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Abstract
This study looks into the development of multi-level classification approach for land use change mapping in Indian cities

using Landsat imageries. In this study, we mapped 47 Indian cities at different time frames 1990, 2000, 2010, and 2017.

We started with traditional classification methods, but results provided unsatisfactory accuracy levels. Thus, we employed

multiple classification techniques to achieve results with higher accuracy. The paper captures the evaluation of different

classification techniques—hybrid, unsupervised, decision tree classification (DTC), and object-based image analysis

(OBIA). The results suggest improvement in accuracy levels by using multi-level classification for different cities at

different stages of the classification process. The most prominent is the hybrid classification technique; 14 cities out of 47

reached to accuracy above 72% through hybrid classification. For problematic classes, we used DTC, OBIA, and unsu-

pervised classification techniques after masking the datasets. DTC was used in cities with a greater number of problems in

datasets. For example, in the case of Kochi City, the accuracy at the initial level was reported 51% through unsupervised

classification which improved to 77% (supervised classification), and finally, it reached 90% by DTC technique. The

overall accuracy achieved through the multi-level classification approach described in this paper for the 47 Indian cities

ranges from 81 to 93%.
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Introduction

The term ‘‘land use’’ usually relates to the human activity

associated with a specific area of land, and (Sharma et al.

1984) ‘‘land cover is the observed (bio-) physical cover on

the earth’s surface’’ (Di Gregorio and Jansen 1998). Land

use and land cover (LU/LC) represent the integration of

various elements of resources like water, atmosphere, cli-

mate, and land. Thus, changes in LU/LC over time sig-

nificantly affect these resource systems at a global as well

as local scale (Meyer and Turner 1992). LU/LC is one of

the most important aspects to build understanding and

linkages between man and environment. It is a dynamic

phenomenon that requires continuous monitoring and

mapping. Satellite imagery is a powerful tool for tracking

down these changes. Satellite imageries are used to collect

information for the strategic planning of land-based

resources. Landsat has been successfully running as the

oldest satellite program in the world for the past 45 years.

A synoptic temporal coverage of LU/LC is the major

advantage of the Landsat satellite. Multispectral and multi-

temporal continuous scanning of earth surface by Landsat

satellite facilitates applications in forestry, urban sprawl,

agriculture, vegetation (McCallum et al. 2006). Hence,

Landsat imageries are extensively used in LU/LC studies

for image classification processes and mapping.

Landsat data acquired for different periods encompass

consistent geometry throughout the region. When the

Landsat database is collected and the images are mosaiced

to cover the study area or region, the most important

assumptions here are that images have consistent geometry

and uniform spatial resolution. These assumptions have

been considered to be consistent for Landsat satellite
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despite sensor upgradation starting from multi-spectral

scanner (MSS), thematic mapper (TM), enhanced thematic

mapper plus (ETM?), and operational land imager (OLI)

for achieving increased image overall accuracy over time

(Morfitt et al. 2017; Rozenstein and Karnieli 2011; Storey

and Choate 2000; Bryant et al. 1995).

The geodetic accuracy of the Landsat dataset has also

improved over the years from the 1970s, 1990s, and 2000s,

indicating high research potential. Landsat data have 30 m

resolution and positional accuracy of less than 50 m root

mean square (RMS) error (Tucker et al. 2004). Ma et al.

(2017) compare the mean classification accuracy of twelve

different types of sensors to find that the highest is reported

by UAV and Spot-5 sensors at 86%, whereas Landsat

accounts 83% mean overall accuracy of the sensor, indi-

cating that Landsat data are equally conscientious (Ma

et al. 2017).

The newest generation satellites do not allow historical

evaluations, such as long-term time series analysis or

decadal change study (Tarantino et al. 2015; Fichera et al.

2012). Landsat is the only satellite that provides datasets

from 1972 to 2018. Landsat dataset also offers an extensive

range of scientific methods and applications worldwide

(Phiri and Morgenroth 2017; Song et al. 2014; Wulder

et al. 2012). Landsat’s free data access policy facilitates the

creation of a large quantum of comparable data across time

and across cities. Thus, for the study on tracing the decadal

changes in LU/LC across 47 cities in India, we opted for

the Landsat dataset.

The study described here traces the spatiotemporal

changes of 47 cities of India for years 1990, 2000, 2010

and 2017, showing urban growth pattern and evaluating the

land use change matrix, e.g., tracing changes in green and

blue spaces in and around the cities. The purpose of this

massive exercise is to inform the urbanization growth

process and related issues to the national agencies and local

governments of India. The objective of this paper is to

acquire a better insight into achieving higher classification

accuracies for all images processed for different time

frames, across all land cover classes by using multiple

classification techniques. The construction process of the

final database for 47 cities consisted of dealing with dif-

ferent issues that have been reasonably resolved by opting

for different classification techniques to enhance the clas-

sification accuracy at each stage of processing.

Review of Different Techniques and Multi-
level Classification

Land use classification is a complex process. Various fac-

tors such as opting for suitable classification techniques,

selection of appropriate training samples, image

processing, mosaicing, feature extraction, preprocessing,

and post-processing of images have a role to play in the

outcome. Designing the methodology should thus be

informative, exhaustive, and separable at each stage.

Another foremost imperative element of the image classi-

fication technique is to have analyst’s skills which help to

define the probable classification approach such as the

classification scale to achieve high accuracy.

There are several studies concerned with specific image

classification techniques. However, there is a lack of

studies looking into guidelines for choosing suitable clas-

sification techniques/approaches (Lu and Weng 2007). In

recent years, new classification algorithms and techniques

such as the combination of multiple classification tech-

niques have emerged. Each classification technique pos-

sesses its strengths and limitations (Mather and Tso 2009).

Combination of one or more classification techniques not

only improves the classification results but also brings

better accuracy level as compared to single classification

technique (Warrender and Augusteijn 1999; Congalton and

Green 2019; Masocha and Skidmore 2011; Nicholas 2012;

Zhao et al. 2016). Many researchers have explored differ-

ent classification techniques like regression methods,

majority voting, production rule, the sum rule, and

threshold values to integrate multiple classification tech-

niques that enhance results (Steele 2000; Liu et al. 2004;

Schweitzer et al. 2005; Mohammady et al. 2015).

In multisource (TM, ETM?, and OLI) data, the com-

bination of multiple classification techniques gives more

precise information on parameters like spectral signatures,

texture and context information, the accuracy of classifi-

cation techniques. Traditionally most classifiers have been

grounded to a significant degree in statistical decision

theory and grouped into parametric and nonparametric

classifiers. A parametric classifier is largely governed by

how strong the data match with the predefined models and

are dependent on the accuracy assessment of these model

parameters. Most of the popular and useful parametric

classifiers are based on maximum likelihood algorithms.

However, there are disadvantages of using them in land use

classification due to uncertainties around the distribution of

land use classes which cannot be described based on the

distribution of data (Caetano 2007). Nonparametric clas-

sifiers most popularly used in LU/LC are the artificial

neural network, decision tree classification techniques, and

use of knowledge-based classification techniques. These

methods are significantly more appropriate to handle

ambiguous data processes and hence may prove to be

advantageous in land use classification (Liu et al. 2004;

Choodarathnakara et al. 2012; Ma et al. 2017). Selection of

suitable classifier depends on many factors such as the aim

of classification type, use of ancillary data, classification

system, software, algorithm performance, computational
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resources, accuracy, purpose, and duration of the research

(DeFries and Chan 2000; Zhang et al. 2002; Keuchel et al.

2003; Pal and Mather 2003; Atkinson and Aplin 2004).

Table 1 describes the various classification techniques and

their possible accuracy levels across various LU/LC

classes.

Data Preparation

The research study uses Landsat Thematic Mapper as a

major data source for analysis of LU/LC of 47 cities of

India spreading across different climatic zones and size

classes as listed in Table 2. The study was carried out on

multi-temporal optical remote sensing data for the periods

of 1990, 2000, 2010, and 2017. These satellite images were

classified by using multi-level classification processes that

employ digital and visual image interpretation techniques.

The images were masked at the city level as per their latest

municipal boundaries obtained from city development plan

and master plan documents of the city governments. In our

research, we have opted for the land use II level of clas-

sification as per the National Natural Resources Manage-

ment System (NNRMS) guidelines set up by the

Government of India.

Methodology for Data Processing

The purpose of this paper is to explore different classifi-

cation techniques that facilitate in obtaining accurate

results for LU/LC classification. The research methodology

is divided into various stages: data collection, pre-pro-

cessing, a combinative approach of multiple classification

techniques and post-processing (Fig. 1).

The study uses a combinative approach of two or more

classification techniques to find the best results.

Landsat images downloaded from the U.S. Geological

Survey (USGS) Earth explorer were stacked in ENVI 5.4

software. City boundaries were extracted from the sec-

ondary database, geo-referenced, projected to Universal

Transverse Mercator (UTM) and digitized. During the

preprocessing exercise, satellite images were rectified

for band striping (mis-calibration of the sensor1) and

cloud cover issues. The study also carried out atmo-

spheric corrections and Landsat calibration to create

training sets to extract urban areas specifically from 1990

and 2017 images. The selection of training data in the

Table 1 Land use classification techniques and accuracy

Classification

technique

Types of classifiers Images

(Landsat)

used

LU/LC

classes

Accuracy

level (%)

Sources

Supervised Maximum likelihood, nearest neighbor

and support vector machine

TM, OLI Urban 73–82 Phiri and Morgenroth (2017)

TM, OLI Forest 52–90 Phiri and Morgenroth (2017)

OLI Agriculture 80–87 Rwanga and Ndambuki (2017) and

Tilahun and Teferie (2015)

TM, ETM? Water 83–88 Manandhar et al. (2009)

OLI Mangrove 82–89 Islam et al. (2018) and Rahman et al.

(2013)

Unsupervised ISODATA TM Urban 78–94 S1

TM Forest 58–81 Alrababah and Alhamad (2006) and

Sader et al. (1995)

TM Agriculture 55–74 Rozenstein and Karnieli (2011) and

Sharma et al. (2013)

MSS, ETM? Water 30–50 Adejoke and Badaru (2014) and

Sharma et al. (2013)

OLI Mangrove 70–86 Islam et al. (2018)

Object based Support vector machine, decision tree

classifier, nearest neighbor

ETM?, TM,

MSS, OLI

Urban 73–98 Phiri and Morgenroth (2017)

Decision tree classifier TM Forest 77–95 Phiri and Morgenroth (2017)

Support vector machine, decision tree

classifier

ETM?, TM Water 71–98 Chang et al. (2014) and Hecher et al.

(2012)

Decision tree classifier TM Agriculture 76–90 Phiri and Morgenroth (2017)

Support vector machine, decision tree

classifier, nearest neighbor

MSS, TM,

ETM?, OLI

Mangrove 77–84 Son et al. (2015)

1 Stripping effect is observed in the images when data is loss by

sensor while viewing the geometry. Band stripping is caused by

miscalibration of sensor either at the detector level or at scan level.
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study was based on false color composite (FCC) image,

unsupervised classification, top sheet, Bhuvan (ISRO)

Web site, and GoogleTM images.

The classification process was categorized broadly into

four stages, i.e., hybrid approach, unsupervised followed

by decision tree classification (DTC), and object-based

image analysis (OBIA) classification technique, to attain

higher accuracy wherever necessary. The initial classifi-

cation process using hybrid approach for all the 47X4= 188

images reached an average accuracy of 72%. Thus, any

image that indicated an accuracy below the average value

was considered for improvement in classification tech-

niques. Thus, these images were than further processed

using second set of unsupervised classification, or DTC or

OBIA or a combination of these approaches. Thus, if

accuracy is not reached to 72% level at the hybrid tech-

nique stage, then unsupervised classification (ISODATA)

approach was used again on problematic classes to improve

on the accuracy of classification of LU/LC. If resultant

accuracy through hybrid and ISODATA method was not

high enough (72%), then DTC was applied to select a set of

cities based on the type of classification as explained in

Sect. 4.3. The knowledge-based decision tree classification

technique used in the study for LU/LC classification as

explained in methodological framework II (Fig. 2) helped

to further refine the outputs using on normalized difference

vegetation index (NDVI). After applying DTC, if results

did not match with accuracy criteria or for specific classi-

fication errors, the object-based image analysis technique

was used for masked problematic classes or subset images

to overcome some of the weaknesses of mixed pixel2 issues

as discussed in Sect. 4.4.

Preprocessing

Firstly, all the images (47*4=188) were processed for

atmospheric correction employing the cosine of the solar

zenith correction (COST) model (Chavez 1996). Out of 47

cities, 17 cities, namely Agartala, Chennai, Dehradun,

Delhi, Dhanbad, Durg, Guwahati, Indore, Kochi, Mumbai,

Panaji, Shimla, Srinagar, Surat, Trichy, Vasai-Virar, and

Visakhapatnam, were processed through Landsat calibra-

tion3 for the years 1990 and 2017 in ENVI.

The Landsat calibration process is based on radiance,

reflectance, or brightness temperatures of the image.

Landsat bands 5, 6, and 7 represent the short-wave infrared

and thermal infrared spectrums of the image having

wavelength ranges of 1.55–1.75 lm, 10.40–12.50 lm, and

2.08–2.35 lm, respectively. These bands are useful in

identifying moisture of vegetation and soil as well as

Fig. 1 Methodological framework I

2 A mixed pixel issue occurs when image element signifies properties

of more than one surface land cover type. Mixed pixels are found at

two concerns, firstly at ‘‘edges of large objects’’ and objects with

smaller dimensions for instance agricultural fields, rivers or highways,

farms or ponds, or even bushes and trees in sparsely vegetated cover.

Secondly appear when imaged objects are smaller in proportion as

compared to spatial resolution of the satellite. Landsat TM images

reported mixed pixels issues in water 29.6% and 68.3% in vegetation

cover (Klein-Gebbinck 1998).
3 The Landsat calibration refers to procedures that convert from pixel

value to radiance value of biophysical cover of the earth surface

(Chavez 1989).
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mineral deposits. Thus, this process was supported differ-

entiating spectral signatures of the surface covers like

urban built-up, mangrove/swamps/mudflats urban green

forest, urban open, mines, saltpans/aqua farms. The clas-

sification has been conducted on a stacked image con-

taining all the bands of a Landsat image. It was also applied

on Durg and Indore cities, where the urban built-up was

underestimated and overestimated, respectively, between

2010 and 2017. One of the possible reasons could be

temporal changes in images due to variability in radio-

metric resolution of Landsat 5 (8-bit data) and Landsat 8

(12-bit data); another reason could be due to image regis-

tration4 issues. Mather and Koch (2011) and Schowengerdt

(2006) indicate that similar issues arise while comparing

pixel values derived from images in different time frames.

Fig. 2 Methodological framework II

4 Image registration is the process of transforming datasets into

geographic coordinate system acquired from different satellite,

sensors, and timeframe.
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The de-striping and cloud cover removal process

undertaken as a part of the preprocessing affect the spec-

trum signatures of an image. These processes were required

for a couple of images only to be specific—Mysore and

Vishakhapatnam cities for de-stripping and Vishakhapat-

nam and Shimla for cloud cover removal. Once the pixel-

based classification was undertaken on these images, the

land use classes of the pixels that have undergone pre-

processing for de-striping and cloud cover removal were

verified using images for same location at different points

in time, GoogleTM images, and secondary data. Mis-clas-

sified pixels were manually modified to reflect correct land

use class.

As an example, the preprocessing result from Landsat

calibration for Kochi City is shown in Fig. 3. Figure 3a

shows the before image, while the enhanced results from

Landsat calibration in the waterbody, urban area and

swamps are depicted in Fig. 3b.

Hybrid Technique

Ground survey plays a significant role in designing training

sets, especially to delineate the mudflats, mangroves, and

forest. Opting for the traditional ground survey method for

47 cities has its limitations due to time and resource con-

straints. Some research studies indicate that to attain high

accuracy, it becomes essential to use hybrid tech-

nique/combination of different techniques that involve

multiple levels of classification (Lu and Weng 2007;

Campbell and Wynne 2011; Luus et al. 2015; Chen et al.

2017). Hence, the hybrid classification technique which

combines supervised and unsupervised classifications has

been employed for this study.

Unsupervised

Unsupervised classification method involves minimum

human input and doesn’t require any previous information

of the study area. The unsupervised classification process is

a fully data-driven process that allows computer-generated

segmentation of satellite image. Distinct clusters or classes

are generated depending on spectral responses which are

natural grouping based. Every individual pixel is compared

to each distinct cluster within the datasets and assigned to

the closest cluster with similar spectral values. This study

deploys the ISODATA algorithm which classifies images

based on the mean value of the class in uniformly dis-

tributed data and runs the iteration process using minimum

distance technique. In every iteration, it recalculates the

mean of the spectral value for each cluster and reclassifies

pixels to find a fresh mean until it reaches the maximum

number of iterations. Here, 15–18 classes are generated for

each image in 10 iterations. This process facilitated to

identify LU/LC based on their spectral response.

Supervised

Supervised classification involves the skills of the image

analyst to identify training samples from the dataset which

characterizes the various themes to be classified (Green

et al. 1996). Training sets are referents of the geographical

area which represent the particular class on the image.

Each class defined within the training set represents a

particular LU/LC class (Demir et al. 2014). For this study,

we create training sets with the help of images classified

using unsupervised processes, GoogleTM images and sec-

ondary data. The ISODATA results for each city and each

time period were used to identify the relevant land cover

classes based on the spectral signature. These were then

used to generate training sets for the relevant land classes

for the cities. For example, Panaji being a coastal city had
Fig. 3 Landsat calibrated image of Kochi City (2017)

884 Journal of the Indian Society of Remote Sensing (June 2020) 48(6):877–908

123



land cover of saltpans/aquafarms, as well as agriculture,

built-up, river, urban green, urban open, and waterbody.

Hence, the classes achieved through ISODATA were

merged using spectral signatures, GoogleTM images, and

secondary data to generate training sets for 7 classes.

Similarly, Jabalpur being a land-locked city, with the

presence of forest area, the ISODATA results were used

along with GoogleTM images and secondary data to gen-

erate training sets for 6 classes—agriculture, built-up, river,

urban green, urban open, waterbody, and forest.

Table 3 provides the details of training sets as per

individual classes of LU/LC. Each training set represents

sample sites with the digital numbers; these training areas

identify each pixel in the satellite images with similar

characteristics and classify into the corresponding LU/LC

classes. The selection of the appropriate training sets is the

key component for success of any supervised classification

technique including parallelepiped maximum likelihood,

minimum distance, and Mahalanobis distance. The maxi-

mum likelihood classifier (MLC) quantitatively calculates

both variance and covariance of the class based on its

spectral response. MLC assumes that the distribution of a

class response is entirely defined by the mean vector and

the covariance matrix (Choodarathnakara et al. 2012). It

also assumes a normal distribution. The classifier calculates

a given pixel’s probability of belonging to a particular land

cover class (Kantakumar and Neelamsetti 2015).

Liu and Mason (2009) describe that unsupervised clas-

sification technique when applied on well-mapped areas

may reveal some more classes based on the spectral fea-

ture. Hence, after attaining final classes from the hybrid

approach, unsupervised classification technique was used

again to segregate pixels that were misclassified and to get

further segregations in misclassified pixels. For example,

the issue of aerosol and atmospheric variability5 in

Dhanbad and Delhi was solved with the help of Landsat

calibration and unsupervised technique. The coal mine area

of Dhanbad City was misclassified into urban built-up,

whereas in Delhi city, a small area of urban built-up and

industrial footprint patch was misclassified into water.

Similar issues to discriminate more spectral classes in

mixed pixels found in Aurangabad, Bangalore, Bhopal,

Chandigarh, and Jabalpur cities have been resolved using

unsupervised classification technique. A similar process

was followed for differentiating waterbodies from rivers

since turbid river waters have a higher spectral response

when compared to lake waters in the red and infrared

components of the spectrum (Duong 2012; Bartolucci et al.

1977). Moreover, feature extraction tool in ENVI 5.4

(object-based identification) was used to differentiate rivers

from other waterbodies, for example, river mapping for

Agartala as discussed in Sect. 4.4. This process of com-

bining hybrid and unsupervised helped to attain final

classification into the land use classes of agriculture, urban

built-up, forest, urban open, river, bay, swamps/mangrove,

urban green, saltpans, and waterbody. But, some pixels still

posed difficulties in achieving classification accuracy.

Deployment of MLC under hybrid techniques has major

drawbacks in land cover classification since classified

classes may not match the spectral response of the image.

Thus, DTC was applied with a formula based on the nor-

malized difference vegetation index (NDVI) in such cases.

Table 3 Training sets designed for supervised classification

Individual classes of LU/

LC

Description Training

sets

Agriculture Cultivated land includes plantation, current agricultural fallow areas 4896

Urban Built-up Area with high–low-rise built-up space includes industrial and commercial built-up spaces 6871

Forest Large area covered with tree or vegetation defined by Municipal Corporation, Government of India 4211

Urban Open Land area which currently does not have any vegetation includes open ground and currently fallow 5246

River A natural stream of water flowing in a upper, middle, and lower course in all decadal years 1990, 2000,

2010, 2017

3760

Bay A sandy shore area with no vegetation basically land between high- and low-water marks 2115

Swamps/Mangrove Coastal wetland area with or without vegetation cover 3884

Urban Green Natural area covered with tree includes parks, green spaces, and natural vegetation 5100

Saltpans/aquafarms A shallow water manmade container or depression in the ground used for salt industry or aqua industry 1372

Waterbody Water-filled depression natural or manmade 2679

5 The signature value of the area is altered by suspension of fine solid

or liquid particles in the air. Aerosols can be natural or anthropogenic.

Naturally formed aerosols are fog, soil dust, sea salt, volcanoes,

botanical debris, forest fires. Direct emission is particulate air

pollution and smoke, haze (Lioy and Kneip 1980).
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Decision Tree Classification

Decision tree technique is more beneficial when data are

ambiguous or inadequate to identity true thematic classes

based on their spectral feature in the satellite image (Coppin

et al. 2004). Since DTC is a nonparametric method, it helps

in classification as well as post-classification processing.

DTC has various benefits and is widely used in image pro-

cessing due to its relatively simple, explicit, and intuitive

classification structure (Friedl and Brodley 1997). The

construction of DTC requires a set of rules. These rules are

designed in a way to solve the purpose of segregating the

pixels into land use classes with higher accuracy.

In this study, DTC has been used after running MLC.

Misclassified pixels have been rectified after applying

knowledge-based decision rule, based on NDVI values and

slope function. Pixels classified as agriculture having a slope

of greater than 10 degrees (Kantakumar and Neelamsetti

2015) have been converted into the urban green as shown in

Fig. 2. Elevation data processed through Shuttle Radar

Topography Mission (SRTM) images and GoogleTM con-

tour data have been used for slope calculations. This slope

function is not applied to hilly regions. In hilly regions,

wherever there were difficulties in classifying urban green,

forest, and agriculture land, DTC was applied on a subset of

the image. As discussed by Lee et al. (2011), the threshold

values for NDVI have been used as input for the decision

tree classification (Lee et al. 2011). NDVI is a widely used

indicator to identify land cover types (Yang et al. 2003).

Moreover, Hua et al. (2012) suggest use of combined rule of

slopes and indices (Hua et al. 2012). Again, as discussed

Kantakumar and Neelamsetti (2015) indicate different

slopes for different land cover types. Thus, rules combining

NDVI and slope have been used in this study for DTC

(Fig. 4). These rules were evaluated with the help of liter-

ature review, and some of the values are derived from the

other field-based research studies (Parthasarathy et al. 2014);

details are shown in Table 4. It could be noted that a gen-

eralized range has emerged from review of the literature. It

has been kept consistent across the analysis in order to

maintain consistency of classification process and compa-

rability of classification results. These threshold values range

just acts as a guideline for the DTC analysis. Each city has

been processed separately for this analysis, and hence, care

is taken to ensure that cities with varied geography and

location analyzed here are appropriately represented through

the land use classes that emerge. For example, an NDVI of

say 0.3 in case of Dehradun is expected to not represent

mangrove class but rather forest class.

DTC is a tree formed of branches connected with nodes

shown in Fig. 4: methodological framework III. DTC

values differ as per land use classes and the urban area in

focus. The urban green value ranges from 0.12 to 0.26 for

hilly regions. Swamps/mangrove value ranges from 0.27 to

0.46, and bay value ranges from - 0.18 to 0 (Parthasarathy

et al. 2014) with slope lesser than 5 degrees for coastal

areas (shown in Fig. 4). Mangrove/swamps/mudflat and

saltpans/aquafarms are also classified with help of visual

interpretation techniques based on its appearance in the

images. Another example is the shadowing6 effect

(mountain shadow) observed in Dehradun City that has

been resolved through a combination of hybrid and DTC

approach. However, final results have been verified through

specific class-related information available within govern-

ment documents and GoogleTM images.

In most of the cases, DTC optimizes maximum overall

classification accuracy at the cost of smaller classes (Sharma

et al. 2013). Another limitation of DTC faced in this study

was its inability to capture details of the river and agriculture

land on hilly terrains. Thus, we apply the OBIA technique

on such problematic classes as discussed in Sect. 4.4.

Object-Based Image Analysis

Object-based image analysis (OBIA) works on using geo-

graphical objects as a key element for identification of LU/

LC classification (Dorren et al. 2003; Peña et al. 2014).

This approach helps to identify the isolated pixels and

misclassified pixels. OBIA recognizes pixels into different

types of class depending on its texture, shape, and pattern

(Moskal et al. 2011; Hussain et al. 2013; Li et al. 2014).

OBIA is a popular methodology among researchers using

Landsat MSS, TM, and ETM? images to detect the urban

sprawl; (Kindu et al. 2013; Tewolde and Cabral 2011),

vegetation classification (Dorren et al. 2003), waterbody

identification (Zhan 2003), and wetlands mapping (Dro-

nova 2015). OBIA works on the principle of segmentation

and classification. Post-OBIA processing, the classification

accuracy levels for Landsat ETM? images are reported to

be 90% or greater (Phiri and Morgenroth 2017). Amalisana

et al. (2017) perform land cover analysis for Bogor,

Indonesia, to find that OBIA provided high accuracy results

as compared to pixel-based classification (Amalisana et al.

2017). Similarly, Tampubolon et al. (2013) found that

OBIA provided reliable classification as compared to tra-

ditional maximum likelihood classification for Landsat

images of Medan, Sumatera (Tampubolon et al. 2013).

Here, segmentation was carried only in problematic situa-

tions of identification of area under agriculture for Asansol,

6 ‘‘Shadow occurs when an object totally or partially occludes light

directly from the light source. Shadows can be divided into two

classes: cast and self’’ (Arevalo et al. 2005). In remote sensing,

shadowing occurs in the images by different objects such as ‘‘cloud

(cloud shadow), mountain (topographic shadow), and urban material

(urban shadow)’’ (Shahtahmassebi et al. 2013).
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Panaji, Gangtok, and Srinagar cities. Firstly, the object’s

appearance was identified—area under agriculture for

Asansol, Panaji, Gangtok, and Srinagar cities on their

respective images. The identified pixel sets were then

grouped for each of the cities. ENVI 5.4 has been used here

for segmentation and classification of these images. In

Agartala City, the gorge is steeper at the leeward side of the

mountain and average height of region is 13m with undu-

lating topography and low-lying hills; hence, the river has

been traced through OBIA technique. The pixels repre-

senting river and the hill shadow were separated through

segmentation using OBIA, and then, classification was

conducted.

Post-processing

In LU/LC classification, results become more valuable

when post-processing results resemble actual on-ground

features sets. Post-processing performed by integration of

multi-level classification processes facilitated in cleaning,

merging of datasets (for 1990, 2000, 2010 and 2017) into

one layer. This helped in mapping and calculating the

decadal change in area under various land use categories.

The final datasets are compiled at the city level across the

different years; then, the total area was tabulated to create

change matrix graph and maps for 47 cities of India. The

resultant output has been illustrated through the decadal

map for Kochi City shown in Fig. 5. Figure 5 depicts the

urban growth of Kochi between 1990 and 2017. Post-pro-

cessing aids into the validation of accuracy assessment of

classified LU/LC results over conventional techniques. The

fusion of multi-level classification techniques has helped to

attain a high accuracy of multi-temporal datasets. Details

of the accuracy assessment are given in the results section.

Results and Discussions

Images Classified Using Different Approaches

LU/LC classification methodology followed here uses a

combination of different techniques. It begins with FCC of

Fig. 4 Methodological framework III for decision tree

Table 4 NDVI value thresholds

for various class types
S. No. Cover type Value Source

1 Waterbodies - 0.06 to - 0.35 Aguilar et al. (2012)

2 Urban greena 0.12–0.22 Parthasarathy et al. (2014)

3 Temperate and tropical forest areas# 0.28–0.45 Arulbalaji and Gurugnanam (2014)

4 Dense forest 0.45–0.7 Parthasarathy, et al. (2014)

5 Snow - 0.046 Holben (1986)

6 Mangrove 0.27–0.46 Guha (2016)

aFor hilly regions, urban green value ranges between 0.12 and 0.26
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satellite data, Landsat calibration, hybrid approach in the

first step, then applies unsupervised classification technique

in the second step, uses of DTC in third stage/step

(wherever necessary), and finally uses OBIA in the fourth

stage on problematic classes. The DTC-classified maps

obtain maximum accuracy in different land use classes and

Fig. 5 Land use change map of Kochi City
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show the best result across all other technique employed. A

comparative result illustration for Kochi City, achieved

from various techniques, is shown in Fig. 6 (‘‘Appendix 1’’

describes the land use shares across years for 47 cities).

The Areal Spread of Land Use Classes Under
Different Classification Techniques

The total area of the year 2017 (including all 47 cities) as

an illustration is calculated for different LU/LC classes

under hybrid, DTC, and OBIA techniques (shown in

Fig. 7). The total area is calculated in the Universal

Transverse Mercator (UTM) projection coordinate system.

Agricultural area derived from the hybrid classification

process is 3925 km2, from DTC is 3900 km2, and through

OBIA is 3989 km2. This increase in the agriculture area

under OBIA comes from proper identification and seg-

mentation of agriculture class in the cities of Asansol,

Panaji, Gangtok, and Srinagar as discussed in the methods

section (4.4). The area under river derived from hybrid

classification process is 289 km2, through DTC is 322 km2,

and using OBIA is 320 km2. Accuracy of mudflats and

saltpans improved from 10.57 km2 using a hybrid classi-

fication approach to 75.03 km2 by deploying DTC and

OBIA. For urban green, the total area accounted for by

hybrid classification is 2085.47 km2, whereas DTC and

OBIA accounted for 1550 km2, indicating that there was

overestimation initially. DTC and OBIA classification

Fig. 6 Classified images with a

different approach (snapshots of

Kochi City). a FCC scheme in

Landsat imageries, b LU/LC

derived from unsupervised

classification technique, c LU/

LC derived from supervised

classification technique d LU/

LC derived from DTC
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processes have increased the classification accuracy for the

area under the river, waterbody, saltpan, mudflat, aquafarm

and forest (Fig. 7).

Accuracy Assessment

The accuracy of the classification process is evaluated by

the error matrix graph. An error matrix that shows several

pixels correctly classified into land use classes is the

standard method to display the output which validates the

accuracy of final results. In Table 5, Kochi City has been

used for illustration of accuracy assessment of unsuper-

vised, supervised, and DTC techniques (‘‘Appendix 2’’

describes the accuracy assessment details for all the 47

cities). The purpose is to show variations observed in

classification results by traditional methods versus DTC.

For Kochi, DTC gave the best results with an overall

accuracy of 90.14% and kappa coefficient of 0.89 as

compared to hybrid classification at 78.96% overall accu-

racy and 0.75 kappa coefficient value. This result illustrates

the advantages of the adoption and development of multi-

ple classification techniques in the study region.

There are several factors that confuse the spectral sig-

nature of the images, including topography, shadowing,

atmospheric variability, sensor calibration, and class mix-

ing instantaneous field of view (IFOV) (Choodarathnakara

et al. 2012; Wang and Chen 2012). In this study, we have

experienced different issues; details are reported in

Table 6. It describes details of issues faced during pro-

cessing due variability of spectral signatures and the

respective resolution of the issue through applying differ-

ent basket of techniques at various stages on cities to

improve the classification accuracy. It can be observed that

the overall accuracy of classification among the cities

ranges from 81 to 93% and the kappa coefficient varies

from 0.76 to 0.91.

Discussion

There have been several advances in the field of remote

sensing and satellite data processing in the recent years

(Garg et al. 2018)—improving the efficiency of image

classification process being one of them. Recent studies

describe methods that aim at achieving higher accuracies

(Mandal et al. 2019; Nazmfar and Jafarzadeh 2018).

Through this study, we demonstrate an approach of com-

bining various classification techniques (parametric as well

as nonparametric) in order to improve the classification

Fig. 7 Total area distribution using different classifiers
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accuracies and derive high-quality land use land cover data

for urban areas. In order to bring in comparable results, the

methodology followed here has also been kept consistent.

Recent studies on land use land cover classification of

Indian cities are generally limited a single city or a region

around a city (Meer and Mishra 2020; Mandal et al. 2019;

Ramachandran and Reddy 2017; Vaz et al. 2017). The

robustness of the methodology adopted here has been

demonstrated through use of 47 urban areas across India

with cities falling under different sizes, climate zones, and

geographies ranging from Himalayan cities to coastal

cities, arid cities of Rajasthan, and land-locked cities in

warm and humid parts of India as well as 4 time points in

the history.

Also to note here is that the study does not include

ground truthing in its traditional sense of collecting GPS

points across all cities. One of the limitations here is that

the spatial resolution of 30 9 30 m of Landsat images may

not be sufficient for analyzing finer details. The study

explores cities falling under different geographies, where

one technique imparted on a city may not be successfully

imparted in the other city. However, results derived from

the accuracy assessment are promising, thus encouraging

further development and methodological implications of

multiple classification techniques for achieving higher

classification accuracies across urban areas located in

varied geographies.

Conclusion

The selection of classification techniques in remote sensing

studies is highly dependent on the purpose of the research

study, the classification level selected, and the timeline

considered for the study. For this study on 47 cities across

four time points, we started with traditional classification

methods such as supervised and unsupervised techniques.

The results obtained proved to be unsatisfactory in terms of

their accuracy achieved in the case of several cities. Thus,

this study employs multiple classification techniques on the

processed data to achieve results with higher classification

accuracy—the most prominent being hybrid classification.

Hybrid classification technique, which encompasses the

advantages of both the supervised and unsupervised clas-

sification methods, provided significant improvement in

accuracy results for multi-temporal datasets. Hence, for 14

cities out of 47 cities, the classification accuracy require-

ment of 72% was achieved in hybrid classification. For

problematic classes, we used DTC, OBIA, and unsuper-

vised classification techniques after masking the datasets.

DTC was used in cities with more number of problem in

datasets. DTC approach was designed after an extensive

literature review and some of the field expertise on land use

and coastal mapping. DTC provided with the improvement

in classification accuracy over the hybrid approach. The

results show an overall accuracy of 90%, and the developed

classification technique was successful in differentiating

green cover with accuracy level greater than 75%. This was

a marked increase in accuracy over the hybrid approach

where natural vegetation classes overlapped with each

other and were hard to distinguish.

Table 5 Accuracy assessment of three techniques (in percentage) for Kochi. Source: Author’s estimations

Classes Unsupervised Supervised Hybrid DTC

UA PA UA PA UA PA UA PA

Agriculture 58.48 54.05 69.44 67.11 77.52 71.94 84.75 96.15

Urban built-up 56.03 43.33 67.71 71.43 92.86 74.71 92.86 87.84

Urban green 42.50 42.50 61.26 62.96 69.39 80.95 87.18 79.07

Urban open 37.16 43.65 59.14 61.80 62.50 74.32 90.16 87.30

Mudflats/mangrove 52.67 37.70 71.88 54.33 77.53 68.32 89.61 94.52

Bay 53.85 38.25 77.78 59.83 87.50 70.71 88.61 80.46

River 55.56 42.25 78.95 68.18 81.08 84.51 93.75 96.77

Waterbody 50.96 42.55 76.92 62.02 88.89 70.18 97.56 95.24

Saltpan/aquafarms 47.17 39.47 70.75 64.66 78.95 60.48 92.59 93.75

OA = 50.15 K =0.43 OA =70.08 K = 0.66 OA=78.96 KA= 0.75 OA = 90.14 K = 0.89

Landsat calibration? hybrid? DTC*

UA, user’s accuracy; PA, producer’s accuracy; OA, overall accuracy; K, kappa statistics
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The purpose of this paper is to demonstrate the use of a

combination of multiple classification techniques to

achieve higher classification accuracy for multi-temporal,

multi-city datasets. This paper concludes that a combina-

tion of multi-level classification techniques has improved

performance in terms of classification accuracy levels for

urban areas. This technique is inclusive of different tech-

niques and thus makes it a unique approach for land use

classification. Results show improvement in the accuracy

of agriculture and green in hilly regions, swamps and salt

pans in the coastal cities. As an example of coastal (Kochi)

city with eleven different types of LU/LC classes, the

accuracy levels obtained were reported to be 51% for

unsupervised classification. Supervised classification and

DTC enhanced it to 77% and further to 90%, respectively.
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Appendix 1: Land Use Shares for 47 Cities
for 1990, 2000, 2010, and 2017
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Appendix 2: Accuracy Assessment for all 47
Cities

S. No. Cities Accuracy (in percentage)

Classes User Producer

1 Agartala Agriculture 96.39 67.80

Built-up 98.90 98.90

River 95.59 96.30

Urban open 96.77 95.24

Urban green 66.12 97.56

Waterbody 98.16 96.39

Overall accuracy 91.92

Kappa coefficient 90.24

2 Agra Agriculture 91.60 82.76

Built-up 100.00 98.23

River 100.00 99.40

Urban open 87.88 98.31

Urban green 77.39 76.07

Waterbody 100.00 98.75

Forest 81.48 92.63

Overall accuracy 91.63

Kappa coefficient 90.10

S. No. Cities Accuracy (in percentage)

Classes User Producer

3 Ahmedabad Agriculture 84.75 90.91

Built-up 93.75 91.84

River 100.00 86.27

Urban open 93.02 88.64

Urban green 5.88 87.91

Waterbody 71.01 100.00

Overall accuracy 90.06

Kappa coefficient 0.88

4 Allahabad Agriculture 93.10 98.18

Built-up 89.74 89.74

River 79.17 79.17

Urban open 97.50 97.50

Urban green 94.44 89.47

Waterbody 84.78 85.71

Overall accuracy 107.09

Kappa coefficient 0.88

5 Amritsar Agriculture 72.31 85.45

Built-up 98.13 98.13

Urban open 97.40 87.21

urban green 91.67 91.67

Waterbody 100.00 97.30

Overall accuracy 92.10

Kappa coefficient 0.90

6 Asansol Agriculture 88.96 78.38

Built-up 100.00 97.94

River 66.92 86.14

Urban open 95.24 100.00

Urban green 78.22 87.29

Waterbody 100.00 84.24

Overall accuracy 91.15

Kappa coefficient 0.89

7 Aurangabad Agriculture 91.73 89.05

Built-up 89.38 100.00

River 93.48 87.76

Urban open 91.93 98.67

Urban green 82.39 77.06

Waterbody 95.29 98.78

Forest 98.10 97.64

Overall accuracy 91.81

Kappa coefficient 90.18

8 Bangalore Agriculture 85.42 82.00

Built-up 83.33 62.50

River 100.00 100.00

Urban open 82.66 93.46

urban green 81.63 83.33

Waterbody 100.00 100.00

Forest 93.88 95.83

Overall accuracy 88.89
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S. No. Cities Accuracy (in percentage)

Classes User Producer

Kappa coefficient 86.81

9 Bhopal Agriculture 91.11 91.11

Built-up 83.33 61.22

River 100.00 100.00

Urban open 88.27 95.33

Urban green 87.69 87.69

Waterbody 100.00 100.00

Forest 94.85 95.83

Overall accuracy 92.66

Kappa coefficient 91.19

10 Chandigarh Agriculture 82.20 84.35

Built-up 98.36 98.36

River 100.00 91.57

Urban open 94.35 99.40

Urban green 72.88 66.15

Waterbody 81.58 100.00

Forest 91.49 86.00

Overall accuracy 91.62

Kappa coefficient 89.99

11 Chennai Agriculture 82.95 84.88

Built-up 92.00 94.52

River 100.00 95.10

Urban open 95.83 81.18

Urban green 84.78 84.78

Waterbody 89.25 91.21

Bay 65.38 85.00

Overall accuracy 88.40

Kappa coefficient 86.59

12 Dehradun Agriculture 90.45 90.96

Built-up 98.06 96.19

River 87.10 96.43

Urban open 98.77 81.63

Urban green 67.35 75.86

Waterbody 100.00 100.00

Forest 87.84 89.04

Overall accuracy 89.01

Kappa coefficient 86.70

13 Delhi (New Delhi) Agriculture 76.36 87.50

Built-up 95.00 93.44

River 89.41 96.20

Urban open 85.29 90.63

Urban green 96.67 69.88

Waterbody 74.07 95.24

Forest 97.06 95.65

Overall accuracy 88.84

Kappa coefficient 86.74

14 Dhanbad Agriculture 86.67 96.30

Built-up 96.30 88.64

S. No. Cities Accuracy (in percentage)

Classes User Producer

River 100.00 98.46

Urban open 96.59 77.98

Urban green 89.36 84.85

Waterbody 100.00 100.00

Forest 98.11 92.86

Mines 78.71 98.39

Overall accuracy 91.09

Kappa coefficient 89.65

15 Durg Agriculture 90.97 78.77

Built-up 97.67 98.82

River 87.23 93.18

Urban open 97.17 92.79

Urban green 87.26 95.80

Waterbody 97.84 95.77

Overall accuracy 91.97

Kappa coefficient 89.70

16 Faridabad Agriculture 92.59 76.92

Built-up 96.55 91.80

River 96.00 98.36

Urban open 90.91 85.71

Urban green 73.33 86.84

Waterbody 91.67 100.00

Forest 81.16 98.25

Overall accuracy 90.25

Kappa coefficient 88.61

17 Gangtok Agriculture 81.63 95.24

Built-up 94.92 73.68

River 94.12 98.46

Urban open 98.88 90.72

Urban green 88.89 77.42

Waterbody 96.67 93.55

Forest 92.50 90.24

snow 73.33 91.67

Overall accuracy 88.55

Kappa coefficient 86.86

18 Ghaziabad Agriculture 88.64 83.57

Built-up 97.73 97.73

River 79.31 88.46

Urban open 97.56 93.75

Urban green 84.80 91.77

Waterbody 95.71 91.78

Overall accuracy 91.03

Kappa coefficient 88.80

19 Guwahati Agriculture 97.14 87.18

Built-up 95.74 97.83

River 93.48 96.63

Urban open 97.56 93.75

Urban green 85.56 96.86
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S. No. Cities Accuracy (in percentage)

Classes User Producer

Waterbody 79.31 83.13

Overall accuracy 91.75

Kappa coefficient 89.64

20 Hyderabad Agriculture 91.67 77.88

Built-up 93.22 94.83

River 94.52 80.23

Urban open 90.74 97.03

Urban green 70.73 84.06

Waterbody 85.22 90.74

Forest 85.96 89.09

Overall accuracy 87.29

Kappa coefficient 85.02

21 Indore Agriculture 94.71 90.45

Built-up 91.30 93.33

River 86.54 93.75

Urban open 96.00 92.31

Urban green 84.16 88.54

Waterbody 85.19 88.46

Overall accuracy 91.54

Kappa coefficient 88.88

22 Jabalpur Agriculture 78.57 80.73

Built-up 90.32 93.33

River 100.00 88.89

Urban open 92.47 99.26

Urban green 92.73 89.08

Waterbody 82.67 100.00

Forest 94.37 90.54

Overall accuracy 90.94

Kappa coefficient 89.12

23 Jaipur Agriculture 86.36 78.08

Built-up 96.08 96.08

River 91.67 81.48

Urban open 88.06 92.19

Urban green 84.11 84.91

Waterbody 78.00 90.70

Forest 89.74 92.11

Overall accuracy 87.37

Kappa coefficient 86.91

24 Jodhpur Agriculture 86.67 85.53

Built-up 100.00 97.37

River 92.31 96.00

Urban open 95.31 92.42

Urban green 76.00 82.61

Waterbody 94.83 90.16

Overall accuracy 90.61

Kappa coefficient 80.15

25 Kanpur Agriculture 75.44 97.73

Built-up 84.21 91.43

S. No. Cities Accuracy (in percentage)

Classes User Producer

River 79.31 76.67

Urban open 95.45 84.00

Urban green 87.76 78.18

Waterbody 95.83 92.00

Overall accuracy 87.20

Kappa coefficient 84.39

26 Kochi Agriculture 75.76 72.46

Built-up 94.74 98.36

River 93.75 82.19

Urban open 85.94 91.67

Urban green 73.42 71.60

Waterbody 81.94 93.65

Bay 80.65 55.56

Mangrove 89.61 94.52

Overall accuracy 86.47

Kappa coefficient 83.91

27 Kolkata Agriculture 71.43 71.43

Built-up 96.23 96.23

Urban open 90.00 83.08

Urban green 78.72 90.24

Waterbody 100.00 97.96

Overall accuracy 88.98

Kappa coefficient 0.86

28 Kota Agriculture 88.89 83.81

Built-up 91.80 94.92

River 97.78 91.67

Urban open 89.61 94.52

Urban green 82.76 88.89

Waterbody 90.59 97.47

Forest 87.50 80.00

Overall accuracy 89.88

Kappa coefficient 88.14

29 Lucknow Agriculture 89.09 92.45

Built-up 91.30 91.30

Urban open 96.43 83.08

Urban green 88.64 95.12

Waterbody 100.00 95.24

Overall accuracy 91.25

Kappa coefficient 0.88

30 Ludhiana Agriculture 83.61 86.44

Built-up 96.15 96.15

Urban open 95.83 80.70

Urban green 87.95 96.05

Waterbody 99.08 99.08

Overall accuracy 92.92

Kappa coefficient 0.91

31 Madurai Agriculture 77.78 94.23

Built-up 97.06 97.06
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S. No. Cities Accuracy (in percentage)

Classes User Producer

River 85.37 92.11

Urban open 98.82 92.31

Urban green 92.55 87.88

Waterbody 96.39 93.02

Overall accuracy 92.00

Kappa coefficient 90.14

32 Mumbai Agriculture 94.94 75.00

Built-up 94.92 56.00

River 100.00 100.00

Urban open 98.78 82.00

Urban green 96.80 133.00

Waterbody 100.00 175.00

Bay 73.56 64.00

Mangrove 92.31 64.00

Saltpan 71.52 136.00

Overall accuracy 90.40

Kappa coefficient 0.89

33 Mysore Agriculture 86.15 82.35

Built-up 94.87 98.67

River 91.55 98.48

Urban open 96.83 83.56

Urban green 73.85 87.27

Waterbody 98.21 90.16

Overall accuracy 90.20

Kappa coefficient 88.23

34 Nagpur Agriculture 86.15 90.32

Built-up 91.36 98.67

River 91.55 98.48

Urban open 96.00 77.42

Urban green 80.00 84.21

Waterbody 98.21 90.16

Overall accuracy 90.34

Kappa coefficient 88.38

35 Nashik Agriculture 89.34 91.60

Built-up 93.33 100.00

River 93.62 96.70

Urban open 97.03 85.22

Urban green 77.59 84.91

Waterbody 95.89 92.11

Overall accuracy 91.82

Kappa coefficient 90.08

36 Panaji Agriculture 93.85 98.39

Built-up 94.55 96.30

River 100.00 71.54

Urban open 95.70 98.89

Urban green 97.76 95.62

Waterbody 100.00 100.00

Bay 70.27 97.50

S. No. Cities Accuracy (in percentage)

Classes User Producer

Mangrove 96.74 94.68

Saltpan 75.69 76.76

Overall accuracy 90.83

Kappa coefficient 0.90

37 Patna Agriculture 81.16 83.58

Built-up 97.10 97.10

River 93.10 96.43

Urban open 91.53 87.10

Urban green 82.28 83.33

Waterbody 95.95 92.21

Overall accuracy 90.16

Kappa coefficient 88.16

38 Pune Agriculture 87.12 93.50

Built-up 93.67 100.00

River 100.00 91.84

Urban open 92.68 88.37

Urban green 86.79 100.00

Waterbody 98.06 84.87

Forest 100.00 84.87

Overall accuracy 93.98

Kappa coefficient 0.93

39 Rajkot Agriculture 76.47 85.53

Built-up 98.88 88.89

River 94.23 97.03

Urban open 94.55 81.25

Urban green 80.61 89.77

Waterbody 96.51 93.26

Overall accuracy 89.94

Kappa coefficient 87.87

40 Shimla Agriculture 85.42 52.56

Built-up 91.84 97.83

River 93.55 100.00

Urban open 96.70 93.62

Forest 66.39 88.76

Waterbody 100.00 94.23

Overall accuracy 87.95

Kappa coefficient 85.39

41 Srinagar Agriculture 70.97 90.41

Built-up 100.00 98.18

River 90.63 100.00

Urban open 96.25 92.77

Forest 89.90 77.39

Waterbody 100.00 90.32

Overall accuracy 89.69

Kappa coefficient 87.49

42 Surat Agriculture 97.78 97.78

Built-up 98.89 96.74

River 100.00 84.42
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S. No. Cities Accuracy (in percentage)

Classes User Producer

Urban open 92.59 94.34

Urban green 93.33 88.29

Waterbody 97.09 100.00

Bay 75.58 97.01

Mangrove 87.76 94.51

Saltpan 82.86 72.50

Overall accuracy 91.85

Kappa coefficient 0.91

43 Trichy Agriculture 85.22 83.76

Built-up 100.00 98.82

River 90.32 87.50

Urban open 96.08 90.74

Urban green 87.72 92.59

Waterbody 95.74 96.77

Overall accuracy 92.24

Kappa coefficient 90.44

44 Vadodara Agriculture 86.41 79.46

Built-up 94.92 98.25

River 94.23 97.03

Urban open 96.70 90.72

Urban green 82.05 89.51

Waterbody 98.45 96.94

Overall accuracy 91.93

Kappa coefficient 90.04

45 Varanasi Agriculture 83.19 88.39

Built-up 97.53 95.18

River 92.00 95.83

Urban open 96.74 81.65

Urban green 86.21 92.59

Waterbody 96.74 93.68

Overall accuracy 90.84

Kappa coefficient 0.89

46 Vasai-Virar Agriculture 98.36 97.30

Built-up 98.04 97.09

River 100.00 88.00

Urban open 95.12 83.87

Urban green 97.06 79.52

Waterbody 100.00 99.38

Bay 50.86 94.68

Mangrove 100.00 95.15

Saltpan 90.91 78.43

Overall accuracy 90.24

Kappa coefficient 0.89

47 Vizag Agriculture 93.94 97.48

Built-up 93.75 93.75

River 100.00 78.76

Urban open 97.96 84.21

Urban green 96.70 83.81

S. No. Cities Accuracy (in percentage)

Classes User Producer

Waterbody 100.00 100.00

Bay 67.72 91.49

Mangrove 100.00 96.91

Saltpan 82.35 91.80

Overall accuracy 91.43

Kappa coefficient 0.90
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