 

he network-based approaches (model B1 and model B2) yield 

etter results for the given dataset. One limitation of matching 

he peak is that while the peak of the trajectory of newly infected 

ases for a scenario and country may match, the pattern of their 

rowth and decline may be different. 

.2.2. Comparison based on sum-of-square based difference 

To further compare between trajectories, we calculate the sum- 

f-squares-based difference between the normalized values corre- 

ponding to data points for 60 days for each of the 32 pairs, i.e., a

ombination of the 4 model scenarios and 8 countries. Table 8 pro- 

ides a snapshot of the calculation of the difference between the 

ormalized values corresponding to the 4 scenarios and AUS for 

he first 14 days. The detailed table with calculation for all coun- 

ries is shown in Appendix I. 

In Table 8 , the value 0.00 for the cell corresponding to the row 

A1-AUS) ^ 2 and column 1 denotes the square of the difference 

etween the normalized values of model A1 and AUS on day 1. Al- 

hough not shown in Table 8 , this calculation is repeated for AUS 

or 60 days. Similarly, it is repeated for the other 7 countries for 60 

ays as well. Finally, the sum of the differences for each scenario- 

ountry pair is taken, and a similarity score is calculated to iden- 

ify the best fit. The sum-of-square of difference is divided by the 

aximum possible sum, i.e., 60, as the difference at a particular 

ell can take a maximum value of 1 to calculate the score. The 

esult which is a number between 0 and 1 is a measure of the dif-

erence. It is subtracted from 1 and multiplied by 100 to obtain a 

ercentage value to convert the result to a similarity score. 

imilarity Score = { 1 −( Sum of square based difference/60 ) } ∗100 

In this way we obtain a similarity score for each model-country 

air and identify the model which fits a country best. Table 9 pro- 

ides a snapshot of the scores for the 8 countries corresponding to 

ach of the models. 

From Table 9 we find that the highly contagious equation-based 

pproach A1 matches AUS and model B2 matches KOR the best 

ith a score of 97.13 and 96.36, respectively. This measure using 

um-of-square of difference, despite being simple to use, has its 

imitations. It is not reliable as it can provide a high score even 

hen the model’s output does not match the empirical data visu- 

lly, as in the case of IND and US. For example, if we calculate the

core for a model that predicts all newly infected cases from day 

 to day 60 as zero, the similarity score obtained is 85.85 for AUS 

nd 88.23 for KOR. Similarly, the trajectory of model A2 does not 

atch IND and US when inspected visually, but has a high similar- 

ty score of 84.36 and 90.73, respectively. 

.2.3. Comparison based on correlation between slopes 

To quantify the similarity between the plots we examine the 

orrelation between the corresponding slope of each curve. The 
9 
orrelations between the slope of the curves of selected countries 

nd models are presented in Table 10 . 

It is observed from Table 10 that the value of correlation for the 

ountry-model pairs is low and may not be suitable to identify the 

est fit. If we take a cut-off of 0.5, only the (KOR, model B2) pair 

s above the cut-off. 
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Table 11 

Calculated values of the additional measures of similarity. 

Measure Model/ Country AUS KOR DEU IRN ESP CHE IND US 

PCM A1 4.15 5.35 7.44 9.73 5.25 3.82 23.22 23.23 

A2 27.37 28.93 8.02 7.46 10.88 16.32 6.63 3.20 

B1 6.25 8.35 5.71 9.20 4.12 3.04 20.39 18.49 

B2 4.37 3.01 11.03 12.47 8.70 8.10 31.33 32.56 

DF A1 0.38 0.67 0.87 0.83 0.77 0.66 0.98 1.00 

A2 0.99 0.95 0.62 0.50 0.79 0.85 0.61 0.54 

B1 0.82 0.90 0.76 0.66 0.68 0.61 1.00 0.95 

B2 0.73 0.59 0.98 0.99 0.91 0.83 1.00 1.00 

AREA A1 8.12 12.52 23.82 23.39 19.50 10.54 27.84 33.65 

A2 31.62 33.82 14.20 11.77 16.82 23.06 21.05 14.93 

B1 19.79 20.70 23.30 24.90 17.40 10.15 34.07 38.02 

B2 12.55 7.53 35.40 30.72 31.58 26.01 30.56 37.13 

CL A1 2.15 2.86 3.97 5.04 2.80 2.09 7.18 7.07 

A2 4.97 5.15 3.48 2.64 4.03 3.81 3.13 2.33 

B1 2.47 2.91 2.79 3.88 2.31 1.60 5.90 5.56 

B2 3.13 1.95 6.61 7.96 5.11 4.84 9.78 9.97 

DTW A1 8.13 12.53 23.93 23.55 19.58 10.58 28.33 34.05 

A2 32.02 34.24 14.49 12.02 17.16 23.44 21.14 14.94 

B1 19.84 20.75 23.47 25.11 17.53 10.24 34.61 38.48 

B2 12.61 7.71 35.58 30.94 31.72 26.11 31.11 37.60 
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Table 12 

Comparison between the scenarios to determine best fit for each measure. 

Measure (cut-off) 

Equation-based 

Approach 

Network-based 

Approach 

Model A1 A2 B1 B2 

Peak ( < = 3 days) AUS – ESP, CHE KOR 

Correlation ( > 0.5) – – – KOR 

PCM ( < = 5) AUS US ESP, CHE KOR 

DF ( < = 0.6) AUS IRN, US – KOR 

Area ( < = 10) AUS – – KOR 

CL ( < = 2.5) AUS US ESP, CHE KOR 

DTW ( < = 10) AUS – – KOR 
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.2.4. Comparison based on additional measures 

The measures discussed so far have their limitations and this 

eads us to search for additional similarity measures between 

urves. Jekel et al. (2019) have identified five such measures, PCM 

partial curve mapping), area method, DF (discrete Fréchet) dis- 

ance, CL (curve length), and DTW (dynamic time warping). These 

easures use a combination of distance, area, and arc length to 

easure the similarity between curves and can be used to identify 

he best fit. 

The PCM method calculates the similarity based on arc length 

nd the area between the shorter and longer curve. The area 

ethod, on the other hand, finds the mismatch between curves 

ased on the area determined by constructing quadrilaterals be- 

ween the curves. The DF method is another measure of similarity 

ased on a walking dog analogy. The CL method calculates devia- 

ions between the corresponding values of points on both curves 

hat are compared. Similarly, the DTW method calculates the dis- 

ance between each point of both the curves that are compared. 

owever, it determines the optimal path with the smallest cu- 

ulative distance to measure the similarity between curves. Com- 

ared to the similarity measures based on peak, sum-of-square- 

ased distance, and correlation between slopes discussed in the 

revious section, the additional measures based on features of a 

urve are likely to be more reliable. Appendix J provides further 

etails about the additional measures. In each of these similarity 

easures, a smaller value is considered better. We calculate the 

alue for each of the 5 measures for the 32 model-country pairs, 

s shown in Table 11 . 

Table 11 tells us which scenario fits the country best for a 

iven measure. It is clear from the values that the highly conta- 

ious equation-based model A1 fits AUS the best when PCM is 

onsidered. The best fit between the model and the country can 

e identified for each measure. It is found during the analysis that 

ot all values of the measures are acceptable for the comparison. 

or example, in case of IND, although a simple visual inspection 

eveals that none of the models match reality, Table 11 shows 

oderately contagious model A2 as the best fit when DF is used 

s the measure. 

.2.5. Best fit approach based on the measures 

Table 12 summarizes the best fit between the trajectory of 

ewly infected cases corresponding to the 4 models and the 8 
10 
ountries studied in this paper. The curves are compared in terms 

f the similarity measures that are reliable, as discussed in the pre- 

ious sections. The best fit is considered if the similarity measure 

eets the cut-off. 

It is observed that in terms of the similarity measures with 

iven cut-offs, the models considered under the network-based ap- 

roach are better in predicting the pattern of newly infected cases 

n KOR, ESP, and CHE. On the other hand, the models considered 

nder the equation-based approach are better in predicting the 

nfection for AUS, US, and IRN. A closer inspection reveals that 

he network-based approach is more consistent in its performance 

s model B2 matches KOR across all the measures. Similarly, the 

mall-world network-based approach B1 matches ESP and CHE for 

easures using Peak, PCM, and CL, whereas models A1 and A2 un- 

er the equation-based approach are less consistent in matching 

ountries. It shows that underlying contact network structure may 

lay an important role in the mechanism behind the spread of in- 

ection. The findings are encouraging from an academic and prac- 

ical point of view since it suggests that well-informed decisions 

an be made in future crises by engaging appropriate modelling 

pproach depending on the specific context. 

. Implications and limitations of research 

.1. Academic implications 

The study in this paper has several implications. As for aca- 

emic implications, this study distinguishes itself by implement- 

ng and comparing two contrasting epidemic approaches, using the 
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op-down equation-based approach and the bottom-up network- 

ased approach. Most of the earlier studies have focused on ei- 

her of the two approaches. However, we believe in this study a 

omparison between the two approaches better explains why the 

etwork-based approach is needed. Second, while some earlier re- 

earchers have used multi-country data, they have used top-down 

pproaches for analysis. This study demonstrates the application 

f the network-based approach and compares the results with the 

mpirical data for 8 countries from different regions of the world. 

hird, in this study we introduce the comparison of the trajectory 

f curves based on eight different measures. ‘While literature per- 

aining to material models have used the measures, PCM, DF, Area, 

L, and DTW for comparing between curves, they are new to the 

iterature on epidemic modelling. Finally, we introduce heterogene- 

ty in the choice of networks, infection parameters, and individual- 

evel attributes, which are unique and have not been addressed in 

arlier studies, to the best of our knowledge. 

.2. Practical implications 

The findings of this paper have practical implications as well. 

irst, the proposed network-based approach can help policymak- 

rs and health service providers identify the disease’s spread at 

ts initial stage and plan accordingly. Second, being a bottom-up 

ndividual-based approach, it can be customized to identify indi- 

iduals who are most vulnerable to contracting the disease and 

an be used for the early detection of clusters of severe cases. It 

an benefit authorities who can customize this approach to im- 

ose localised restrictions. They can also use this approach to pri- 

ritize who would be vaccinated first, not just based on age but 

lso based on the overall vulnerability of an individual to an infec- 

ious disease. Finally, although this study has utilized the two most 

elevant types of networks as underlying contact network struc- 

ures, the proposed network-based simulation can also generate a 

ide variety of network structures. We recommend that the prac- 

itioner should be aware of the variation in underlying contact net- 

ork structure while considering the different model scenarios. Al- 

hough, we do not have sufficient information to suggest whether 

 particular country has the same type of network structure as an- 

ther, the close match between the model scenarios B2 and KOR 

s particularly encouraging. It is interesting to note that an ear- 

ier study investigating the underlying contact network structure 

n a population using sample from KOR had shown it to be indeed 

cale-free ( Kim et al., 2021 ). In future, if data of a more realistic

etwork structure is available, practitioners can use this approach 

o create a network based on its properties to study the spread of 

nfections during an epidemic. 

.3. Limitations of proposed approach 

The network-based approach proposed in this study also has 

 set of limitations. First, scaling up the network-based approach 

s expensive in terms of time and space. This study has executed 

he proposed approach using limited processing capacity by divid- 

ng the population into 10 clusters and simulating these clusters 

eparately. A state-of-the-art distributed simulation approach (S. J. 

aylor, 2019 ) can be used to address this limitation. Second, it uses 

 network that has a semi-static nature. As a result, the analysis 

eriod of this study is fixed at 60 days, within which the network 

llows only deletion of nodes and links. Future research can in- 

lude the option to add new individuals to the contact network 

ue to birth and emigration by adding nodes and links to the given 

etwork at specific time intervals. Third, in this study we do not 

onsider vaccinated individuals since the study is focused on the 

arly period of Covid-19 when the possibility of vaccinated individ- 

als did not arise. However, the proposed network-based approach 
11
an be modified to incorporate immunity acquired through vacci- 

ation by manipulating the value of the node level attribute I L i , 

hat determines the immunity of a node. 

Since neither the equation- or the network-based approaches 

re found to be superior for modelling all possible scenarios, an- 

ther direction for future researchers could be to create a hybrid 

pproach that switches between the equation- and network-based 

pproaches. The switching can be based on a specific country or an 

vailable scenario to capture the advantages of both approaches. 

. Conclusion 

A global catastrophe like Covid-19 necessitated the study of epi- 

emics using operational research techniques. Researchers and pol- 

cymakers are interested in knowing the mechanism behind the 

ransmission of an epidemic and investigating its relationship with 

atterns of social interaction. It is important to apply the network- 

ased approach to anticipate the trajectory at the beginning of the 

utbreak for a country. The network-based approach allows mod- 

lling the heterogeneity amongst individuals and interaction pat- 

erns not addressed by the equation-based approach. Unlike the 

raditional well-mixed compartmental models, the network-based 

pproach does not assume the population to be homogenous even 

ithin a compartment. In this paper, the individuals are not only 

istinguished by their level of infection denoted by the concept of 

iral load but also by their level of immunity and the upper limit 

f the viral load that they can withstand. A complex yet realistic 

elationship that is conceptualized while developing the proposed 

pproach helps to determine whether an individual infects others, 

ecovers, or is removed from the network. In future, the network- 

ased approach can be used to model policy interventions, such as 

ockdown, social distancing, and vaccination, by manipulating the 

ode and link-level parameters of the network. 

Operational research is called the ’science of better’ ( Mingers, 

007 ; Nikolopoulos, 2021 ). Consequently, researchers working on 

pidemic models use operational research techniques to search for 

 better model. However, a single model may not be relevant in 

ll contexts. Some papers have reported accurate forecasts em- 

loying several time-series, epidemiological, machine learning, and 

eep learning methods ( Nikolopoulos et al., 2021 ; Petropoulos & 

akridakis, 2020 ). A closer inspection reveals that models based 

n macro-level analysis are not directly comparable and may be 

omplementary to methods based on micro-level analysis. Macro- 

evel analyses are simpler, faster, and suitable for specific practical 

se like what-if scenarios. 

In contrast, micro-level analyses are far more complex and 

lower to execute but more relevant in accommodating individ- 

al differences. Researchers find methods with accurate predictions 

seful. Some may additionally need a flexible model to study an 

pidemic’s emerging behaviour, which can be applied to various 

ituations and yet can capture micro-level details realistically. This 

aper aims not to perform an exhaustive numerical comparison of 

hese methods but to provide a viable alternative of a flexible and 

ealistic approach to model epidemics, that the researchers may 

refer under some situations. It highlights that researchers may 

refer one approach over another depending on the context. Op- 

rational research, with its bouquet of techniques, can lead the 

ay in epidemic modelling, where different approaches can co- 

xist and can be a part of a decision support toolkit for epidemic 

odelling. 

upplementary materials 

Supplementary material associated with this article can be 

ound, in the online version, at doi: 10.1016/j.ejor.2023.01.021 . 

https://doi.org/10.1016/j.ejor.2023.01.021
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