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We propose a model-based predictive estimator of the finite population
proportion of a misclassified binary response, when information on the
auxiliary variable(s) is available for all units in the population.
Asymptotic properties of the misclassification-adjusted predictive esti-
mator are also explored. We propose a computationally efficient boot-
strap variance estimator that exhibits better performance compared to
usual analytical variance estimator. The performance of the proposed es-
timator is compared with other commonly used design-based estimators
through extensive simulation studies. The results are supplemented by
an empirical study based on literacy data.
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Model-based estimators; Pseudo-likelihood; Resampling; Validation
data.

1. INTRODUCTION

In finite population surveys, estimation of the population proportion is an im-
portant research problem. For instance, in epidemiological studies, proportion
of coalminers suffering from wheeze (Ekholm and Palmgren 1982); in wildlife
surveys, proportion of species of a specific kind (Thompson 2002); and in
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health research studies, proportion of persons developing cardiovascular dis-
ease (Stefanski and Carroll 1985) are all potential examples of proportion esti-
mation. Auxiliary information if available can be used to increase the precision
of estimation via a model-based or design-based approach. For the former, we
refer to Valliant, Dorfman, and Royall (2000). Generalized regression estima-
tors (Cassel, S€arndal, and Wretman 1976; S€arndal 1980), calibration estimators
(Deville and S€arndal 1992; Wu and Sitter 2001), and estimators based on em-
pirical likelihood (Chen and Qin 1993; Chen and Sitter 1999; Zhong and Rao
2000) are prominent examples under design-based approach. Adhya, Banerjee,
and Chattopadhyay (2011) have shown that, under different sampling schemes,
the model-based estimator of the population proportion of a polychotomous re-
sponse variable has performed better than the commonly used design-based
estimators.

Motivated by the findings of Adhya et al. (2011), in this article, we develop
a model-based predictive estimator of the population proportion of a binary re-
sponse, following the prediction approach of Royall (1970, 1976). Typically,
here, the actual values of the binary response variable for each unit in the finite
population are treated as realizations of random variables, which are assumed
to follow a joint probability law specified by a super-population model. The
prediction approach combines the information from the sampled units and the
predicted responses from the non-sampled units, which are estimated via the
super-population model.

The standard inferential problems in finite population surveys assume that
the responses are correctly observed, which however is often not true. Due to
cost and convenience, frequently such studies employ inaccurate measures of
responses. Although for binary data the problem of misclassification has been
extensively researched (Gustafson 2003; Buonaccorsi 2010), its application in
survey sampling is still limited. It is well established that, under misclassifica-
tion, sample proportion is a biased estimate of the parameter (Bross 1954).
However, a perennial problem with the models corrected for misclassification
is that, they are over parametrized. The double sampling approach is a widely
used technique for resolving the identifiability problem. In this method, two
samples are used in conjunction: the original sample of cursory observations
and a validation sample where the true responses are evaluated using a costly
gold standard method. The validation sample could be an external sample from
the same finite population or it could be a subsample of the original sample.
Getting such gold standard is not uncommon in practice. For instance, in a life
span study among atom bomb survivors, it was observed that the cause of
death was misspecifed in death certificates. Sposto, Preston, Shimizu, and
Mabuchi (1992) estimated the misclassification probabilities by using a valida-
tion data set obtained from a subset of deaths in the cohort for which autopsies
were carried out. Tenenbein (1970) is a classic example of the use of double
sampling to correct for misclassification in the binomial model. Hochberg
(1977) and Chen (1979) adopted double sampling approach to correct for
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misclassification in categorical models. Double sampling is also used for the
estimation of complex models like misclassified multivariate ordinal response
(Poon and Wang 2010) and misclassified correlated binary response (Chen,
Yi, and Wu 2011). Recently Sang, Lopiano, Abreu, Lamas, Arroway, et al.
(2017) have proposed a design-based estimator of the population proportion
based on the three-phase survey, which adjusts for misclassification. However,
the authors did not adopt any model-based approach.

The article focuses on the estimation of finite population proportions using
prediction approach when information on the auxiliary variable is available for
all units in the population. Unlike the previous work in this area, the current
work considers an error-prone binary response. Using a classification error
model, we develop a misclassification-adjusted predictive estimator of the pop-
ulation proportion. The article also looks into the asymptotic properties of the
proposed estimator and constructs a novel hybrid bootstrap variance estimator
of the prediction error. Extensive model-based and design-based simulations
support the efficacy of the proposed estimator. The findings are validated by
analyzing a survey data on literacy.

2. PREDICTIVE ESTIMATOR

Consider a finite population comprising N units and let Yiði ¼ 1; ::;NÞ denote
the binary response variable corresponding to these N units. The vector xi

¼ ðxi1; xi2; ::; xiqÞT gives the values of the q auxiliary variables that are as-
sumed to be known for the entire population and let XU ¼ ðx1; x2; ::; xNÞ. Our
interest lies in developing a model-based predictive estimator of the population
quantity,

P ¼ N�1
XN

i¼1

Yi: (1)

For predicting P given in (1), we first select a sample of n units from N units
by a suitable sampling scheme, which encompasses probability and non-
probability sampling as long as those are non-informative. We refer to Sugden
and Smith (1984) for the former while the latter has been considered by Smith
(1983) and Elliott and Valliant (2017) among others. For these n units, we ob-
serve the study variable Yi(i 2 S), where S is the set of n indices of the sampled
units. Let us define dU ¼ ðd1; d2; ::; dNÞT , such that di ¼ 1 if i 2 S, and 0, oth-
erwise. Then, due to ignorability assumption, following similar argument as in
Theorem 1.3.1 of Fuller (2009), the conditional distribution of YijXU is same
as that of YijXU ; dU . Now, conditional on XU, Y1; Y2; ::;YN are independent
with probability distribution given by,
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PðYi ¼ 1jxiÞ ¼ pðxi; bÞ ¼
expðgðxi; bÞÞ

1þ expðgðxi; bÞÞ
; (2)

where the function gð:Þ is of known form and b ¼ ðbT
1 ; b

T
2 ; ::;b

T
q Þ

T where bT
h is

the vector of unknown regression coefficients associated with the auxiliary var-
iable xihðh ¼ 1; 2; ::; qÞ.

However, in observational studies, where data are collected on a large num-
ber of individuals, the binary responses are typically not correctly observed.
Let Yobs

i ði ¼ 1; ::;NÞ denote the manifest binary response corresponding to
the ith unit in the population. We assume a simple probability model linking
the observed response with the true response as follows:

PðYobs
i ¼ 1jYi ¼ 0Þ ¼ �0; (3)

PðYobs
i ¼ 0jYi ¼ 1Þ ¼ �1; (4)

where �0 and �1 are unknown misclassification probabilities, which may or
may not depend upon the auxiliary variable(s). Now, incorporating the mis-
classification probabilities, the conditional probability of the manifest response
to be positive is given by,

~pðxi; b; �Þ ¼ PðYobs
i ¼ 1jxiÞ ¼ �0 þ ð1� �0 � �1Þpðxi; bÞ; (5)

where pðxi; bÞ is given in (2). It is worthwhile to note that if �0 þ �1 ¼ 1, (5)
becomes independent of b and then the manifest response does not contain any
information about the regression parameters. Moreover, for all practical pur-
poses, it is reasonable to assume that the classification error of either kind is
lesser than half (Wang and Gustafson 2014).

In case the true responses are observable, the predictive estimator of P in (1)
could be obtained as,

bPtrue ¼ N�1f
X
i2S

Yi þ
X
i2S

EðYijxi; bbtrueÞg; (6)

where S is the set of ðN � nÞ non-sampled units and bbtrue is the maximum like-
lihood estimator (MLE) of b obtained on the basis of true Yi(i 2 S), using the
model given in (2). Note that bPtrue in (6) corresponds to the predictive estima-
tor of Valliant et al. (2000) who considered logit and complementary log–log
link functions with linear predictors.

In our case, the true Yi(i 2 S) are not observable and so the predictive esti-
mator in (6) cannot be constructed. A simple solution is to derive the MLE
based on sample manifest responses, Yobs

i (i 2 S). For all future references, we
shall denote this naive estimator of b by bbnaive and the naive predictive estima-
tor so constructed will be denoted by bPnaive, where,
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bPnaive ¼ N�1f
X
i2S

Yobs
i þ

X
i2S

EðYijxi; bbnaiveÞg: (7)

It is evident that the estimator in (7) is biased since it is constructed by ignoring
the misclassification in the response. We thus propose a misclassification-
adjusted predictive estimator of P as,

bPadjusted ¼ N�1f
X
i2S

EðYijYobs
i ; xi; bb;b�Þ þX

i2S

EðYijxi; bbÞg; (8)

where bb and b� ¼ ðb�0;b�1ÞT are, respectively, the maximum likelihood estimates
of b and � ¼ ð�0; �1ÞT , which are obtained on the basis of the sample manifest
responses using the misclassification adjusted model given in (5). At this stage,
it needs mentioning that, if all observations lie in the central part of the logit
function, then simultaneous estimation of b and � from model (5) clearly falls
through, since in that case the logit can be well approximated by a linear func-
tion (Cox and Snell 1989) and hence the estimates of the misclassification
probabilities get totally confounded with the estimates of the regression
parameters.

To resolve the identifiability issue, a double sampling approach has been
adopted. In this method, along with the main sample, an internal validation
sample of relatively smaller size is used where the binary response is observed
without any error. Here, the subsample is drawn from S by simple random
sampling without replacement and is denoted by Sv. The non-validation set is
denoted by Snv where Sv [ Snv ¼ S. Throughout we shall use f ðu; hÞ as a ge-
neric notation for a density function of the random variable U characterized by
the parameter h. Based on the data ðYi; i 2 Sv; Yobs

i ; i 2 S; xi; i 2 SÞ, the log-
likelihood function can be partitioned as,

lðb; �Þ ¼
X
i2Sv

log ðf ðyi;y
obs
i jxi;b; �ÞÞþ

X
i2Snv

log ðf ðyobs
i jxi;b; �ÞÞ

¼
X
i2Sv

log ðf ðyobs
i jyi; �ÞÞþ

X
i2Sv

log ðf ðyijxi;bÞÞþ
X
i2Snv

log ðf ðyobs
i jxi;b; �ÞÞ

¼ l1ð�Þþ l2ðbÞþ l3ðb; �Þ;
(9)

where l1ð�Þ is obtained from (3) and (4) while l2ðbÞ and l3ðb; �Þ are obtained
from (2) and (5), respectively. Maximizing the likelihood function in (9) could
be mathematically involved. A simple solution is to use a two-step estimation
procedure where in the first step the nuisance parameter � is estimated using
the validation data only, that is, from l1ð�Þ. In the second step, the estimate of
b is obtained from l2ðbÞ and l3ðb; �Þ, after plugging in the estimate of � from
the first step. This method is popularly known as pseudo-maximum likelihood
method (Gong and Samaniego 1981). Thus, maximizing l1ð�Þ yields,
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b�0 ¼
X
i2Sv

ð1� YiÞ
 !�1X

i2Sv

Yobs
i ð1� YiÞ; (10)

b�1 ¼
X
i2Sv

Yi

 !�1X
i2Sv

Yið1� Yobs
i Þ: (11)

Next, the pseudo-maximum likelihood estimate (PMLE) of b denoted by bb is
obtained by solving the score equation,X

i2Sv

@l2ðbÞ
@b

þ
X
i2Snv

@l3ðb;b�Þ
@b

¼ 0; (12)

where l2ð:Þ and l3ð:Þ are given in (9) and b� ¼ ðb�0 ; b�1ÞT is given in (10) and
(11). The predictive estimator in (8) is modified to get the corrected estimator
of P as,

bPC ¼ N�1f
X
i2Sv

Yi þ
X
i2Snv

EðYijYobs
i ; xi; bb;b�Þ þX

i2S

EðYijxi; bbÞg; (13)

where

EðYijYobs
i ; xi; bb;b�Þ ¼

½~pðxi; bb;b�Þ�1ð1� b�1Þpðxi; bbÞ�Yobs
i ½ð1� ~pðxi; bb;b�ÞÞ�1 b�1pðxi; bbÞ�1�Yobs

i ;

(14)

EðYijxi; bbÞ ¼ pðxi; bbÞ: (15)

Moreover, pðxi; bbÞ and ~pðxi; bb;b�Þ appearing in (14) and (15) are obtained
from (2) and (5), respectively, by replacing b with bb and � with b�. The proper-
ties of bPC given in (13) is studied in section 3.

3. ASYMPTOTIC PROPERTIES

In this section, we first introduce the basic building blocks required for proving

the results on asymptotic properties of ðbb; b�ÞT and the proposed predictive esti-

mator bPC. For completeness, we give a brief description of all the notations

and quantities that would be used. Let �0 ¼ ð�0
0; �

0
1Þ

T and b0 ¼ ðb0T
1 ; . . . ; b0T

q Þ
T

denote the true values of � and b, respectively. Further suppose H� and Hb de-
note, respectively, the parametric spaces of � and b. Now, for a smooth generic
function, wðÞ; whð:Þ and whhð:Þ refer to the first and second order partial deriv-
atives with respect to h. We shall refer to a subset A (with cardinality nA) as S
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or Sv or Snv with cardinalities denoted by n, nv, and n� nv . In what follows, we
shall assume that the conditions C0–C6 are satisfied.

C0: For n!1; nv !1; f ¼ n
N ! q 2 ð0; 1Þ and

f v ¼ nv
n ! qv 2 ð0; 1Þ.

C1: The auxiliary variable xi; i ¼ 1; 2; . . . are independently and identically
distributed with an unspecified density function hð:Þ. For any subset A, the

asymptotic density, hAðÞ, for a sequence ðx1; x2; . . .Þ is given by, n�1
A

P
A I

ðxi � lÞ !
Ð l
�1 hAðuÞdu: (Chambers, Dorfman, and Hall 1992).

C2: H� ¼ 0; 1
2

� �2 � R2 and Hb is a compact subset of Rp, where

p ¼
Pq
h¼1

ph, and where ph is the dimension of bh.

C3: For any b and �, pðx; bÞ and ~pðx; b; �Þ are bounded away from 0 and
1 8 x:

C4: gðx; bÞ is twice continuously differentiable with respect to b 8x.

C5: For any subset A, EAjgðx; bÞj < 1 8b; EA½gbðx; bÞgT
bðx; bÞ� > 0

8b; EAjlnhðxÞj < 1 and EA
pðx;bÞð1�pðx;bÞÞ

~pðx;b;�Þð1�~pðx;b;�ÞÞ

h i
< 1 8ðb; �Þ, where EAð

:Þ is the expectation with respect to the asymptotic density hAð:Þ.
C6: Differentiation with respect to b and � under the integrals over x are
valid.

Theorem 1. Under conditions C0–C6, as nv !1,

b�!P �0 and bb!P b0:

Proof. See appendix A.1. h

Theorem 2. Under conditions C0–C6, as nv !1,

ffiffiffi
n
p
ðbb � b0Þ!L Nqð0; I�1ðb0; �0ÞGðb0; �0ÞWðb0; �0ÞGTðb0; �0ÞI�1ðb0; �0ÞÞ:

Proof. The detailed expressions of I ð�0; �0Þ; Gð�0; �0Þ and W ð�0; �0Þ
along with the proof is relegated to appendix A.2. h

To establish the asymptotic properties of model-based predictive estimator bPC,
we define

pijðx; b; �Þ ¼ EðY ¼ ijYobs ¼ j; x; b; �Þ; i; j ¼ 0; 1: (16)
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Based on pijðx; b; �Þ in (16), pðx; bÞ in (2), and ~pðx; b; �Þ in (5), we further de-
fine the following:

pij;bðx; b; �Þ ¼ @pijðx; b; �Þ
@b

; pij;�ðx; b; �Þ ¼ @pijðx; b; �Þ
@�

;

pbðx; bÞ ¼ @pðx; bÞ
@b

;

Dðb; �Þ ¼ Diag½�0ð1� �0Þð1� aðbÞÞ�1 ;

�1ð1� �1Þa�1ðbÞ�; where aðbÞ ¼ ESv ½pðx; bÞ�;

K1ðb; �Þ ¼ ðn� nvÞ�1
X
i2Snv

p11;�ðxi; b; �Þ~pðxi; b; �Þ;

K2ðb; �Þ ¼ ðn� nvÞ�1
X
i2Snv

p10;�ðxi; b; �Þð1� ~pðxi; b; �ÞÞ;

K3ðb; �Þ ¼ ðn� nvÞ�1
X
i2Snv

p11;bðxi; b; �Þ~pðxi; b; �Þ;

K4ðb; �Þ ¼ ðn� nvÞ�1
X
i2Snv

p10;bðxi; b; �Þð1� ~pðxi; b; �ÞÞ;

K5ðb; �Þ ¼ ðN � nÞ�1
X
i2S

pbðxi; bÞ;

K6ðb; �Þ ¼ ðN � nÞ�1
X
i2S

pðxi; bÞð1� pðxi; bÞÞ;

K7ðb; �Þ ¼ ðn� nvÞ�1
X
i2Snv

p11ðxi; b; �Þð1� p11ðxi; b; �ÞÞ~pðxi; b; �Þþ

ðn� nvÞ�1
X
i2Snv

p10ðxi; b; �Þð1� p10ðxi; b; �ÞÞð1� ~pðxi; b; �ÞÞ:

In what follows we shall further assume that the following condition is also
satisfied.
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C7: Ibbðb; �Þ ¼ limnv!1�n�1 @2lðb;�Þ
@b@bT ; Ib�ðb; �Þ ¼ limnv!1�n�1

@2lðb;�Þ
@b@�T , and Kiðb; �Þ ¼ limnv!1 kiðb; �Þ; i ¼ 1; 2; ::; 7 exist and are finite

for all values of ðb; �Þ, where limits are evaluated with respect to the as-
ymptotic density of x as mentioned in C1.

Finally, we define M1ðb; �Þ–M5ðb; �Þ as follows:

M1ðb; �Þ ¼ Dðb; �ÞIT
b�ðb; �ÞI�1

bb ðb; �Þ;
M2ðb; �Þ ¼ I�1

bb ðb; �ÞIb�ðb; �ÞM1ðb; �Þ;

M3ðb; �Þ ¼ I�1
bb ðb; �Þ þ q�1

v M2ðb; �Þ; M4ðb; �Þ ¼ K1ðb; �Þ þ K2ðb; �Þ;

M5ðb; �Þ ¼ K3ðb; �Þ þ K4ðb; �Þ:

Theorem 3. Under conditions C0–C7,

EðbPC � PÞ ¼ Oðn�1
v Þ:

Proof. See appendix A.3. h

Theorem 4. VarðbP C � PÞ ¼ V ð�0; �0Þ þ oðn�1
v Þ, where,

Vðb0; �0Þ ¼ n�1q2ð1� qvÞ2½q�1
v ððM0

4Þ
TD0M0

4 þ ðK0
2Þ

T M0
1K0

3 þ ðM0
4Þ

T M0
1M0

5þ

ðK0
1Þ

T M0
1K0

4Þ þ ðM0
5Þ

T M0
3M0

5� þ n�1ð1� qÞ2½ð1� qÞ�1K0
6 þ ðK0

5Þ
T M0

3M0
5�

þn�1ð1� qÞ2ð1� qvÞK0
7 þ 2n�1qð1� qÞð1� qvÞ½q�1

v ðM0
4Þ

T M0
1K0

5 þ ðM0
5Þ

T M0
3K0

5�;

with D0 ¼ Dðb0; �0Þ; K0
i ¼ Kiðb0; �0Þ; i ¼ 1; 2; . . . ; 7 and M0

i ¼ Miðb0; �0Þ;
i ¼ 1; 2; . . . ; 5.

Proof. We skip the detailed proof. Using Taylor series expansion of the
terms involving b� and b�, neglecting oðn�1

v Þ terms and after some routine
algebra, the variance expression follows. h

Corollary 1 As nv !1; ðbP C � PÞ!L N ð0;V ð�0; �0ÞÞ.

Proof. The proof follows from theorem 4. h

Corollary 2 A consistent estimator of the asymptotic variance of ðbP C � PÞ
is given by,
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bV A ¼ bV ðbb;b�Þ ¼ n�1f 2ð1� f vÞ2½f�1
v ð bMT

4
bDcM4 þcK2

T cM1cK3 þcM4
T cM1cM5 þcK1

T cM1cK4Þ

þcM5
T cM3 cM5 �þ n�1ð1� f Þ2½ð1� f Þ�1cK6 þcK5

T cM3 cM5 �þ n�1ð1� f Þ2ð1� f vÞcK7

þ2n�1f ð1� f Þð1� f vÞ½f�1
v
cM4

T cM1cK5 þcM5cM3cK5 �;
(17)

where bI ��¼�n�1@
2lð�;�Þ
@�@�T jb�;b� ; bI ��¼�n�1@

2lð�;�Þ
@�@�T jb�;b� ; b�¼�ðb�;b�Þ;cKi¼kiðb�;b�Þði¼1;2;::;7Þ; cM 1¼ b�bI T

��
bI �1�� ; cM 2¼bI �1�� bI �� b�bI T

��
bI �1�� ;cM 3¼bI �1��þ f�1v

cM 2; cM 4¼cK1þcK 2; and cM 5¼cK3þcK4.

Proof. All the terms appearing in bV A are continuous in b and �. Since b�
and b� are consistent (vide theorem 1), the consistency of the analytical
variance estimator also follows. h

Corollary 3 As nv !1; bV �1=2

A ðbP C � PÞ!L N ð0; 1Þ.

Proof. The proof follows from corollary 1, corollary 2, and Slutsky’s the-
orem. h

4. BOOTSTRAP VARIANCE ESTIMATION

We propose a computationally efficient, resampling-based hybrid bootstrap
variance estimation (Adhya, Banerjee, and Chattopadhyay 2012) of the predic-
tion error bPC � P. To this end, we first decompose the prediction error bPC � P
as,

bPC � P ¼ T1 þ T2; (18)

where T1 and T2 are given by,

T1 ¼ N�1P
i2Snv
fEðYijYobs

i ; xi; bb;b�Þ � EðYijYobs
i ; xi; b; �Þgþ

N�1P
i2SfEðYijxi; bbÞ � EðYijxi; bÞg ¼ T11 þ T12: ðsayÞ;

(19)

T2 ¼ N�1P
i2Snv
fEðYijYobs

i ; xi; b; �Þ � Yig þ N�1P
i2SfEðYijxi; bÞ � Yig

¼ T21 þ T22: ðsayÞ
(20)
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Theorem 5. Assuming, limnv!1ðn � n�1
v Þ
P

i2Snv
jjg�ðxi;�Þjj 1 8 � and

under conditions C0–C7,

VarðbPC � PÞ ¼ VarðT1Þ þ VarðT2Þ þ oðn�1
v Þ: (21)

Proof. Note that due to conditional independence of Sv and Snv given xs,
CovðT11;T22Þ ¼ CovðT12;T22Þ ¼ 0. Hence,

CovðT1; T2Þ ¼ CovðT11; T21Þ þ CovðT12; T21Þ: (22)

The proof follows from the fact that CovðT11;T21Þ ¼ oðn�1
v Þ and

CovðT12;T21Þ ¼ oðn�1
v Þ. Details are relegated to the online

Supplementary Material. h

Now a consistent estimate of VarðT2Þ can be obtained as,

dVarAðT2Þ ¼ N�2P
i2Snv

p11ðxi; bb;b�Þf1� p11ðxi; bb; b�Þg~pðxi; bb; b�Þ
þN�2P

i2Snv
p10ðxi; bb;b�Þf1� p10ðxi; bb; b�Þgf1� ~pðxi; bb; b�Þg

þN�2P
i2S pðxi; bbÞf1� pðxi; bbÞg;

(23)

where pijðxi; bb;b�Þ; ~pðxi; bb;b�Þ, and pðxi; bbÞ are obtained from (16), (5), and (2)
respectively after replacing (b, �) by (bb; b�). However, unlike VarðT2Þ, an exact
expression for VarðT1Þ cannot be obtained. In such situations, resampling-
based variance estimation is a popular choice in survey literature compared to
analytical variance estimation. The bootstrap method used here for the estima-
tion of VarðT1Þ is outlined below.

Step 4.1. Generate two independent paired bootstrap samples from ðYi; Yobs
i ; xi

; i 2 SvÞ and ðYobs
i ; xi; i 2 SnvÞ by simple random sampling with replacement

(SRSWR). Let the bootstrap samples be denoted by ðY�i ; Yobs�
i ; x�i ; i 2 SvÞ and

ðYobs�
i ; x�i ; i 2 SnvÞ, respectively.

Step 4.2. Based on the bootstrap data fðY�i ; Yobs�
i ; x�i ; i 2 SvÞ;

ðYobs�
i ; x�i ; i 2 SnvÞg, the bootstrap estimates of the parameters are obtained by

maximizing the log-likelihood function given in (9). We denote the bootstrap

analogs of bb and b� by bb� and b�� ¼ ðb��0;b��1ÞT , respectively. To avoid the itera-
tive procedure for obtaining the PMLE of b, we use a one-step approximation

of bb� (Claeskens, Aerts, and Molenberghs 2003), which is given in the online
Supplementary Material.
Step 4.3. For the bthðb ¼ 1; 2; . . . ;BÞ bootstrap sample using (16) we
compute,
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t�b ¼ N�1P
i2Snv
½p11ðx�ib;bb�b;b��bÞYobs�

ib p10ðx�ib;bb�b;b��bÞ1�Yobs�
ib �

p11ðx�ib;bbb;b�bÞY
obs�
ib p10ðx�ib;bbb;b�bÞ1�Yobs�

ib � þN�1P
i2Sfpðxi;bb�Þ � pðxi;bbÞg:

(24)

Let V�ð:Þ denote the variance with respect to bootstrap distribution (PB) defined
as PB ¼ Pv � Pnv, where Pv and Pnv represent the multinomial distribution
Mvðnv; n�1

v ; . . . ; n�1
v Þ and Mnvðn� nv; ðn� nvÞ�1; ðn� nvÞ�1; . . . ;

ðn� nvÞ�1Þ, respectively. Now the bootstrap estimator of VarðT1Þ is given by,
For sufficiently large B, the Monte Carlo approximation of bootstrap variance
estimator in (25) is given by,

dVarBðT1Þ ¼ B�1
X

b

t�2b � ðB�1
X

b

t�bÞ
2: (26)

Finally, the hybrid bootstrap variance estimator of ðbPC � PÞ is given by,

bV H ¼dVarBðT1Þ þdVarAðT2Þ: (27)

Theorem 6. Assuming limnv!1 ðn � nvÞ�1P
i2Snv
jjg�ðxi; �Þjj3 1 8 �

and under conditions C0–C7, as nv !1,

bV H

VarðbPC � PÞ
!P 1:

Proof. The proof is given in the online Supplementary Material. h

5. COMPARISON OF ESTIMATORS USING MODEL-
BASED SIMULATION

A simulation study is carried out to investigate the impact of ignoring misclas-
sification and/or the functional form g(x) on the predictive estimator of the pop-
ulation proportion. We shall also study the relative performance of the
analytical variance estimator and the bootstrap variance estimator. Data are
generated separately for four sets of g(x) using the probability model in (2).
Following Adhya et al. (2011, 2012), the functions considered are (i)
g1ðxÞ ¼ x� 2, (ii) g2ðxÞ ¼ ðx� 2Þ2, (iii) g3ðxÞ ¼ sin ð2pxÞ, and (iv)
g4ðxÞ ¼ expð�50ðx� 1Þ2Þ. For further choices of g(x), we refer to Section 3.1
of Breidt and Opsomer (2009). The steps for the computation of predictive es-
timator are briefed below.
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Step 5.1. Generate the auxiliary variable xiði ¼ 1; ::;NÞ from Beta(1,2) distri-
bution. For each xi, compute pðxi; bÞ using (2). The true binary response Yiði
¼ 1; ::;NÞ is then generated from Bernoulli distribution with the probability of
success pðxi; bÞ. The surrogate response Yobs

i ði ¼ 1; ::;NÞ is next generated us-
ing (3) and (4) for several prefixed choices of ð�0; �1Þ.

Step 5.2. Draw a simple random sampling without replacement (SRSWOR)
sample of size n from the population units and capture the sample units in S.
We store the values of Yobs

i for every i 2 S.
Step 5.3. Draw a SRSWOR sample of nv units as a subsample from S and

denote this set of validation units by Sv. Corresponding to each unit in Sv we
store the true response Yiði 2 SvÞ.

Step 5.4. Given the data ðYi; i 2 Sv; Yobs
i ; i 2 S; xi; i ¼ 1; 2; ::;NÞ, we com-

pute the naive estimator bPnaive given in (7), the proposed estimator bPC given in
(13), and the sample mean of the manifest responses given by,bPmean ¼ n�1P

i2S Yobs
i .

Step 5.5. To assess the performance of the estimators in step 5.4, we
calculate the relative bias (RB) and relative root mean square error (RRMSE),

which are defined as, RB ¼ P
�1½R�1PR

r¼1ðbPr � PÞ� and RRMSE ¼ P
�1

½R�1PR
r¼1 ðbPr � PÞ2�1=2, where bPr

is a generic estimate of P at the rth simula-

tion and P ¼ R�1PR
r¼1 Pr , where Pr is the finite population proportion of true

Yi’s generated in step 5.1 at the rth simulation ðr ¼ 1; 2; . . . ;RÞ.
For N¼ 10,000, n¼ 1,000, nv ¼ 200, and R¼ 1,000 and for three choices

of ð�0; �1Þ, table 1 reports the values of RB� 104 and RRMSE � 104 for the

Table 1. The Relative Bias (RB 3104) and Relative Mean Square Error (RRMSE
3104) of Three Estimators Corresponding to Different Choices of g(x) and
Misclassification Probabilities (�0; �1)

g(x) P Error RB �104 RRMSE �104

e0; e1 bPmean bPnative bPC bPmean bPnative bPC

ðx� 2Þ 0.1553 (0.20, 0.10) 9,862 9,864 �53 9,910 9,910 1,747
(0.10, 0.10) 4,416 4,420 �3 4,510 4,505 1,431
(0.10, 0.20) 3,420 3,425 �12 3,529 3,524 1,568

ðx� 2Þ2 0.9003 (0.20, 0.10) �770 �1,380 �8 782 1,392 146
(0.10, 0.10) �878 �1,378 �0.95 889 1,389 123
(0.10, 0.20) �1,881 �2,186 �3 1,887 2,189 158

sin ð2pxÞ 0.4993 (0.20, 0.10) 972 107 5 1,022 117 53
(0.10, 0.10) �34 6 5 313 56 48
(0.10, 0.20) �1,031 �92 6 1,076 103 53

e�50ðx�1Þ2 0.4999 (0.20, 0.10) 998 100 2 1,038 104 36
(0.10, 0.10) �70 �5 4 269 35 26
(0.10, 0.20) �1,002 �99 3 1,041 103 34
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three estimators mentioned in step 5.4. The results reveal that bPmean performs
poorly specifically corresponding to g3ðxÞ and g4ðxÞ. bPnaive also gives large RB
and RRMSE values compared to bPC. So in the next part of the simulation
study, we compare the performance of the analytical variance estimator and
bootstrap variance estimator of bPC only.

The bootstrap variance is based on B¼ 1,000 resamples drawn by the
method outlined in section 4. For r ¼ 1; . . . ;R, the analytical variance estima-

tor bV r

A given in (17) and the hybrid bootstrap variance estimator bV r

H given in

(27) are calculated. We further compute V A ¼ R�1PR
r¼1
bV r

A and

V H ¼ R�1PR
r¼1
bV r

H :
To avoid overfitting and to study the performance of the variance estimators

of bPC and the corresponding normal-theory-based confidence intervals of P,
we generate an independent population of size N as in step 5.1 and compute

the population proportion which we denote by ~P. Let b~PC denote the predictive
estimator based on a sample from this new population. We compute

~V ¼ R�1
XR

r¼1
ðb~Pr

C � ~PÞ2, where ~P ¼ R�1PR
r¼1

~P
r
. The performance of the

variance estimates is measured by the ratio of the standard errors (RSE) given

by RSEH ¼
ffiffiffiffiffi
V H
~V

q
and RSEA ¼

ffiffiffiffiffi
V A
~V

q
, corresponding to the hybrid bootstrap

variance estimator and analytical variance estimator respectively.
Based on the standardized prediction errors Zr

H ¼ ðbPr

C � PÞðbV r

HÞ
�1=2 and

Zr
A ¼ ðbPr

C � PÞðbV r

AÞ
�1=2; ðr ¼ 1; . . . ;RÞ, we set up the 95 percent confidence

interval for P. The empirical coverage based on bootstrap-standardized predic-

tion errors is given by NCLH ¼ R�1PR
r¼1 IðjZr

H j � 1:96Þ. The lower and up-
per tail areas are obtained from the proportions NCLLH ¼ R�1PR

r¼1 IðZr
H � �1:645Þ and NCLUH ¼ R�1PR

r¼1 IðZr
H > 1:645Þ, respec-

tively, where Ið:Þ is the indicator function. Similar expressions denoted by
NCLA, NCLLA, and NCLUA are obtained on using Zr

A.

Table 2 reports the values of P; MSE ¼ R�1PR
r¼1 ðbPr

C � PÞ2, RSEA, RSEH,
and the coverage based on the 95 percent confidence interval of the population
proportion for g1ðxÞ–g4ðxÞ for ð�0; �1Þ ¼ ð0:10; 0:20Þ. The purpose of this
study is to compare the performance of the bootstrap variance estimate with
that of analytical variance estimate. The results reveal that RSEH is always
lesser than RSEA. For g1ðxÞ and g2ðxÞ, RSEH is very close to one. However, for
g3ðxÞ and g4ðxÞ, the variances are overestimated, though overestimation is
much higher for the analytical variance estimate compared to bootstrap vari-
ance estimate. The increased value of RSE may be due to the fact that MSE val-
ues corresponding to g3ðxÞ and g4ðxÞ are very small (of the order of 10�5). The
results also indicate that the coverage probabilities corresponding to both sided
confidence interval, constructed using NCLH returns value close to the nominal
level, while those using NCLA give coverage >0.95. The tail probabilities
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though not accurately captured give better result on using NCLLHðNCLUHÞ
compared to NCLLAðNCLUAÞ for any function g(x). Finer bootstrap intervals
based on percentiles can be used to further improve the bootstrap coverages
(DiCiccio, Efron, Hall, Martin, Canty, et al. 1996).

6. A DESIGN-BASED SIMULATION STUDY

A design-based simulation study is carried out to investigate the role of sam-
pling design, the impact of misspecification of the functional form of g(x), and
the consequences of ignoring misclassification on the performance of the fol-
lowing estimators: (i) the sample mean (bPmean), (ii) the design-based estimator
(bPD), (iii) the generalized difference estimator (bPGD), (iv) the model calibrated
estimator (bPMC), and (v) the proposed model-based predictive estimator (bPC).
Simulations are carried out under two models namely the naive model (M1)
and the misclassification-adjusted model M2. The simulation study is briefed
below.

Step 6.1. For a finite population of size N¼ 10,000, the auxiliary variable xiði
¼ 1; . . . ;NÞ is independent draws from Normal distribution with mean 0 and
variance 2. The latent binary response variable Yiði ¼ 1; . . . ;NÞ is generated
from Bernoulli distribution with success probability pðxi; bÞ computed from
model (2) separately for each g(x) given by (i) g1ðxÞ ¼ x� 2 and (ii)
g2ðxÞ ¼ ðx� 2:5Þ2. Finally, the manifest responses Yobs

i ði ¼ 1; 2; ::;NÞ are
generated using (3) and (4) for several prefixed choices of (�0; �1).

Step 6.2. We draw samples of size n¼ 1,000 from the populations in step 6.1
using (i) SRSWOR, (ii) probability proportional to size sampling with replace-
ment (PPSWR) and (iii) stratified random sampling with proportional

Table 2. The Mean Square Error (MSE) of the Proposed Predictive Estimator
(bPC), the Ratio of Standard Errors (RSE), the Lower Tail Area (NCLL), the
Upper Tail Area (NCLU), and the Overall Coverage (NCL) of 95 Percent
Confidence Intervals Based on Analytical and Bootstrap Estimate (within
Parenthesis) of the Variance of bPC for Different g(x) and for (�0; �1) 5 (0.10, 0.20)

g(x) P MSE RSE NCL NCLU NCLL

ðx� 2Þ 0.1614 2.796 �10�4 1.2387 0.988 0.016 0.021
(1.1509) (0.965) (0.045) (0.038)

ðx� 2Þ2 0.9298 2.512 �10�4 1.2918 0.985 0.009 0.024
(1.0171) (0.951) (0.070) (0.045)

sin ð2pxÞ 0.5762 5.114 �10�5 1.3951 0.972 0.012 0.026
(0.9788) (0.952) (0.035) (0.051)

e�50ðx�1Þ2 0.5051 1.1417 �10�5 1.9129 0.970 0.010 0.030
(1.4715) (0.945) (0.021) (0.061)
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allocation (SPA). For SPA, the populations are stratified into three groups of
sizes 3,000, 3,000, and 4,000 by using quantiles of x. The samples are drawn
using SRSWOR, SRSWR, and PPSWR from the first, second, and third strata,
respectively. In PPSWR, the x2 values are used as size variables. We denote
the set of sampled units by S.

Step 6.3. For SRSWOR and PPSWR sampling schemes, we draw a validation
sample of size nv from the set S, by SRSWOR scheme. For SPA, we choose
validation samples from each stratum using proportional allocation method for
a fixed nv. We denote the collection of all validation units by Sv.
Corresponding to the validation units, we record the true response. The study
is carried out for various choices of nv. However, results are reported for nv ¼
100 and 300.

Step 6.4a. For the naive model M1, based on the data ðYobs
i ; i 2 S; xi; i ¼ 1; 2;

. . . ;NÞ obtained from step 6.2, we compute the estimators (i)–(v) as mentioned
at the beginning of this section. Expressions of bPmean; bPD; bPGD and bPMC are
given in appendix A.4.1 while the naive predictive estimator denoted by bPnaive

is given in (7).
Step 6.4b. For the misclassification adjusted model, M2, based on the data ð

Yobs
i ; i 2 S; xi; i ¼ 1; 2; . . . ;N; Yi; i 2 SvÞ obtained from step 6.3, we compute

the proposed predictive estimator bPC given in (13). However, bPmean; bPD; bPGD,
and bPMC (details given in appendix A.4.2) are based only on the correct data
(Yi; i 2 SvÞ, since there is no straightforward decomposition of S into Sv and
Snv.

Steps 6.2–6.4a and b are repeated R¼ 1,000 times and the RRMSE of the
estimators are computed. Tables 3–5 report the RRMSE �104 values for each
of the estimators (i)–(v) given at the beginning of this section, for
ð�0; �1Þ ¼ ð0:05; 0:01Þ; ð0:10; 0:10Þ, and ð0:20; 0:10Þ, respectively. The results
are reported for models M1 and M2, for nv ¼ ð100; 300Þ and
gðxÞ ¼ ðg1ðxÞ; g2ðxÞÞ.

The estimators (iii)–(v) are further computed using misspecified models.
The misspecifications introduced are as follows: corresponding to g1ðxÞ, we in-
troduce another auxiliary variable namely z, where ðz1; z2; . . . ; zNÞ are random
draws from Uniform(0.5,1). For g2ðxÞ, we drop the quadratic term. The results
are given in parenthesis in tables 3–5.

In general, performance of all the estimators under misclassification cor-
rected model (M2) is better compared to that under the naive model (M1). Since
under M2 the estimators (i)–(iv) are constructed on the basis of validation sam-
ple only, so their performance improves with increase in validation sample
size. This is evident while comparing the columns nv ¼ 100 with nv ¼ 300 un-
der M2. When errors are appreciably small (for instance, see table 3), the per-
formance of the estimators (i)–(iv) under M1 is better compared to those under
M2. This is not unusual since under M1 the estimators are now constructed
based on the complete sample of mostly correct observations, while a relatively
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Table 3. The Relative Root Mean Square Errors (RRMSE 3104) for Each of the Estimators under the Naive Model (M1) and the
Corrected Model (M2), for Validation Sample Size nv 5 (100, 300), for Different Choices of g(x) and for Three Sampling Schemes, when
(�0; �1) 5 (0.05, 0.01)

g(x) Estimator SRSWOR PPSWR SPS

M1 M2 M1 M2 M1 M2

nv nv nv

100 300 100 300 100 300

ðx� 2Þ bPmean 1,622 1,865 1,091 6,825 6,216 5,827 2,905 1,946 1,618bPD 1,622 1,865 1,091 3,248 3,647 3,359 1,698 1,544 1,049bPGD 1,613 1,612 899 3,058 3,413 2,054 1,682 1,425 963
(1,622) (1,673) (974) (2,801) (3,924) (3,052) (1,725) (1,920) (1,025)bPMC 1,613 1,612 899 5,972 3,019 2,584 1,698 1,505 1,049
(1,622) (1,670) (974) (3,527) (3,848) (2,719) (1,743) (1,910) (1,066)bPC 1,613 907 626 4,065 1,680 958 1,840 920 631
(1,622) (967) (632) (4,195) (2,330) (977) (2,014) (999) (697)

ðx� 2:5Þ2 bPmean 111 299 193 414 548 424 163 329 239bPD 111 299 193 322 494 374 145 355 217bPGD 96 272 149 273 212 196 143 332 200
(105) (304) (179) (291) (207) (205) (139) (335) (218)bPMC 96 284 149 1,377 1,084 716 195 473 232
(105) (300) (180) (1,415) (2,041) (1,978) (157) (562) (264)bPC 150 44 42 113 96 94 120 66 64
(105) (139) (115) (115) (104) (99) (310) (370) (359)

NOTE.— Figures in parenthesis indicate the values under misspecified g1ðxÞ and g2ðxÞ.
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Table 4. The Relative Root Mean Square Errors (RRMSE 3104) for Each of the Estimators under the Naive Model M1 and the
Corrected Model M2, for Validation Sample Size nv 5 (100, 300), Different Choices of g(x) and for Three Sampling Schemes, When
(�0; �1) 5 (0.10, 0.10)

g(x) Estimator SRSWOR PPSWR SPS

M1 M2 M1 M2 M1 M2

nv nv nv

100 300 100 300 100 300

ðx� 2Þ bPmean 2,401 1,865 1,091 6,799 6,216 5,827 3,451 1,946 1,618bPD 2,401 1,865 1,091 3,857 3,647 3,360 2,410 1,543 1,049bPGD 2,403 1,612 899 3,740 3,413 2,054 2,400 1,425 963
(2,365) (1,673) (974) (3,263) (3,924) (3,052) (2,473) (1,920) (1,025)bPMC 2,404 1,612 899 6,396 3,019 2,584 2,420 1,505 1,049
(2,366) (1,670) (974) (3,780) (3,848) (2,719) (2,495) (1,910) (1,066)bPC 2,403 1,298 794 5,297 1,743 1,130 2,556 1,315 813
(2,365) (1,375) (798) (5,454) (2,913) (1,185) (2,747) (1,403) (950)

ðx� 2:5Þ2 bPmean 898 299 193 1,197 548 424 752 329 240bPD 898 299 193 1,048 494 374 904 355 217bPGD 911 272 149 1,121 212 196 918 332 200
(898) (304) (179) (1,037) (207) (205) (920) (355) (218)bPMC 900 284 149 1,759 1,084 716 919 473 232
(898) (300) (180) (1,746) (2,041) (1,978) (920) (562) (264)bPC 860 91 59 836 142 136 744 80 78
(898) (332) (204) (990) (148) (139) (645) (2,122) (309)

NOTE.— Figures in parenthesis indicate the values under misspecified g1ðxÞ and g2ðxÞ.
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Table 5. The Relative Root Mean Square Errors (RRMSE 3104) for Each of the Estimators under the Naive Model M1 and the
Corrected Model M2, for Validation Sample Size nv 5 (100, 300), for Different Choices of g(x) and for Three Sampling Schemes, When
(�0; �1) 5 (0.20, 0.10)

g(x) Estimator SRSWOR PPSWR SPS

M1 M2 M1 M2 M1 M2

nv nv nv

100 300 100 300 100 300

ðx� 2Þ bPmean 5,692 1,865 1,091 9,596 6,216 5,827 6,639 1,946 1,618bPD 5,692 1,865 1,091 6,609 3,647 3,360 5,727 1,544 1,049bPGD 5,697 1,612 904 6,547 3,413 2,054 5,720 1,425 963
(5,695) (1,673) (974) (6,333) (3,924) (3,052) (5,824) (1,920) (1,025)bPMC 5,697 1,612 899 8,474 3,019 2,584 5,745 1,505 1,049
(5,695) (1,670) (974) (6,670) (3,848) (2,719) (5,853) (1,910) (1,066)bPC 5,697 1,612 899 9,340 2,141 1,202 5,990 1,401 892
(5,695) (1,742) (919) (9,533) (3,106) (1,357) (6,219) (1,677) (1,073)

ðx� 2:5Þ2 bPmean 795 299 193 1,053 548 424 664 329 240bPD 795 299 193 944 494 374 799 355 217bPGD 809 272 149 1,045 212 196 813 332 200
(795) (304) (179) (935) (207) (205) (812) (355) (218)bPMC 797 284 149 1,690 1,084 716 814 473 232
(795) (300) (180) (1,691) (2,041) (1,978) (812) (562) (264)bPC 874 101 63 869 147 137 291 84 80
(795) (404) (218) (859) (157) (140) (566) (2,003) (309)

NOTE.— Figures in parenthesis indicate the values under misspecified g1ðxÞ and g2ðxÞ.
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small validation sample is used to evaluate the estimators under M2. The pro-
posed predictive estimator (bPC) is performing well under all sampling schemes
and is markedly better than the design-based estimators. Even under M1, the
predictive estimator bPnaive is outperforming its design-based counterparts espe-
cially when the functional form is quadratic. In general, under misspecified
models, precision of all the estimators deteriorates.

7. AN EMPIRICAL STUDY

In a literacy survey program, the complete information on literacy status and
various covariates is obtained for 12,353 study participants. The response is bi-
nary, which takes the value 1 if an individual is identified as literate and 0 oth-
erwise. The literacy status of an individual obtained by the interviewer method
is suspected to be error prone and so in our study we treat it as the surrogate re-
sponse ðYobsÞ. In a separate approach, an elaborate story reading test is also ap-
plied on the study participants to judge their true literacy status. We assume
that the literacy status obtained from such a test is the gold standard and so we
have data on the true response (Y) as well. From the data on Y and Yobs, an esti-
mated probability of a false literate comes out as 0.33, while the probability of
misclassifying a literate as illiterate is only 0.021. For illustration purpose, we
assume that these 12,353 study participants form the population and the true
population proportion of literate is 0.508298.

We model the literacy status as a function of the continuous covariate “age,”
which spans over six to forty-five years. A data adaptive model selection proce-
dure is proposed for choosing the function g(x) based on available data on true
Y and x. We form nine age categories and choose x as the class mark. The pro-
portion p(x) of literates corresponding to each age category is computed and

g(x) is calculated from the equation gðxÞ ¼ log pðxÞ
1�pðxÞ

� �
. A scatter plot of g(x)

versus x shows a steady increase in g(x) for the initial age groups. After reach-
ing the age thirteen to fourteen years, the graph shows a decline. Motivated by
the scatter plot, we have chosen year 15 as the change point and have fitted two
separate linear regression equations: one for age less than fifteen years and the
other for age greater than or equal to fifteen years. We thus choose g(x) as:

gðxÞ ¼ b01 þ b1x ; x < 15;

¼ b02 þ b2x ; x � 15:
(28)

To carry out the empirical study, we select samples of size n¼ 1,200 from the
aforementioned population using three different sampling schemes namely
SRSWOR, PPSWR, and SPA. For PPSWR, we use x as the size variable. For
SPA, three strata are formed using the first and third quartiles of x. The strata
sizes come out as, 3,182, 6,194, and 2,977. The stratum sample sizes are
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determined using proportional allocation, and we adopt SRSWOR, SRSWR,
and PPSWR schemes for sampling from strata 1, 2, and 3, respectively.

However, in many practical situations, data on the true response (Y) will not
be available for all these n sampled participants. Keeping in line with the meth-
odology developed, we select a subsample of size nv ¼ 120 participants by
SRSWOR from these n sampled participants. This subsample forms the valida-
tion set. The simulation is repeated R¼ 1,000 times. Table 6 reports the values
of relative bias (RB� 104) and relative root mean square error
(RRMSE � 104) in parenthesis, for all the estimators discussed in section 6 for
models M1 and M2 under each of the three different sampling schemes.

The results reveal that, in general, the estimators are performing poorly under
M1 in terms of RB and RRMSE. However, for PPSWR sampling scheme, bPmean

and for SPS scheme, bPMC are performing better under M1 compared to their
corrected counterparts. One reason for this might be that although under M1 the
surrogate response is used but the sample size is 1,200, which is quite large
compared to the validation sample of 120 true response data points, which are
used to construct the design-based estimators under the correct model M2.

Our primary concern here is comparison of the proposed predictive model-
based estimator with the other design-based estimators. It is observed that, un-
der the misclassification corrected model (M2), the predictive estimator is out
performing all other estimators under different sampling schemes.

Table 6. The Relative Bias (RB 3104) and Relative Root Mean Square Error
(RRMSE 3104 in Parenthesis) for the Different Estimators under Naive Model
M1 and Misclassification Corrected Model M2 for Three Different Sampling
Schemes for the Literacy Survey Data

Estimator SRSWOR PPSWR SPS

M 1 M2 M1 M2 M1 M2bPmean 3,011 �28 �158 �1,834 2,970 �25
(3,022) (979) (318) (2,019) (2,982) (871)bPD 3,011 �28 3,014 69 3,007 12
(3,022) (979) (3,055) (1,746) (3,020) (877)bPGD 3,014 �12 3,020 263 738 �1,925
(3,023) (918) (3,058) (1,894) (780) (2,106)bPMC 3,014 �13 3,073 263 727 �1,944
(3,023) (918) (3,319) (2,168) (772) (2,129)bPC �7,257 719 �7,786 742 2,958 �679
(7,257) (797) (7,786) (888) (2,977) (754)
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8. CONCLUDING REMARKS

The article adopts a predictive approach of estimation of finite population pro-
portion of a misclassified binary response variable when complete information
on the auxiliary variable(s) is available. The proposed predictive estimator that
adjusts for misclassification is asymptotically model-unbiased and model-
consistent. It also has minimum model variance among all asymptotically
model-unbiased estimators of the finite population proportion (Chambers and
Clark 2012). We have also developed a computationally efficient bootstrap-
based weakly consistent estimator of the asymptotic variance, which performs
better in comparison to the analytical variance estimator. The simulation stud-
ies show that when misclassification is moderate or high, the naive estimator
performs poorly.

The current work can be extended to non-probability sampling design as
long as it is non-informative. The simulation study in section 6 reveals that the
predictive estimator is not robust to misspecification of the functional form of
g(x). In this context, nonparametric or semiparametric regression is another
plausible alternative (Montanari and Ranalli 2005; Breidt and Opsomer 2009;
Adhya et al. 2012). In this article, we have considered misclassification proba-
bilities as unknown constants. In practice, misclassification probabilities can
be modeled as a function of the auxiliary or design variable(s). The study can
be extended to polychotomous response variable where the categories could be
nominal or ordinal. Simulation studies reveal that the design-based estimators
are less efficient. Further study can be taken up to explore how information
from non-validation data can be incorporated to increase the efficiency of
model-assisted estimators using a two-step approach. These problems are cur-
rently under investigation.

Supplementary Materials

Supplementary materials are available online at academic.oup.com/jssam.

APPENDIX A

A.1. PROOF OF THEOREM 1

Consistency of b� : From Weak Law of Large Numbers for independently and
identically distributed random variables, it follows that,

b�0!
P P Y ¼ 0; Yobs ¼ 1
� �

P Y ¼ 0ð Þ ¼ P Yobs ¼ 1jY ¼ 0
� �

¼ �0
0:
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Similarly b�1!P �0
1. Hence the consistency of b� ¼ ðb�0;b�1ÞT is proved.

Consistency of bb: Define Qnðb; �Þ as,

Qnðb; �Þ ¼ n�1lðb; �Þ ¼ f vQ1nðbÞ þ ð1� f vÞQ2nðb; �Þ; (A.1)

where lðb; �Þ is given in (9), Q1nðbÞ ¼ n�1
v

P
i2Sv

log f ðyijxi; bÞ and

Q2nðb; �Þ ¼ ðn� nvÞ�1P
i2Snv

log f ðyobs
i jxi; b; �Þ. In what follows we shall de-

note Qnðb; �0Þ simply by QnðbÞ. Let us further write,

QðbÞ ¼ qvQ1ðbÞ þ ð1� qvÞQ2ðb; �0Þ; (A.2)

where Q1ðbÞ ¼ limn!1 Q1nðbÞ and Q2ðb; �0Þ ¼ limn!1 Q2nðb; �0Þ. We now
make the following assumptions:

(i) QðbÞ is a continuous function of b.

(ii) bb ¼ arg maxbQnðbÞ is the PMLE of b.
(iii) b0 ¼ arg maxbQðbÞ is the unique maximizer.
(iv) supbjQnðbÞ � QðbÞj!P 0 as n!1.

Under the above assumptions and applying Theorem 2.1 of Newey and
McFadden (1994), consistency of bb can be proved. Proofs of assumptions (ii),
(iii), and (iv) are available in the online Supplementary Material.

A.2. PROOF OF THEOREM 2

We define the quantities Iðb; �Þ; Gðb; �Þ and Wðb; �Þ as follows:

Iðb; �Þ ¼ qvISvðbÞ þ ð1� qvÞISnvðb; �Þ; (A.3)

where ISvðbÞ ¼ ESv ½gbðx; bÞgT
bðx; bÞpðx; bÞð1� pðx; bÞÞ� and ISnvðb; �Þ

¼ ESnv ½gbðx; bÞgT
bðx; bÞp2ðx; bÞ

ð1� pðx; bÞÞ2~p�1ðx; b; �Þð1� ~pðx; b; �ÞÞ�1�:

Gðb; �Þ ¼ ½Ip; G1ðb; �Þ; G2ðb; �Þ�; (A.4)

where Giðb; �Þ ¼ ð�Þið1� qvÞð1� �0 � �1ÞAiðb; �Þ; i ¼ 1; 2; Aiðb; �Þ
¼ ESnv ½gbðx; bÞpiðx; bÞ ð1� pðx; bÞÞ3�i~p�1ðx; bÞð1� ~pðx; b; �ÞÞ�1�; i ¼ 1; 2
and Ip is the identity matrix of order p. Finally,
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Wðb; �Þ ¼

Iðb; �Þ w1ðb; �Þ w2ðb; �Þ

w1ðb; �Þ w3ðb; �Þ 0

w2ðb; �Þ 0 w4ðb; �Þ

0BB@
1CCA; (A.5)

where w1ðb; �Þ ¼ ��0bðbÞð1� aðbÞÞ�1; w2ðb; �Þ ¼ �1bðbÞa�1ðbÞ; w3ðb; �Þ
¼ �0q�1

v ð1� aðbÞÞ�2ESv ½ð1� pðx; bÞÞð1� �0ð1� pðx; bÞÞÞ� and w4ðb; �Þ
¼ �1q�1

v a�2ðbÞESv ½pðx; bÞð1� �1pðx; bÞÞ� with aðbÞ and bðbÞ defined as,
aðbÞ ¼ ESv ½pðx; bÞ� and bðbÞ ¼ ESv ½gðx; bÞpðx; bÞð1� pðx; bÞÞ�.

To prove the asymptotic normality of bb, we first define,
Snðb; �Þ ¼ n�1 @lðb;�Þ

@b . Now using consistency of bb (vide theorem 1) and apply-
ing Taylor series expansion, it follows that,

bb � b0 ¼ I�1ðb0; �0ÞSnðb;b�Þ þ opð1Þ: (A.6)

Applying Slutzky’s theorem and equations (1.6)–(1.7) of Randles (1982), the
asymptotic distribution of Snðb;b�Þ is given by,ffiffiffi

n
p

Snðb0;b�Þ!d Npð0;Gðb0; �0ÞWðb0; �0ÞGTðb0; �0ÞÞ: (A.7)

Using (A.3) in (A.7), theorem 2 follows.

A.3. PROOF OF THEOREM 3

bPC � P ¼ f ð1� f vÞD1 þ ð1� f vÞD2; (A.8)

where D1 and D2 are given by,

D1 ¼ ðn� nvÞ�1
X
i2Snv

ðEðYijYobs
i ; xi; bb;b�Þ � YiÞ: (A.9)

D2 ¼ ðN � nÞ�1
X
i2S

ðEðYijxi; bbÞ � YiÞ: (A.10)

Since b� ¼ arg max�
P

i2Sv
log f ðyobs

i jyi; �Þ, then it directly follows from Cox

and Hinkley (1974) that Eðb� � �Þ ¼ Oðn�1Þ. In the current context, since bb is
the PMLE of b, so equations (32)–(35) given in Cox and Hinkley (1974)

needs to be modified, which finally yields Eðbb � bÞ ¼ Oðn�1Þ. From regular-
ity conditions, it follows that EðD1Þ ¼ Oðn�1Þ and EðD2Þ ¼ Oðn�1Þ. Hence
from (A.8), theorem 3 follows.
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A.4. EXPRESSIONS OF THE DESIGN-BASED
ESTIMATORS DEVELOPED IN SECTION 6

A.4.1
The Naive Model (M1)

bPmean ¼ n�1
X
i2S

Yobs
i ; bPD ¼ ð

X
i2S

wiÞ�1
X
i2S

wiY
obs
i ;

bPGD ¼ N�1
X
i2S

wiY
obs
i �

X
i2S

wipðxi; bbdÞ þ
XN

i¼1

pðxi; bbdÞ
" #

;

bPMC ¼ N�1
X
i2S

wiY
obs
i þ bA 1� N�1

X
i2S

wi

 !

þ bBN�1
XN

i¼1

pðxi; bbdÞ �
X
i2S

wipðxi; bbdÞ
" #

:

where bA ¼ N�1P
i2S Yobs

i � bB½N�1P
i2S wipðxi; bbdÞ�, and bB ¼ bB1ðbB2Þ�1,

with

bB1 ¼
X
i2S

wi

�
pðxi; bbdÞ � ð

X
i2S

wiÞ�1
X
i2S

wipðxi; bbdÞ
�

�
Yobs

i � ð
X
i2S

wiÞ�1
X
i2S

wiY
obs
i

�
and

bB2 ¼
X
i2S

wi

�
pðxi; bbdÞ � ð

X
i2S

wiÞ�1
X
i2S

wipðxi; bbdÞ
�
:

In the estimators defined above, w0is are the design weights given by the in-
verse of the inclusion probability and bbd is the inverse inclusion probability
weighted pseudo-likelihood estimator of b. For further details, we refer to Wu
and Sitter (2001).

A.4.2 Misclassification Corrected Model (M2)

For constructing the above estimators under the misclassification corrected
model (M2Þ, we replace S by the set of validation units (Sv) and use the true
values of the response Yi in lieu of Yobs

i . Moreover, bbd is also estimated on the
basis of true Yiði 2 SvÞ. Since simple random sampling is adopted for the
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selection of validation units so the design weights w0is are replaced by wif
�1
v ,

where f v ¼ nv=n.

REFERENCES

Adhya, S., T. Banerjee, and G. Chattopadhyay (2011), “Inference on Polychotomous Responses in
Finite Populations,” Scandinavian Journal of Statistics, 38, 788–800.

————. (2012), “Inference on Finite Population Categorical Response: Nonparametric
Regression-Based Predictive Approach,” AStA Advances in Statistical Analysis, 96, 69–98.

Breidt, F. J., and J. D. Opsomer (2009), “Nonparametric and Semiparametric Estimation in
Complex Surveys,” in Handbook of Statistics, ed. D. Pfeffermann and C. R. Rao, vol. 29, pp.
103–119, North-Holland, Amsterdam: Elsevier.

Bross, I. (1954), “Misclassification in 2 � 2 Tables,” Biometrics, 10, 478–486.
Buonaccorsi, J. P. (2010), Measurement Error: Models, Methods, and Applications, Boca Raton,

FL: Chapman and Hall/CRC.
Cassel, C. M., C. E. S€arndal, and J. H. Wretman (1976), “Some Results on Generalized Difference

Estimation and Generalized Regression Estimation for Finite Populations,” Biometrika, 63,
615–620.

Chambers, R., and R. Clark (2012), An Introduction to Model-Based Survey Sampling with
Applications, New York: OUP.

Chambers, R., A. H. Dorfman, and P. Hall (1992), “Properties of Estimators of the Finite
Population Distribution Function,” Biometrika, 79, 577–582.

Chen, J., and J. Qin (1993), “Empirical Likelihood Estimation for Finite Populations and the
Effective Usage of Auxiliary Information,” Biometrika, 80, 107–116.

Chen, J., and R. Sitter (1999), “A Pseudo Empirical Likelihood Approach to the Effective Use of
Auxiliary Information in Complex Surveys,” Statistica Sinica, 9, 385–406.

Chen, T. T. (1979), “Log-Linear Models for Categorical Data with Misclassification and Double
Sampling,” Journal of the American Statistical Association, 74, 481–488.

Chen, Z., G. Y. Yi, and C. Wu (2011), “Marginal Methods for Correlated Binary Data with
Misclassified Responses,” Biometrika, 98, 647–662.

Claeskens, G., M. Aerts, and G. Molenberghs (2003), “A Quadratic Bootstrap Method and
Improved Estimation in Logistic Regression,” Statistics & Probability Letters, 61, 383–394.

Cox, D., and D. Hinkley (1974), Theoretical Statistics, Chapman and Hall.
Cox, D. R., and E. J. Snell (1989), Analysis of Binary Data (2nd ed.), Chapman and Hall.
Deville, J.-C., and C.-E. S€arndal (1992), “Calibration Estimators in Survey Sampling,” Journal of

the American Statistical Association, 87, 376–382.
DiCiccio, T. J., B. Efron, P. Hall, M. A. Martin, A. J. Canty, A. C. Davison, D. V. Hinkley, L. J.

Gleser, S. M. S. Lee, G. A. Young, T. J. DiCiccio, and B. Efron (1996), “Bootstrap Confidence
Intervals,” Statistical Science, 11, 189–212.

Ekholm, A., and J. Palmgren (1982), “A Model for a Binary Response with Misclassifications,” in
GLIM 82: Proceedings of the International Conference on Generalised Linear Models, ed. R.
Gilchrist, pp. 128–143, New York: Springer-Verlag.

Elliott, M. R., and R. Valliant (2017), “Inference for Nonprobability Samples,” Statistical Science,
32, 249–264.

Fuller, W. (2009), Sampling Statistics, Wiley.
Gong, G., and F. J. Samaniego (1981), “Pseudo Maximum Likelihood Estimation: Theory and

Applications,” The Annals of Statistics, 9, 861–869.
Gustafson, P. (2003), Measurement Error and Misclassification in Statistics and Epidemiology:

Impacts and Bayesian Adjustments, Chapman and Hall.
Hochberg, Y. (1977), “On the Use of Double Sampling Schemes in Analyzing Categorical Data

with Misclassification Errors,” Journal of the American Statistical Association, 72, 914–921.
Montanari, G. E., and M. G. Ranalli (2005), “Nonparametric Model Calibration Estimation in

Survey Sampling,” Journal of the American Statistical Association, 100, 1429–1442.

1344 Adhya, Roy, and Banerjee

D
ow

nloaded from
 https://academ

ic.oup.com
/jssam

/article/10/5/1319/6047608 by IIM
 Ahm

edabad C
onsort user on 21 M

arch 2023



Newey, W. K., and D. McFadden (1994), "Large Sample Estimation and Hypothesis Testing," in
Handbook of Econometrics, eds. R. F. Engle and D. L. McFadden, Vol.4, Amsterdam: Elsevier.

Poon, W.-Y., and H.-B. Wang (2010), “Bayesian Analysis of Multivariate Probit Models with
Surrogate Outcome Data,” Psychometrika, 75, 498–520.

Randles, R. H. (1982), “On the Asymptotic Normality of Statistics with Estimated Parameters,”
The Annals of Statistics, 10, 462–474.

Royall, R. M. (1970), “On Finite Population Sampling Theory under Certain Linear Regression
Models,” Biometrika, 57, 377–387.

————. (1976), “The Linear Least-Squares Prediction Approach to Two-Stage Sampling,”
Journal of the American Statistical Association, 71, 657–664.

Sang, H., K. K. Lopiano, D. A. Abreu, A. C. Lamas, P. Arroway, and L. J. Young (2017),
“Adjusting for Misclassification: A Three-Phase Sampling Approach,” Journal of Official
Statistics, 33, 207–222.

S€arndal, C. E. (1980), “On p-Inverse Weighting versus Best Linear Unbiased Weighting in
Probability Sampling,” Biometrika, 67, 639–650.

Smith, T. (1983), “On the Validity of Inferences from Non-Random Samples,” Journal of the
Royal Statistical Society: Series A (General), 146, 394–403.

Sposto, R., D. L. Preston, Y. Shimizu, and K. Mabuchi (1992), “The Effect of Diagnostic
Misclassification on Non-Cancer and Cancer Mortality Dose Response in A-Bomb Survivors,”
Biometrics, 48, 605–617.

Stefanski, L. A., and R. J. Carroll (1985), “Covariate Measurement Error in Logistic Regression,”
The Annals of Statistics, 13, 1335–1351.

Sugden, R., and T. Smith (1984), “Ignorable and Informative Designs in Survey Sampling
Inference,” Biometrika, 71, 495–506.

Tenenbein, A. (1970), “A Double Sampling Scheme for Estimating from Binomial Data with
Misclassifications,” Journal of the American Statistical Association, 65, 1350–1361.

Thompson, W. L. (2002), “Towards Reliable Bird Surveys: Accounting for Individuals Present but
Not Detected,” The Auk, 119, 18–25.

Valliant, R., A. H. Dorfman, and R. M. Royall (2000), Finite Population Sampling and Inference:
A Prediction Approach., Wiley.

Wang, D., and P. Gustafson (2014), “On the Impact of Misclassification in an Ordinal Exposure
Variable,” Epidemiologic Methods, 3, 97–106.

Wu, C., and R. Sitter (2001), “A Model-Calibration Approach to Using Complete Auxiliary
Information from Survey Data,” Journal of the American Statistical Association, 96, 185–193.

Zhong, B., and J. Rao (2000), “Empirical Likelihood Inference under Stratified Random Sampling
Using Auxiliary Population Information,” Biometrika, 87, 929–938.

Prediction of Finite Population Proportion 1345

D
ow

nloaded from
 https://academ

ic.oup.com
/jssam

/article/10/5/1319/6047608 by IIM
 Ahm

edabad C
onsort user on 21 M

arch 2023


	app1

