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Abstract
Freight transportation has been experiencing a renaissance in data sources, storage, 
and dissemination of data to decision makers in the last decades, resulting in new 
approaches to business and new research streams in analytics to support them. We 
provide an overview of developments in both practice and research related to big 
data analytics (BDA) in each of the major areas of freight transportation: air, ocean, 
rail, and truck. In each case, we first describe new capabilities in practice, and ave-
nues of research given these evolving capabilities. New data sources, volumes and 
timeliness directly affect the way the industry operates, and how future researchers 
in these fields will structure their work. We discuss the evolving research agenda 
due to BDA and formulate fundamental research questions for each mode of freight 
transport.
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1 Introduction

In recent years, freight transportation of all kinds (air, ocean, rail, and truck) has 
experienced vastly more data, available faster, often more accurate, and some-
times more unstructured. Fosso Wamba et  al. (2015) describe the “Five Vs” of 
Big Data Analytics (BDA) as data’s growing volume, velocity, variety, veracity, 
and value. Kour et al. (2019) describe how BDA has become a central theme in 
transportation systems and developers focus on hardware architecture to facili-
tate the first four V’s of BDA: the collection, dissemination, integration, and stor-
age of this wealth of data. While we specifically discuss the new data sources of 
freight transportation, we focus on the fifth V, value, and how this advanced data 
infrastructure and architecture have created needs for decision-making systems 
that are faster, more automated, and more frequently used, creating information 
for both automated and human-in-the-loop decisions.

The increase in the volume of data is driven by a variety of sources, includ-
ing satellite tracking and low-cost sensors that track the location and condition 
(temperature, wear, vibration, etc.) of fixed assets (trucking terminals, rail yards 
and track, and ports) and moving assets (locomotives, rail cars, tractors, cargo 
planes, or containerships) all over the world. The volumes of data that are created 
from interconnected smart devices, often referred to as the Internet of Things 
(IoT), come at very low cost; before, it took human effort to collect such data, 
which was high-cost, time-intensive, or impossible to collect. The IoT makes data 
available almost instantly via wireless data transfer, eliminating the data latency 
resulted from lack of connectivity to data storage and dissemination technologies. 
Data are often more accurate and reliable from these specialized sensors, which 
are finely tuned and objective; the capability vastly reduces the human judgement 
that was often required to create and evaluate data.

Unstructured data arises from various customer and supplier websites, bur-
geoning video storage, and relationships between data sets that were previously 
uncollected or not analyzed. All of these sources require automated means for 
combining and cross-referencing, monitoring and making decisions on these 
inputs. Considerable preprocessing is required to convert the data into formats 
conducive to analysis. However, new data storage technologies (e.g., Hadoop) 
have lowered the cost of data storage, manipulation, and analysis. This data revo-
lution has enabled the transportation industry to create value from these new and 
varied data sources and forms through automated descriptive, predictive, and pre-
scriptive analytical technologies.

This is a pivotal time for big data analytics in the transportation industry. Gor-
man et  al. (2014) note the growing levels of applied analytics in freight trans-
portation; our` research provides insight into how big data and new methods and 
applications in analytics might inform future research agendas.

Dong et  al. (2021) evaluate the impact of emerging technologies in freight 
transportation. They consider a wide range of hardware technologies including 
3D printing, robotics, and autonomous vehicles among others, as opposed to our 
focus on data and analytics. They do identify big data (including internet of things 
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and blockchain), cloud computing, and artificial intelligence as critical informa-
tion systems and developments soon to disrupt freight transportation. They find 
that the volume of literature, including big data, exceeded all other emerging 
technologies in their study. The same authors also find AI to be among the most 
entrenched and well-studied technologies in freight transport, with a large and 
expanding future role in this sector. Our research expands notably in these two 
important areas.

We discuss the latest developments in the four major freight transportation 
modes: air, ocean, rail, and road in turn. We also review the available data and their 
use in practice, focusing on mobile assets (locomotives, trucks, ships, and aircraft) 
as well as fixed ones (terminals, hubs, airports, and other infrastructure). We subse-
quently discuss the evolving research agenda and formulate fundamental research 
questions for each mode. We conclude with observations on the commonalities and 
synergies between modes, and future research agendas given these new data sources 
and capabilities.

2  Data types, sources, and structures

The volume of data has grown significantly over the years for all modes of transport. 
As the number of sensors (e.g., on cargo and transport assets) and the data collection 
frequency have dramatically increased, the requirements for large data storage plat-
forms have also grown. For example, aircraft data is now so voluminous that spe-
cialized platforms have emerged, required to house and manage them. As discussed 
by Cambier (2018), these big data platforms need to decode the raw sensor data into 
structured and managed data, have an architecture for fast data access and manipula-
tion, and provide analytical and visualization capabilities. They also need to have an 
open design for the incorporation of new analytical and predictive models. Table 1 
summarizes new data sources that offer avenues for data analytics in freight trans-
port discussed in this section.

2.1  Asset tracking data

New devices allow tracking of transportation assets in real time. For example, global 
positioning system (GPS) devices that track the real-time position of the asset via 
satellites are widely used by all modes of transport. The railroads also leverage sat-
ellite, sensor, and video data to collect rail car location status and yard informa-
tion. The American Association of Railroads asserted all trains should be tracked 
using satellites by 2020 (Association of American Railroads 2019). Likewise, cap-
turing data on ocean vessels, such as the time-stamped vessel position and speed, 
or container-specific data such as container type, position, origin and destination 
at container terminals using an automatic identification system (AIS) is becoming 
the norm. These data are often captured automatically and continuously using sen-
sors on containers, the vessels, or the handling equipment. Telematics are widely 
used in trucks to track driver behavior and prevent road accidents. Different forms of 
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in-vehicle systems, whether installed in the vehicle (Amarasinghe et al. 2015) or on 
smartphones (Wahlström et. al, 2018), enable greater visibility of the location of the 
carrier’s fleet. The use of electronic logging devices (Miller et. al, 2020; Scott et. al, 
2020), and the eventual integration of autonomous trucks into carrier fleets provide 
widespread access to location. These data sources also allow for predictive analytics, 
in particular estimating the time of arrival or providing a warning for potential inci-
dents. Weather information such as the direction of wind or` temperature, captured 
using aircraft sensors in aircrafts or satellites for trains, vessels, and trucks guide 
navigation and allow one to perform predictive analytics.

2.2  Asset condition data

Sensors throughout the assets used in freight transport return real-time data on 
asset condition and status. Examples include aircraft engine vibration data, locomo-
tive data, vessel data, container, and railcar data. In the case of rail, track condi-
tion data can now be monitored continuously in some cases. The airfreight industry 
uses high-frequency status data from sensors on aircraft, ground support equipment, 
containers, and packages with advanced analytics to improve efficiency, reliability, 
and safety. Similar devices are on trucks, oceanic vessels, and locomotives. Such 
frequent, accurate and timely data highlights abnormalities and can help towards 
condition-based maintenance.

2.3  Simulation and terminal statistics data

Simulation data help to analyze the performance of the asset movement under real-
istic conditions. For example, commercial modular aero-propulsion system simula-
tion (C-MAPSS) data captured by NASA provide information on airline operations 
and possible events. Likewise, simulations for rail yard and movement; container 
terminal and navigation; and truck hub and freight movement proactively provide 
information for business planning. For example, which route should be chosen to 
reach the final customer without delays. Industry bodies publish reports on the per-
formance of hubs with respect to the count of assets; there are reports on hub bench-
marking, which are quite helpful for improving asset and hub performance.

2.3.1  Cloud‑based transportation management systems (TMSs)

Transportation management systems (TMS; Verwijmeren 2004) are software sys-
tems that facilitate the management of shipper transportation needs for order deliv-
ery. Typically, such systems are widely adopted in road transport (trucking), but 
also in multimodal transport coordination at the landside of ports where trains and 
trucks arrive to transport the export and import containers. TMS typically con-
nects to Enterprise Resource Planning (ERP) systems and facilitate activities; for 
example, building a route to deliver shipments, identifying a carrier from a select 
list of them engaged in that route, and paying the carrier upon completion of that 
route. As such, a TMS records when a shipper needed transportation services and 
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what carrier(s) were able to provide them. The use of a TMS has enabled shippers 
to reduce transportation costs by approximately 5–15% (Logistics Management 
2017). They are now moving away from shipper-owned software systems that often 
contain transactional data for only a single carrier. Many shippers now use a single 
cloud-based installation of a shared TMS system (Oracle 2018). While cloud-based 
TMS typically keeps shipper data in silos, they contain much broader visibility of 
both contract and spot market transactions across the entire market of transportation 
supply and demand than has been available to date. Software companies that make 
cloud-based TMS cite the breadth of the carrier network accessible via their system 
as a value-add to shippers. Data from such systems can be adopted to coordinate 
resource activities and make real-time equipment scheduling decisions to minimize 
asset delays at hubs.

Digital Load Boards/Freight Matching Data. Historically, shippers have engaged 
with carriers on the spot market either directly or through intermediaries. The 
internet has provided a third mechanism: electronic marketplaces (Caplice 2007; 
Nandiraju et al., 2008). Load boards are online marketplaces wherein shippers can 
post their shipments and carriers post their capacity availability. Digital freight 
matching tools provide additional functionality of automatically identifying poten-
tial matches for both shippers and carriers. As described in Table 1, both mecha-
nisms provide a record of the shippers needing transportation services and of the 
carriers willing to provide them.

Uber Freight (Sanchez et al., 2018) is a digital load board that provides a service 
to shippers similar to Uber ride. Similar platforms are also emerging for ocean and 
air transport, to match vessel or aircraft cargo capacity with shippers’ demand (e.g., 
TEUbooker.com, Cargo.com). Data from such platforms lead to matching algo-
rithms that can maximize the profits for the shipper, carrier, and platform.

Data ownership and access is also an important consideration in analytics because 
often multiple data elements need to be integrated to analyze integrated decisions. 
There is much debate in, e.g., air freight amongst Original Equipment Manufac-
turers (OEMs), aircraft operators, and Maintenance, Repair and Overhaul (MRO) 
vendors about the ownership of data. The resulting compartmentalization—aircraft 
data is often stored in OEM proprietary formats while operators and MRO vendors 
typically restrict access to their operation and maintenance data—limits the use of 
analytics which would allow improvements in operational efficiency, reliability, and 
safety. Therefore, there is a need to resolve the relevant legal and competition issues.

3  Air freight transport

As shown in Table 1, the airfreight industry uses high-frequency location and status 
data from sensors on aircraft, ground support equipment and containers, to improve 
the efficiency, reliability, and safety of their operations. Aircraft and engines have 
long had built-in sensors to track parameters like airspeed, air pressure, fuel flow 
rate, fan rotation speed, and exhaust gas temperature data. Accident investigators 
have used the data from flight data recorders (“black boxes”) to determine the causes 
of accidents. However, the number, sophistication, and reporting frequency of these 
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sensors have greatly increased. Now tens of thousands of sensors can generate hun-
dreds of gigabytes of raw sensor data per day (Bullock 2017), resulting in new uses, 
in virtually all aspects of air operations, hub operations, and aircraft maintenance.

3.1  Revenue management

3.1.1  Current state

Big data analytics has been at the core of innovations in air cargo revenue man-
agement. Rizzo et al. (2019) proposed a revenue management system for air-cargo 
that combines machine learning prediction with decision-making using mathemati-
cal optimization methods. Their solution reduces offloading costs and optimizes rev-
enue generation by addressing the wide discrepancy between the quantity (weight 
or volume) a shipper will book, and the actual quantity shipped—a problem that is 
unique to the air-cargo business. To address this problem, American Airlines created 
a machine learning model that analyzes each customer’s booking to predict the like-
lihood of a no-show shipment (Peckham 2020) using a year’s worth of cargo data, 
i.e., half a million records of 20 variables, employing an open-source, GPU-acceler-
ated machine learning (ML) package. Separately, IBS Software and Korean Air lev-
eraged data analytics and ML to develop an integrated revenue management solution 
to better match cargo supply and demand while improving profitability (AIT News 
Desk 2019).

3.1.2  Research agenda

Given the increasing quantity and availability of data, there is every reason to expect 
that big data analytics will play an even greater role in future air cargo revenue man-
agement research. Specifically, the primary focus will be the leveraging the afore-
mentioned and other yet to be developed ML-based approaches to improve both the 
accuracy and lead time of demand predictions.

3.2  Air traffic management (ATM)

Balancing demand and capacity is central to ATM; however, demand and capac-
ity imbalances are difficult to predict due to the lack of accurate four-dimensional 
trajectory information (4D; three spatial dimensions plus the time dimension). Cru-
ciol et al. (2015) used a Bayesian network to identify correlations between depart-
ing and arriving flights, to update flight plans and reduce delay costs associated 
with extra crew hours and fuel consumption. Pozzi et al. (2015) showed that there 
are significant ATM benefits to be had by utilizing burgeoning BDA. In the case 
of weather, Aircraft Communication, Addressing and Reporting System (ACARS) 
data has been used to identify events (Roy, 2020) and develop and validate weather 
models (Benjamin et al. 1991; Roy 2001; Schwartz and Benjamin 1995). Lee et al. 
(2020) developed an analytical methodology called Safety Analysis of Flight Events 
(SAFE) that combines correlation analysis, classification-based supervised learning, 
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and data visualization schemas, to isolate critical parameters and eliminate tangen-
tial factors for safety events in aviation.

3.3  Aircraft maintenance

3.3.1  Current state

Big data analytics is increasingly utilized to improve aircraft maintenance operations 
via predictive maintenance (PM) enabled by massive aircraft sensor and operations 
data. PM is one of three elements in the trade-off between scheduled maintenance 
(SM) and reactive maintenance (RM), depicted in Fig. 1. Based on the actual con-
dition of a component or system, PM enables determination of the optimum bal-
ance between excessive SM (which is wasteful) and insufficient SM (which results 
in costly RM). However, PM requires accurate and plentiful data that traditionally 
were difficult or impossible to obtain. Boeing’s AnalytX, Airbus’s Skywise, and AF/
KLM’s Prognos have all claimed successful applications on selected aircraft compo-
nents. However, according to a survey of OEMs, airlines, and MRO vendors by Var-
fis (2020), it appears that most organizations are still in the process of investigating 
and evaluating the potential of PM.

There are two approaches to PM modeling. One is a model-based approach 
where modelers utilize the physical design of the system, e.g., Boeing’s digital twin 
discussed by Mecer (2020). The second is reliability analysis of components and 
estimation of the Remaining Useful Life (RUL), which are traditional approaches 
based on failure event data and usage data. Sensor data has made Prognostics and 
Health Management (PHM) possible, revolutionizing component reliability analy-
sis. For example, Sun et al. (2020) created a health index with sensor data in a deg-
radation model for an aircraft air-conditioning system. Che et al. (2019) presented 
a PHM model of aircraft systems that combines multiple deep learning algorithms 
for condition assessment, fault classification, sensor prediction, and RUL estimation. 

Fig. 1  The trade-offs between scheduled (preventative), reactive and predictive maintenance
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Modeling aircraft engine RUL is a very active area because engines are the most 
expensive aircraft components and the costliest to maintain, accounting for more 
than 40% of overall aircraft maintenance cost (IATA 2019).

3.3.2  Research agenda

How can we predict failure events and plan for maintenance time-windows? 
Advancements in RUL estimation will help long-term asset planning. However, 
more research is needed to operationalize models that predict failure that mainte-
nance planners can act upon. One challenge in estimating RUL is the assumption 
that the system failure mode is well defined something often not the case, in sophis-
ticated systems like aircraft engines. The decision to remove an engine for main-
tenance is often a process conducted by a team of experts, considering all aspects 
of engine health, maintenance history, resource availability, and operational plan. 
Another challenge to operationalization is the stringent requirement of RUL accu-
racy, at the end of the life of a system. Nguyen et al. (2019) proposed an approach 
that predicts the probability of failure in time windows, instead of a precise failure 
time, with the objective to assist planners in ordering parts and start the preparation 
process.

How can we leverage engine vibration and other sensor data to detect component 
failure? Forest (2020) proposed a method to extract raw engine vibration data and 
detect anomalies. Ordóñeza et  al. (2019) combined time-series modeling and ML 
algorithms to predict RUL for aircraft engines. Zhang (2018) discussed the engine 
watch list, developed at American Airlines, that predicts engine removals in next 
30 days, using engine sensor data. The model is able to predict 2/3 of unscheduled 
removals. Meert et al. (2019) discussed probabilistic models and ensembles of learn-
ing algorithms using sensor data for troubleshooting degradation projection and fault 
detection. Model precision and un-explainability constitute challenges in these pre-
dictive models. Maintenance business processes also need to adjust, to adopt these 
technologies. Expert knowledge of the systems, operational and maintenance prac-
tices, all play important roles in understanding data, creating features that capture 
signals of anomalies, and developing predictions that are explainable and actionable.

How can we use event logs and text mining techniques to identify failure pat-
terns? Unstructured text data represents a new opportunity for maintenance. Pilots 
and mechanics document maintenance issues, and the actions taken to fix them, with 
free text. There are sophisticated text mining algorithms that analyze such mainte-
nance logs to categorize the issues and find chronic patterns. For example, Slattery 
(2017) reports a joint effort by IBM Watson and Korean Air which provided a Natu-
ral Language Processing solution, using historic maintenance texts, to help mechan-
ics improve diagnostic processes.

How can we identify foreign objects using image processing techniques? Foreign 
objects such as debris on the runway, bird strikes, or hail can cause dents on the 
airframe. Visual observations are error prone and time-consuming. Bouarfa (2020) 
presents an image processing algorithm that analyzes pictures taken by drones, to 
assess dent damage. If implemented, this could dramatically reduce the preventive 
effort to detect and assess dent damages.
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How can machine learning models identify the root causes of fleet performance 
deterioration? When a fleet has operational performance issues, such as higher than 
normal rate of delays or cancellations, organizations investigate their operations to 
look for potential causes. A thorough analysis of all aspects of the fleet is, however, 
time-consuming and cumbersome, requiring frequent coordination and collabora-
tion from all organizations involved. ML models can easily consider all these fac-
tors together, provided data is available. Zhang (2018) discussed how ML models 
were used in root–cause analyses for fleet performance at American Airlines, which 
could be an aircraft scheduling issue that causes maintenance gaps, or problematic 
aircrafts that consume limited maintenance resources and leave the rest of the fleet 
vulnerable.

4  Ocean freight transport

Ocean freight is the largest contributor to all freight transported, measured in 
tonne-kilometres. Ships transport over 80% of the volume of international trade in 
goods (Unctad, 2021). The availability of correct and timely information is crucial 
to improve responsiveness, to increase a vessel’s potential capacity, and to reduce 
costs. Traditionally, data sources have often been restricted to historical ship and 
port operations. However, recently, real-time data have given rise to several analyt-
ics opportunities in oceanic freight. We discuss how data on routes, demand fore-
casts, and port development choices can support decisions like vessel selection, or 
how data from sensors can improve dynamic decision-making on vessels, like path 
planning as well as cargo placement at terminals.

4.1  Sea operations

Optimizing running costs through a better service network design and voyage ana-
lytics is crucial to the success of liner shipping and sea trade. The role of real-time 
data availability is having a significant impact on maritime operations, for example 
improving vessel movements, optimizing routes, and reducing fuel consumption.

4.1.1  Maritime network design, surveillance, and voyage analytics

4.1.1.1 Current state At a strategic level, shipping lines must design their shipping 
schedules which are published in a timetable. The latter includes the ports of call, the 
sequence of visits, the frequency of the service (number of visits per port per month) 
and the type and number of vessels on the loop. Some ports within the network may 
serve a hub role, with freight supplied from and to other ports in the vicinity by 
smaller vessels or barges in a feeder subnetwork. The number of options and combi-
nations is vast; thus, the problem is typically split into several subproblems, which 
are solved sequentially; following this, the solutions are aggregated. Multiple actors, 
including the World Trade Organization, port authorities in different countries, and 
the shipping lines and the alliances in which they operate, capture the data underlying 
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these problems. Forecasts predict the flows per transport leg. Ocean alliances help 
reduce voyage and running costs by sharing resources, in particular the vessels, net-
works, and the terminals along the routes. Optimization frameworks such as integer 
and dynamic programming evaluate network design (with and without accounting for 
disruption), port selection and timetable problems. For examples, see Brouer et al. 
(2014), Mulder and Dekker (2014), Wang and Meng (2012a, 2012b). Given a set of 
demands (defined by origin, destination, time limit) and a set of vessels with variable 
capacity and cargo carrying capabilities, the task is to design a set of weekly services 
using vessel assignment rules such that the cargo arrives within the stated time con-
straints. Due to the strategic nature of the decision problem such as setting up hubs 
and determining the trade routes, the usage of real-time, highly granular data in this 
area has been limited.

Usage of dynamic data is now commonly observed in maritime surveillance and 
speed optimization. In 2002, Regulation 19 of the International Convention for the 
Safety of Life at Sea (SOLAS) was enacted, obligating large cargo vessels to use 
automatic identification systems (AIS) for reporting real-time ship data like a ship’s 
identification, draught, location, course and speed (Bhattacharjee 2021); data pro-
vided via satellite during specified time intervals. Route monitoring is required for 
regulatory compliance and it is critical to the safety of the vessel.

Research on maritime traffic using rich AIS data such as on major trade lanes and 
associated ship movement corridors has picked up recently. Way point clustering 
(WPC) and trajectory segment clustering (TSC) are the two methods for identifying 
transport lanes. WPC clusters distinct points and the generated nodes are then con-
nected with straight paths. Using a threshold value of distance among routes, TSC 
groups segments with similar position and heading, to generate shipping corridors 
along the lanes (Gonzalez et al. 2014).

Deviations from the predicted shipping paths can help to detect real time anoma-
lies and to improve compliance. Kontopoulos et al. (2020a) utilized sparse historic 
AIS data and a Lagrange polynomial interpolation technique to extract shipping 
lanes. To obtain coherent trajectory clusters, they developed a density-based cluster-
ing algorithm. Implementation of their approach shows that their method is accu-
rate; more than 90% of any future vessel sailing path lies in the compact convex 
hull formed using the extracted shipping lanes. Kontopoulos et al. (2020b) proposed 
an alternative to the density-based clustering algorithm. They use a combination of 
three variables: speed, course, and position to estimate the distance between two 
consecutive vessel positions. Using this method, they were better able to estimate the 
spatial distance, and to obtain dominant travel path clusters with interesting proper-
ties. For example, using vessel speed, heading distance, and location, all vessels can 
be clustered based on their trajectories. If some vessels do not belong to any cluster 
due to deviations from the cluster threshold values, this can indicate anomaly events 
such as AIS spoofing and illegal activities. The also suggest that the enriched net-
work model can be processed and further examined with data mining techniques in 
an unsupervised manner to identify anomalies in vessel trajectories. In partnership 
with IBM, Yeo et al. (2019) use ML based models in the SAFER system that identi-
fies vessel entities of interest, forecasts vessel arrival times, and potential traffic hot 
spots within port waters. Using an illegal bunkering detection module, SAFER can 
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also detect abnormal vessel behavior, such as transfer of marine fuel to ships using 
mass flow meter data.

Huang et al. (2020) developed a real-time emissions monitoring application using 
real-time ship AIS data to estimate ship fuel consumption and emissions. AIS mes-
sages are divided into continuous data blocks and go through a series of preprocess-
ing steps, including vessel path trajectory extraction, linking path trajectories (asso-
ciation), and interpolation. Regression analysis is effectively used on ship attributes 
to estimate exhaust emissions in a case study monitoring exhaust emissions in the 
port of Shenzhen.

AIS data can also be used in combination with weather data to optimize vessel 
sailing speed and fuel costs dynamically, based on ship location. Mao et al. (2016) 
developed a speed prediction program based on statistical models, which can be 
used to plan the expected time of arrival (ETA) and to determine the optimal route 
plan. Coraddu et al. (2017) used data, measured from the onboard automation sys-
tems, to predict fuel consumption and optimize vessel trim. Mulder et  al. (2019) 
used these data to dynamically optimize vessel speed to meet a given timetable. In 
addition, the authors used this method to allocate buffer times to timetables.

4.1.1.2 Research agenda Port terminals currently use information technology sys-
tems to manage data and movements of containers. Electronic Data Interchange for 
Administration Commerce and Transport is the most common standard to exchange 
information among participants. With sensors, ports exchange data with ships to cre-
ate a bay plan, optimize yard position, define the load/discharge sequences (stowage 
plan), and track containers in real-time. Conca et al. (2018) found that real-time data 
sharing greatly improves operational planning such as stowage planning. Real-time 
data sharing lays the foundation for future autonomous shipping (see Munim and 
Haralambides 2022).

How can a charterer/shipper use data analytics choose a vessel? Real-time data 
sharing can help determine which ship (and price) is right for the specific cargo. 
Vessel quality parameters including safety management and navigation, mainte-
nance data, and other qualitative feedback from various actors, like inspectors, 
terminals, and port authorities, are useful to assess the fit of the vessel to cargo. 
Data analytics can help both charterers and vessel operators analyze the different 
sources of information and select the right vessel with the lowest level of risk. How-
ever, building trust among the stakeholders and sharing data is a challenge. Smart 
ports and terminals are the future. Digitization platforms such as blockchain (like 
Tradelens, an IBM-Maersk blockchain initiative; cf. Lal and Johnson 2018) and IoT 
applications (e.g., as implemented by the Port of Rotterdam in collaboration with 
partners like IBM, Cisco, Esri and Axians) are helping to eliminate inefficiencies in 
shipping operations (Port of Rotterdam, 2019). The overall goal is to make the mari-
time platform adhere to the highest safety, reliability, efficiency, and standardization 
standards.

In the container logistics industry, multi-sided digital platforms have emerged 
that offer new sources of matching spot demand with supply of container transport. 
TEUbooker.com is an example. Digital platforms (e.g., Matchbacksystems.com and 
Boxreload.com) offer real-time matching and container tracking services. Another 
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example is Portbase.com, an open platform that offers a common database and a 
variety of services to safely and efficiently exchange information between all stake-
holders (including government and customs) related to the movements of containers, 
dry and liquid bulk, and general cargo in and between all Dutch ports.

4.1.2  Maritime safety and maintenance

4.1.2.1 Current state Studies like the one by Zheng et al. (2016) use vessel accident 
data to identify the determinants of crew injuries in container vessel accidents. Data 
from the US Coast Guard container vessel accident database are used to model and 
identify abnormal vessel movements. Venskus et al. (2019) analyzed multivariate, 
heterogeneous sensor data using neural networks to make proper and timely decisions 
on vessel movements. Wu et al. (2017) used statistical models that are also adopted to 
identify and predict cargo loss at sea.

Hundreds of vessel components can be monitored using AIS data, generating real 
time alarms and status information updates. The Naval Surface Warfare Center Phil-
adelphia Division conducts PM by analyzing data collected from ship components to 
determine servicing frequency, oil and filter changes, and other maintenance tasks. 
Jimenez et al. (2020) developed a predictive maintenance tool for a Norwegian ship-
owning company, based on operational data such as vibration data obtained from 
the engine and rotating components of the vessel. The authors showed that 89% of 
all failures were not age-related and a traditional preventative maintenance approach 
was inadequate to avoid failure. Jimenez et al. (2020) also report a US Navy study, 
which attributes age-related failures to continuous degradation by corrosion when 
the vessel operates in a saline environment. Because most of the other failures were 
random, a data-driven PM focus was required.

4.1.2.2 Research agenda Can prescriptive models be developed to optimize the 
schedule of maintenance activities and minimize costs? While real time data is used 
for PM such as component inspection, cleaning, and reassembly, it is not clear how 
to develop and evaluate models for prescriptive maintenance. Such models should 
include the possibility to overhaul or replace multiple components at the same time 
so that the vessel would not need to again undergo maintenance within a short span.

4.2  Port operations

While data availability improves maritime operations at sea, the availability of such 
data can immensely improve and optimize the planning operations in port. In par-
ticular, we discuss how data availability can reduce vessel sojourn times in port and 
minimize congestion at the landside.
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4.2.1  Vessel waiting and container dwell times

4.2.1.1 Current state BDA plays a significant role in reducing both vessel waiting 
time to access a berth and vessel berth time to load and unload containers; something 
of great importance to carriers, terminal operators and port authorities. Short waiting 
and berth times mean more turnover of the vessel; long waiting and berth times can 
lead to penalties. Vessel berth times are affected by several terminal design param-
eters such as the type of available equipment and the number of resources used (e.g., 
quay cranes, and stack cranes at a container terminal, or the number of loading arms 
at a liquid bulk terminal). The technology choice of the equipment and layout of the 
terminal also affect ship berth times (Roy et al. 2020). Bierwirth and Meisel (2010, 
2015) show that optimal assignment of berth and handling equipment to vessels and 
storage locations in the yard can minimize vessel delays. Recently, data-driven opti-
mization techniques are developed for berth scheduling and quay crane assignments. 
For example, Koley et  al. (2022) proposed four different Machine Learning tech-
niques, comprising linear regression and artificial neural network, to predict vessel 
arrival times. Using AIS-based forecasts, they estimate dynamic time buffers (DTBs) 
and improve the robustness of berth schedules.

To load a container vessel requires a stowage plan. Typically, the problem is 
approached in a static and deterministic fashion, where a 3D bin packing problem 
must be solved meeting certain constraints. Zhang et  al. (2008) and Gharehgozli 
et al. (2016) give an overview. However, many stakeholders need to provide infor-
mation for efficient stowage and changes in cargo pick-ups and drops can occur 
during a voyage. Conca et al. (2018) claim benefits can be enjoyed by using actual 
dynamic data, shared between the stakeholders (carriers and terminals), improving 
the quality of stowage. A ship’s stowage plan changes from one port call to another, 
due to discharging and loading containers. Thus, the timely exchange of the latest 
status updates with the next terminal allows timely creating a new stowage plan 
which speeds up the terminal processes.

Low average quay crane (QC) processing rates are associated with long vessel 
sojourn times at the terminal and can lead to port congestion. Linn et  al. (2007) 
developed an artificial neural network model to predict the QC rates for the next 
planning period. Maldonado (2019) developed a two-stage analytics framework to 
minimize the number of rehandles (i.e., restacking) at a terminal by finding appro-
priate stacking locations. They predict the dwell time of each container arriving 
at the port using multiple linear regression, decision trees, and random forests, 
employing a large sample of import container data. Container features such as size 
and height, customs clearance requirements, empty/full status, weight, consignee 
name, and month are used in the prediction models. The authors’ results show that 
models using dwell time prediction can substantially reduce the number of container 
rehandles by appropriate stacking. Recently, Verma et al. (2019) used reinforcement 
learning to determine the optimal sequence of container movements so that the rear-
rangement of containers in the yard is minimized.
4.2.1.2 Research agenda How can we use real-time vessel arrival data along with 
container transshipment information to stack the containers appropriately in the 
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yard? Optimal yard assignment will reduce the time to remarshal the container for its 
onward travel and therefore lead to lower costs and speedier operations.

4.2.2  Landside operations

4.2.2.1 Current state Trucks, trains or barges drop off export containers and pick up 
import containers in landside operations. Truck terminal appointment systems are 
commonly used to schedule truck arrivals and reduce congestion. While optimization 
methods are commonly used to decide the number of optimal time-slots and assign 
trucks to a particular service slot, data mining techniques can be used to pair import 
containers with export containers such that empty truck trips are reduced and truck 
service levels are improved. Caballini et al. (2020) used a hierarchical clustering tech-
nique to combine import and export container loads based on multiple features such 
as container size, weight, type (IMO, Reefer, Normal), vessel departure time, and 
then assign the trucks to a preferred time slot to minimize their turnaround time. Li 
et al. (2022) use a bi-objective mixed integer programming model to ensure a smooth 
turnaround of trucks performing dual transactions at a landside by optimizing the 
allocation of appointment quotas along with the deployment of yard handling equip-
ment. Using real case studies from Mexican and Italian container terminals, they 
show that their two-phase approach could reduce empty-truck trips by up to 34%.

4.2.2.2 Research agenda How can new data sources that provide real-time vessel 
location information be leveraged to improve port operations planning and schedul-
ing activities, and reduce port congestion? Non-profit organizations have developed 
standard data exchange formats that would permit real-time data sharing and collabo-
ration among stakeholders. For example, the Digital Container Shipping Associa-
tion (DCSA, 2020) published the just-in-time arrival guide standards which would 
enable containerships to optimize their sailing speed based on the current congestion 
levels at the ports, thereby lowering fuel consumption and reducing CO2 emissions 
(IPCDMC.org). For example, a simulation exercise carried out by Wärtsilä on the 
Port of Singapore’s container operations revealed that optimized arrival times can 
reduce CO2 emissions by 1,6 M tonnes annually (https:// www. warts ila. com/ insig hts/ 
artic le/ benefi ts- of- just- in- time- saili ng- how- to- take- port- opera tions- to- new- heigh ts). 
Further benefits include increase in navigational safety and better fleet planning and 
scheduling. Likewise, The Dutch TNO (tno.nl) and the Port of Rotterdam Authority 
analyzed all container vessels berthing at the port in 2017 and estimated that by sup-
plying accurate information to ships, about 4 percent – or 134,000 tonnes – of CO2 
emissions can be saved every year (https:// www. porto frott erdam. com/ en/ news- and- 
press- relea ses/ just- time- saili ng- saves- hundr eds- thous ands- tonnes- co2). The vessels 
would need to adjust their sailing speed by an average of 5 percent, and still arrive at 
the planned arrival time. Additional savings could be attainable if ships were better 
informed twelve hours before arrival at the port.

The Swedish Maritime Administration’s Sea Traffic Management (seatraffic-
management.info; STM) project creates a new paradigm for maritime informa-
tion sharing in real time. STM creates standards that allow interoperability among 
stakeholders and allow information holders to retain their valuable data and choose 
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how they share it. STM has validated the infrastructure, software, and services on 
300 ships in nine ports and in five shore centers. The results show improvements in 
safety, efficiency, and ecology.

Real-time data (both actual and estimated voyage and port-centric time-stamps) 
allow researchers to show the value of real-time schedule optimization. The value 
of BDA lies in integrating data and coordinating stakeholders from different modes. 
For example, the GPS data from trucks can be adopted to initiate container handling 
operations before the truck arrives. Further, how can we appropriately pair (match) 
an import with an export truck, such that the empty leg of the trucks can be reduced, 
saving both costs and reducing emissions? Real-time integration of data across dif-
ferent modes of transport and the port status would also enable synchromodality. 
Acero et  al. (2022) define synchromodality as “a multimodal transportation plan-
ning system, wherein the different agents involved in the supply chain work in an 
integrated and flexible way that enables them to dynamically adapt the transport 
mode they use based on real-time information from stakeholders, customers, and the 
logistic network”. With real-time data integration (demand across modes, state of 
the modal assets, and port resource status), we can predict delays in transport related 
to the due times and facilitate adaptive modal choice. Such integrations may prevent 
transport delays during disruptions. At a strategic level, data from the terminals can 
help predict shipper on-time performance, booking and cancellation behavior, and 
capacity utilization. Shipper trend analysis and forecasting can help carriers to maxi-
mize vessel utilization and improve business profitability.

5  Rail Freight Transport

This is a pivotal time for establishing new lines of freight rail research based on 
new data sources (Table 1), hardware, and computer system architecture develop-
ments. Some authors talk about the structural changes required to create, dissemi-
nate and store these new data sources. Land et al. (2019) describe some of the gen-
eral infrastructural advancements and developments in freight rail data systems and 
their effect on decision-making and operations. Xin and Xiaoning (2020) discuss the 
architecture requirements for data collection and dissemination in such systems, and 
McMahon et al. (2020) focus on railway asset data collection and data management 
requirements in a big data environment. Thaduri et  al. (2015) discuss the insights 
that can be gleaned from big data for all phases of rail asset management, including 
maintenance, safety and operations in passenger rail, though many of the concepts 
apply to freight rail as well.

These new data sources have led to analytical research stemming from the new 
capabilities. In a survey of big data and rail analytics, Ghofrani et al. (2018) note 
that two-thirds of the rail research articles in that survey were categorized as “big 
data” articles, and nearly half of the papers appeared in the last 3 years (2015–2017) 
of a fifteen-year span (2003–2017). Ghofrani further notes that nearly half of the 
BDA applications are applied to maintenance, just under one third in operations, 
and just over one fifth in safety topics. The new data sources described above have 
led to entirely new and somewhat radical opportunities to use this high-frequency, 
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high-volume data to create advanced analytical techniques, to improve operations 
and locomotive, railcar and truck management and maintenance. Below we discuss 
each area in turn.

5.1  Rail operations

5.1.1  Current state

Historically, when a train passes a fixed signal, a fixed block of track is allocated to 
only that train for safety reasons. The location of a train is only known to be within 
some fixed area of the rail tracks, called a track “block”, which can be from 10 to 
over 150 km long.

In 2008, the US government mandated that all major freight railroads in the 
USA implement satellite-based tracking systems for their trains over the 76,000 
miles of mainline track (Rail Safety Improvement Act of 2008). The satellite track-
ing of trains gives pin-point accuracy of train locations, overlaying or replacing the 
fixed track block and signaling system. Newly implemented Positive Train Control 
(PTC; AAR, 2020) systems can leverage improved location information to reduce 
human error. These systems are overlay systems that work alongside existing track-
side monitoring systems and movement policies based on fixed block train control 
policies. Despite traditional regulations and norms on dispatching, PTC allows for 
improved approaches, augmented by new analytical methods.

Augmentations to PTC, known as Communications-Based Train Control (CBTC), 
frequently used in passenger rail, allow for more aggressive use of track, allowing 
the leading and trailing distance between trains to shrink, using “dynamic blocks” or 
“moving blocks” based on the train stopping distance and its precise location not on 
fixed, static track blocks, and perhaps eventually allow for autonomous trains. These 
developments lead the way for entirely new dispatching algorithms that leverage the 
enormous amount of real time location information and drastically expanded track 
capacity from dynamic blocks. Similar advances have been made in China, result-
ing in cloud-based dispatching and freight management tools handled in distributed 
systems using Tashi and Hadoop and Map-Reduce search technology (Zhang, et al. 
2009).

5.1.1.1 Research agenda How will dispatching algorithms work under a moving 
block rail dispatching regime? The new PTC/CBTC capabilities require a recon-
structed view on rail dispatching research to accommodate a new set of capabili-
ties and a relaxed set of assumptions. Stephens (2021) reports that BNSF railways 
received a patent for a “moving block” system that would allow dispatching based 
on GPS location rather strictly on signaling. No current dispatching algorithms are 
based on fixed block. Dingler et al. (2010) discuss increases in track capacity due to 
moving block capabilities and suggest moving blocks increase a track’s capacity by 
as much as 25% but require new dispatching methods and algorithms. Such capabili-
ties require significant analysis for improved train dispatching practices in a number 
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of ways. Zhao and Ioannou (2015) discuss improved dynamic headway dispatching 
policies and how these relate to the new source of data. Finally, Diaz de Rivera, et al. 
(2020) discuss changing train fleeting policies given dynamic blocking.

5.1.2  Locomotive maintenance

5.1.2.1 Current state With all of its assets, railroads strive to replace RM (after a part 
failure) with SM (before part failure). A major challenge in failure prediction came 
from the infrequency and inaccuracy of data. New sensors on tracks, cars, and loco-
motives provide near real-time information on the condition of these assets, changing 
the need for scheduled inspections, which are costly and often remove the asset from 
productive service. Ghofrani (2017) found that in the maintenance area, BDA appli-
cations focused on PM and condition-based maintenance. Railroads’ maintenance 
planning processes are moving away from periodic inspections to continuous status 
monitoring, which changes the required prediction tools. McMahon et al. (2020) pro-
vide a review of the requirements and challenges in big data analytics applications 
to asset management. Locomotives are highly complex pieces of equipment, now 
equipped with computer and communications technology for recording operating sta-
tistics (such as fuel burn and various torque measures), condition reporting (tempera-
tures, liquid pressures, vibration levels), cab video, and location information.

5.1.2.2 Research agenda What new analytical methods can be developed to take 
advantage of the near real-time flow of highly accurate and voluminous data? There 
are many locomotive components, each with its own pattern of wear and criticality. 
For example, sensors on locomotives monitor operating practices of engineers and 
can be used to optimize speed/fuel trade-offs remotely. Others measure vibration, 
temperature, emissions and more. Each sensor may require different approaches and 
requirements for speedy identification and resolution. For example, Lei et al. (2016) 
describe an unsupervised ML application for evaluating on a continuous basis the 
condition of motor bearings.

5.1.3  Railcar maintenance and management

5.1.3.1 Current state Railcar status has long been monitored on a frequent basis 
from way side detectors, but these report risk conditions and failures which require 
the train to stop and remove the car in disrepair from the train at which time correc-
tive maintenance can be conducted. Train inspections occur on a scheduled basis 
(e.g., inspection points every 500 miles) during a trip. Often, the costly and time-
consuming inspection is premature and reveals no defects; other times, the inspection 
does not identify the car at-risk before a break down occurs after the train departs.

A plethora of new sensors now help to identify the location, mechanical status, 
and current availability of railcar equipment. Coupled with IoT, data is available 
for decisions immediately. The sensors are not only valuable for railcar preventive 
maintenance. Rail and container yards contain thousands of cars and containers at 
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any one time. Equipment status and availability can be evaluated by sensors which 
discern whether the equipment is loaded or empty and therefore available for use. 
Precise information on location helps reduce lost search time and allows for more 
efficient car and container movement plans.

5.1.4  Research agenda

What preventative maintenance algorithms are needed to make use of new locomo-
tive sensor data? The sensors provide more accurate and timely data from which 
to make maintenance decisions. Whereas manual locomotive and car inspections 
take place on a time interval and mileage basis, sensors provide instead a continuous 
flow of information. This helps avoid long intervals of underperformance or equip-
ment deterioration while operating defectively, and coupled with new analytical 
approaches, can enable better maintenance scheduling and planning. For example, 
Tarawneh et al. (2018) discuss the use of sensors which continuously evaluate and 
disseminate information, such as temperature, vibration, load and impact stress on 
axles and wheels. In another example, Albakay et al. (2019) discuss PM-based BDA 
for improved performance in train safety, availability, and reliability.

5.1.5  Track maintenance

5.1.5.1 Current practice Generally, there are two types of track inspections: geom-
etry and structural. Geometry inspections focus on the gauge, profile and alignment 
of the rails. Structural inspections focus on the condition of the rail, ties, and ballast. 
Historically, teams of engineers would ride in telemetry cars, slowly traversing the 
track, taking measurements. The need for analysis was relatively low because the 
slow and costly manual data collection of track inspection was infrequent. Of course, 
this method meant that track segments were measured quite infrequently, and the 
need for analytical methods was low.

The increase of low-cost data collection tools such as track monitors on trains 
(Saki et  al. 2019) and drones with video capture reduce the time and expertise 
required to inspect the tracks and have increased the inflow rate of track data dra-
matically. With an increased flow of track data, faster analysis of track geometry and 
conditions is required. Salierno et al. (2020) focus on the data collection and prepa-
ration process for defect detection in a big data environment. Gerum et al. (2019) 
discuss the importance and improvements in data accuracy and precision of track 
failure based on track conditions. Once track conditions are known, track mainte-
nance crews must be scheduled. Consilvio et  al. (2019) discuss the entire process 
from data collection and manipulation to optimization of scheduling maintenance 
crews. New track predictive maintenance algorithms will be needed due to high-
volume data now regularly available.

5.1.6  Research agenda

5.1.6.1 How can we leverage video and sensor information to allow for better predic‑
tive maintenance of tracks? Artificial intelligence methods can process video of the 
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track, increasing the speed and frequency of analysis to match the increased flow of 
data collection (Pall et al. 2014). For example, Martey et al. (2017) propose a method 
to predict geometry defects in a big data environment.

5.1.7  Safety

5.1.7.1 Current state A number of new data sources help with safety. Of course, 
well-maintained locomotives, railcars, and tracks are paramount for safety, but there 
are others; for example, satellite tracking and control of locomotives as a second layer 
of protection from collisions, and videos of engineers measuring fatigue. These data 
cannot be economically or effectively monitored by human eye, and new analytical 
methods are needed.

5.1.7.2 Research agenda How can we leverage video data analytics in locomotive 
cabs to monitor train operators to improve safety of operations? Fixed cameras on 
locomotives provide continuous, real-time data. Coupled with AI-based automated 
surveillance technology, real-time preventative alerts will identify fatigue as it hap-
pens.

6  Trucking‑based freight transport

For many countries, trucking accounts for the vast majority of freight market share. In 
the USA, it has been estimated that 72.5% of all freight is moved by truck (American 
Trucking Association 2020). From an economic perspective, the size of the US truck-
ing industry in 2017 was estimated at more than $700 billion (Business Insider, 2019); 
globally, this is estimated to be more than $4 trillion (FreightWaves, 2020).

In this section, we propose a research agenda for trucking-based freight trans-
portation that is enabled by the dramatic increase in available data regarding opera-
tions in the broader transport sector. We outline two different streams of research 
within that agenda. For each stream, we describe the current operational issues moti-
vating the research and the data sources that we believe enable such research to be 
impactful.

6.1  Market‑oriented research agenda

6.1.1  Current state

The truckload (TL) carrier market in the USA is large and notoriously fragmented. 
The number of for-hire carriers in the country is often reported to consist of over 
900,000 companies, with over 90% of them having fewer than six vehicles (Ameri-
can Trucking Association 2020). In Europe instead, over 90% of trucking companies 
have less than 10 trucks (trans.info, 2020). Even the largest TL carrier in the USA 
has less than 5% market share (Logistics Management, 2020). In addition, truckload 
transportation capacity is often established in response to shipper requests rather 
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than with advanced scheduling. As a result, the supply of truck-based freight trans-
portation is typically dynamic, volatile, and only partially observed. Knowing what 
trucking capacity a carrier can provide where it is needed is a constant problem for 
shippers (McCrea 2020).

The demand for trucking capacity has similar characteristics. Shippers procure 
transportation capacity from carriers via two mechanisms (Jothi Basu et al., 2020; 
Lafkihi et al. 2019). Formal, long-term, contracts with one or more carriers that typ-
ically specify the rate at which that carrier will provide capacity between an origin 
and destination. These contracts are often established via auctions (Lim et al. 2008) 
and account for about 80% of the transportation procured in the USA (Howe, 2020). 
Second, spot markets are used for the remaining 20%. However, relying on the spot 
market is risky, as spot prices can exhibit tremendous volatility (Budak et al. 2017). 
Sometimes, that volatility forces shippers to turn to the spot market; it has been 
reported (Robinson 2020) that 20% of the time carriers reject requests from con-
tracted shippers to achieve high spot market rates when available market capacity 
is low. Like supply, the demand for trucking capacity is volatile; the average tender 
lead time (the time between when a shipper announces a need for transportation and 
when that transportation is to occur) is often less than three days (FreightWaves, 
2019).

While transportation procurement has long been an area of opportunity for ana-
lytics (Lafkihi et al. 2019), researchers have noted (Caplice et al., 2003; Lafkihi et al. 
2019) that most of the contract-focused procurement activities have relied less on 
analytical models and more on negotiation. More specifically, much of the procure-
ment-related literature (e.g., Lafkihi et al. 2019) has focused either on mechanisms 
for establishing transportation contracts (Zhang et  al. 2015) or acquiring capacity 
via the spot market (Lim et al. 2008; Lindsey et al., 2017). Relatedly, shippers often 
resort to the spot market because they cannot promise sufficiently high, repeated, 
day-of-week specific volume to a carrier. Shippers are thus subject to volatile and 
uncertain spot market pricing that results from inventory and production planning 
decisions that are made without visibility of their impact on transportation options 
and costs.

Different carriers will follow different strategies with respect to accepting trans-
portation requests from shippers. Carriers who dedicate a portion of their fleet to a 
single shipper, or seek to provide a high level of service to an established customer 
base, will likely accept every or nearly every request made. Other, for-hire, carriers 
can accept or reject shipper requests for transportation. The price a shipper is willing 
to pay is one of many factors a carrier will consider when accepting a request. Oth-
ers include whether the shipper has goods ready for pickup when promised, the ease 
with which goods can be loaded at their origin and/or unloaded at their destination, 
and shipper promptness with respect to payment. More specifically, whether accept-
ing a request is profitable for a carrier also depends on whether doing so enables 
the carrier to service other requests. For example, if a driver must wait many hours 
before they can complete delivery at the shipper destination, driver hours of service 
regulations may prohibit that driver from serving more requests that day. Technol-
ogy platforms such as Uber Freight that provide carrier reviews of experiences with 
shippers provide greater visibility into how easy a shipper is to do business with.
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To summarize, trucking-based freight transportation is a market that consists of 
many players on both the shipper and carrier sides. There is also significant volatil-
ity on both sides of the market that complicates planning and operations, largely 
because carrier and shipper visibility in this market is limited. Carriers have only 
knowledge of the shippers for whom they have transported loads and shippers have 
only knowledge of the small number of carriers that have transported their loads. 
However, the data sources discussed previously will provide both shippers and car-
riers greater visibility of this market. Thus, we next propose a research agenda to 
realize market efficiencies from that visibility.

6.2  Research agenda

We next outline research questions regarding matching the demand for freight trans-
portation with its supply. We begin with a question relevant to carriers. We then turn 
to questions relevant to shippers.

How can carriers use competition and spot market price data to decide which 
transportation service request to accept? ADP-based methods (Godfrey et  al., 
2002), developed for route optimization-oriented fleet management problems, typi-
cally assume carriers accept all transportation service requests. As noted above, this 
assumption may be reasonable for some (e.g., dedicated) carriers. However, even 
dedicated carriers may want to opportunistically accept requests from outside their 
customer base. Greater demand visibility enables both dedicated and non-dedicated 
carriers to intelligently pick and choose transportation requests to service. Adapt-
ing ADP-based methods to capture selective service opportunities presents several 
new research challenges. One is to recognize the presence of competition from other 
carriers, a second is to recognize the volatility in spot market prices, and a third 
is to inform Approximate Dynamic Programming (ADP)-based methods with data 
derived from free text user reviews regarding shipper readiness and reliability.

How can shippers determine the optimal mix of contracted and spot market ship-
ments using real-time market datasets? A shipper may establish contracts for fre-
quent and high-volume transportation needs and rely on the spot market for moves 
that are low volume. Greater visibility of contract and spot markets creates more 
comprehensive data sets and will improve the calibration of analytical procurement 
models. Examples include models that can help a shipper value a transportation con-
tract (Tsai et  al. 2011), determine whether to sign a contract or resort to the spot 
market on a single lane (Boada-Collado et  al. 2020), and determine which lanes 
should be collectively outsourced to a third-party transportation provider (Raja-
pakshe et al. 2014). Boada-Collado et al. (2020) considered this question, but did so 
for a setting consisting of a single lane and constant, known, spot market prices; new 
spot market data allow researchers to relax this assumption.

How can shippers inform production planning models with explicit recogni-
tion of the impact of well-timed production and inventory decisions on transporta-
tion options along with representation of uncertainty and volatility in spot market 
rates? The production routing problem (Adulyasak et  al. 2015) jointly determines 
production, inventory, and transportation decisions. While the model assumes 
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transportation costs and capacities are known and constant, there is often volatility 
in both. Research into this problem has not recognized that the timing of produc-
tion and inventory decisions can impact the transportation options available to the 
shipper. Nor has research recognized that there may be uncertainty regarding those 
options. Generally, full truckload transportation is cheaper than less-than-truckload 
transportation on a per-unit-of-weight measure. Well-timed sourcing decisions may 
enable a shipper to use full truckload transportation for their inbound transportation 
of materials. Well-timed production decisions can do the same for outbound trans-
portation of finished goods. Similarly, a carrier is often willing to charge a lower 
per-unit-of-distance rate on two complementary moves than it would on each indi-
vidual move. Well-timed and coordinated sourcing and production decisions can 
enable a shipper to achieve savings by offering both inbound and outbound trans-
portation moves to the same carrier. When there is volatility in the transportation 
market, achieving savings via the mechanisms described above requires forecasting 
models that accurately predict transportation options and prices. Insights into the 
contract and spot markets afforded by new data sources will enable development and 
calibration of such forecasting models.

6.3  Carrier operations‑oriented research agenda

6.3.1  Current state

For carriers, fleet management has long been an opportunity area for analytical 
models (Gorman et al. 2014). A critical issue in fleet management is determining 
which vehicle to assign to serve an accepted transportation request. In the absence of 
autonomous vehicles, a related issue is determining the driver to drive that vehicle. 
These allocation problems are challenging because requests occur over time and, in 
many countries, drivers can only work a limited number of hours a day. Poor choices 
can lead to excessive empty miles, higher costs, lower margins, and lower equipment 
utilization. For example, it has been reported that 15–30% of freight truck trips in 
Europe concern empty miles (Eurostat 2017). Often, these empty miles are a result 
of a vehicle and driver completing a transportation request and there not being a 
next request nearby for them to serve. Thus, effectively allocating vehicles and driv-
ers to transportation requests requires anticipating when and where future requests 
will occur and how much competition there may be for those requests from other 
carriers. Regarding transportation requests, researchers have tried to utilize GPS 
data to forecast commodity movements (Akter et al., 2019), providing more insight 
into freight movement. Greater visibility of historical transportation demands ena-
bles better forecasting of future freight transportation demand (Garrido et al., 2000; 
Xiao et  al. 2020). Regarding carrier competition, researchers have collected GPS 
truck data from multiple carriers to generate forecasts of freight truck movements 
across carriers (Bassok et al. 2011; Ben-Akiva et al. 2016; Flaskou et al. 2015; Ma 
et al. 2016). An improved ability to forecast both supply and demand in the freight 
transportation market can lead to better allocation decisions and fewer empty miles 
(Ichoua et al. 2006; Miller et al. 2020a, b).
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Another critical issue for carriers in the supply of transportation capacity is the 
chronic shortage of drivers; in 2018, there was an estimated shortage of over 60,000 
drivers in the USA (TB&P 2020), and the shortage is expected to grow in magni-
tude because the average age of a truck driver in the USA is over 50 years. How-
ever, some expect autonomous trucks to be a mitigating factor. In any case, effec-
tive driver utilization is critical. Given the rules and regulations regarding how long 
drivers can be on the road and away from their domicile terminal, the allocation of 
drivers to domicile terminals has a critical impact on their potential to meet shipper 
demands for transportation and the effective utilization of drivers.

Detention, or a truck waiting more than two hours while loading or unloading 
at a dock, may cause costly congestion. Reportedly, 63% of drivers are detained 
for more than three hours per stop (DAT Freight and Analytics 2016). Such time 
reduces the amount of capacity a driver (and truck) can provide. While carriers fre-
quently cite detention as a major problem, shippers do so much less often (DAT 
Freight and Analytics 2016). Telematics can provide carriers with data to justify the 
need of shippers to change those practices which lead to excessive detention times. 
One source of detention is shipments that are not ready for loading when the vehicle 
arrives. Encouraging a shipper to communicate more frequently with the driver, to 
get an up-to-date estimated time of arrival, can help ensure that goods are ready for 
loading at the right time. Another source is a vehicle arriving but there not being an 
available parking spot at the dock for loading. Encouraging a shipper to adopt tech-
nology solutions like a yard management system can help ensure that when a vehicle 
arrives there is a place for it to park and receive its load. Anticipating detentions at 
shipper destinations can enable a carrier to better allocate drivers to such requests.

6.4  Research agenda

How can carriers leverage telematics data to decide which vehicle and driver 
should be assigned to which transportation request? Determining which vehicle 
and/or driver to assign to serve a transportation request often falls under the broad 
umbrella of route optimization. Analytical techniques for route optimization often 
involve some form of Approximate Dynamic Programming (ADP; Powell 2007; 
Ulmer et al. 2019), where near-term decisions are made based upon statistical esti-
mates of key performance indicators which are, however, realized after decisions are 
implemented. The quality of transportation request forecasts drives the quality of 
these estimates; new data sources can improve their performance and open up new 
research directions. Applications of ADP methods to truckload fleet management 
require real-time knowledge of vehicle locations. Documented applications of these 
methods in the past (Simão et al. 2009, 2010) have only existed for large carriers 
that have the resources to invest in new data sources. The vehicle telematics data 
sources outlined above make such knowledge also available to smaller carriers. Sim-
ilarly, implementing and executing these methods has required computing resources 
well beyond the financial reach of many carriers. However, the advent of on-demand 
cloud data storage and packaged computing services reduces those requirements, 
expanding their use in practice.
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How should statistical distributions be embedded in driver domiciling and fleet 
sizing models to reduce empty miles and increase asset utilization? Determin-
ing the domicile terminal for a fleet of drivers has received some attention (Erera 
et al. 2009). Fleet sizing in a truckload context (Baykasoğlu et al. 2019), a related 
problem, has as well. However, none of the existing approaches have recognized 
the potential to move loads acquired via a spot market, whereby other carriers may 
compete too. Richer data sets regarding shipper needs for spot market transportation 
will enable the development of statistical distributions of such demands.

7  Conclusions

We have shown that freight transportation via air, water, rail, and truck has been radi-
cally changed by big data analytics, which has created a new world in freight transpor-
tation. New data sources, volumes and timeliness directly affect the way the industry 
operates, and how future researchers in these fields structure their work. From the con-
dition data sources, we see a dramatic improvement in asset maintenance and man-
agement across transport modes. From improved data accuracy and timeliness, we see 
improved network-wide data and forecasts that allow for better planning, scheduling, 
and supply chain coordination between market participants. Availability of market-
wide transactions affects how some transportation services are bought and sold.

As the freight transportation industry rolls out its approaches to maintenance, 
operations, supply chain and market transactions, so must research do to support 
them. We have described the new and evolving methods in use, and in need, across 
the freight transportation landscape. Future research agendas should pay heed to 
the rapidly changing conditions in the freight transportation industry. For rail, we 
discuss the developments mostly with respect to the USA. Extending the study to 
include other countries would be a potential opportunity. We have formulated a 
number of important research questions for each transport mode related to the new 
data sources and possibilities. These include:

(1) Maintenance: How can we use component reliability data obtained from 
IoT sensors for better preventive and condition-based maintenance strategies? (2) 
Planning and scheduling: How can we use the improved availability of asset track-
ing data across modes for better resource planning and scheduling decisions, and 
improving transportation speed? (3) Matching demand and supply: How can we use 
the multi-sided platforms (especially in road and ocean freight) for better matching 
of supply and demand, with better capacity utilization, and pricing?

Decision models in all three areas are static in nature due to lack of real-time data 
availability (planning decisions are taken over a longer horizon and often heuris-
tics are adopted to obtain a solution). New real-time and dynamic information allow 
the decisions to be made online, and the models can be run on a real-time basis. 
This provides new data-driven opportunities to both research and practice in freight 
transportation.
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