
Mathematical Programming
https://doi.org/10.1007/s10107-023-01991-z

FULL LENGTH PAPER

Series B

An abstract model for branch and cut

Aleksandr M. Kazachkov1 · Pierre Le Bodic2 ·
Sriram Sankaranarayanan3

Received: 13 August 2022 / Accepted: 26 May 2023
© Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2023

Abstract
Branch and cut is the dominant paradigm for solving a wide range of mathematical
programming problems—linear or nonlinear—combining efficient search (via branch
and bound) and relaxation-tightening procedures (via cutting planes, or cuts). While
there is awealth of computational experience behind existing cutting strategies, there is
simultaneously a relative lack of theoretical explanations for these choices, and for the
tradeoffs involved therein. Recent papers have explored abstract models for branching
and for comparing cutswith branch and bound.However, tomodel practice, it is crucial
to understand the impact of jointly considering branching and cutting decisions. In this
paper, we provide a framework for analyzing how cuts affect the size of branch-and-cut
trees, as well as their impact on solution time. Our abstract model captures some of the
key characteristics of real-world phenomena in branch-and-cut experiments, regarding
whether to generate cuts only at the root or throughout the tree, how many rounds of
cuts to add before starting to branch, and why cuts seem to exhibit nonmonotonic
effects on the solution process.

Keywords Integer programming · Branch and bound · Cutting planes

Mathematics Subject Classification 90C10 · 90C11 · 90C57

Extended version of workshop paper from The 23rd Conference on Integer Programming and
Combinatorial Optimization [25].

B Aleksandr M. Kazachkov
akazachkov@ufl.edu

Pierre Le Bodic
pierre.lebodic@monash.edu

Sriram Sankaranarayanan
srirams@iima.ac.in

1 University of Florida, Gainesville, FL, USA

2 Monash University, Clayton, VIC, Australia

3 Indian Institute of Management, Ahmedabad, India

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-023-01991-z&domain=pdf
http://orcid.org/0000-0002-4949-9565
http://orcid.org/0000-0003-0842-9533
http://orcid.org/0000-0002-4662-3241

A. M. Kazachkov et al.

1 Introduction

The branch-and-cut (B&C) paradigm is a hybrid of the branch-and-bound (B&B)
[28] and cutting plane methods [18–20]. It is central to a wide range of modern
global optimization approaches [2, 8], particularly mixed-integer linear and nonlinear
programming solvers [23]. Cutting planes, or cuts, tighten the relaxation of a given
optimization problem and are experimentally known to significantly improve a B&B
process [1], but determining which cuts to add is currently based on highly-engineered
criteria and computational insights, not from theory. An outstanding open problem is
a rigorous underpinning for the choices involved in branch and cut. While recent
papers have been actively exploring the theory of branching [3, 12, 13, 15, 29] and
comparing cutting and branching [6], the interaction of the two together remains
poorly understood. Most recently, Basu et al. [5] have proved that using B&C can
strictly outperform either branching or cutting alone.

This paper introduces a theoretical framework for analyzing the practical challenges
involved in making B&C decisions. We build on work by Le Bodic and Nemhauser
[29], which provides an abstract model of B&B, based on how much bound improve-
ment is gained by branching on a variable at a node of the B&B tree. This model not
only is theoretically useful, but also can improve branching decisions in solvers [3].

Specifically, we add a cuts component to the abstract B&B model from Le Bodic
and Nemhauser [29]. We apply this enhanced model to account for both the utility of
the cuts in proving bounds, as well as the additional time taken to solve the nodes of
a B&C tree after adding cuts.

In this abstract model, given the relative strengths of cuts, branching, and the rate
at which node-processing time grows with additional cuts, we quantify (i) the number
of cuts, and (ii) cut positioning (at the root or deeper in the tree) to minimize both the
tree size and the solution time of an instance. This thereby captures some of the main
tradeoffs between cutting and branching, in that cuts can improve the bound or even
the size of a B&C tree, but meanwhile slow down the solution time overall. We use
a single-variable abstract B&C model, where every branching variable has identical
effect on the bound, and we only address the dual side of the problem, i.e., we are only
interested in proving a good bound on the optimal value, as opposed to generating
better integer-feasible solutions.

We emphasize that our motivation is to advance a theoretical understanding of
empirically-observed phenomena in solving optimization problems, and our results
show that some of the same challenges that solvers encounter in applying cuts do arise
in theory. While we state prescriptive recommendations in our abstract model, these
are not intended to be immediately computationally viable. Instead, the intent of the
prescriptive results is to see whether our abstraction affords enough simplicity to make
precise theoretical statements.

Summary of contributions and paper structureWe provide a generic view of B&C in
Sect. 2. Section3 introduces our abstract B&C model, in which the quality of cuts and
branching remains fixed throughout the tree. In Sect. 4, we analyze the effect of cuts
on tree size; we prove that in this case it is never necessary to add cuts after the root
node, and we provide a lower bound on the optimal number of cutting plane rounds

123

An abstract model for branch and cut

that will minimize the B&C tree size. In Sect. 5, we extend our model to account
for diminishing marginal returns from cuts, relaxing our assumption of constant cut
strength. Our main result in this section is an approximation of the optimal number of
cuts.

Then, in Sect. 6, we study how cuts affect solving time for a tree, not just its size,
under constant cut strength. In Sect. 6.1, we show that cuts are guaranteed to be helpful
for sufficiently hard instances. In contrast to the case of tree size, in this more general
setting, adding cuts after the root node may be better. However, in Theorem 23, we
show that when the two branching directions yield the same bound improvement, then
root cuts are still sufficient.

2 Preliminaries

We are given a generic optimization problem (OP)—linear or nonlinear, with or with-
out integers—which is to be solved using a B&C algorithm. For convenience, we
assume that the OP is a minimization problem. We also assume that we already have a
feasible solution to the OP, so that our only goal is to efficiently certify the optimality
or quality of that solution.

The B&C approach involves creating a computationally tractable relaxation of the
original problem, which we call the root of the B&C tree and assume is provided to
us. For example, when the OP is a mixed-integer linear program, we start with its
linear programming relaxation. The value of the solution to this relaxation provides a
lower bound on the optimal value to the OP. B&C proceeds by either (1) tightening the
relaxation through adding valid cuts, which will remove parts of the current relaxation
but noOP-feasible points, or (2) splitting the feasible region, creating two subproblems,
which we call the children of the original (parent) relaxation.

Both of these operations improve the lower bound with respect to the original
relaxation. The B&C procedure repeats on the new relaxation with cuts added in the
case of (1), and recursively on the children in the case of (2); we assume that tractability
ismaintained in either case.Moreover, we assume that all children remainOP-feasible.
We now formally define a B&C tree as used in this paper.

Definition 1 (B&C tree) A B&C tree T is a rooted binary tree with node set VT that
is node-labeled by a function zT : VT → R≥0, indicating the bound improvement at
each node with respect to the bound at the root node, such that

1. The root node v0 has label zT (v0) = 0.
2. A node v with exactly one child v′ is a cut node, and we say that a cut or round of

cuts is added at node v. The bound at v′ is zT (v′) = zT (v) + cv , where cv is the
nonnegative value associated with the round of cuts at v.

3. A node v with exactly two children v1 and v2 is a branch node, and we say that
we branch at node v. The bounds at the children of v are zT (v1) = zT (v) + �v

and zT (v2) = zT (v) + rv , where (�v, rv) is the pair of bound improvement values
associated with branching at v.

4. A node with no children is a leaf node.

We say that T proves a bound of Z if zT (v) ≥ Z for all leaves v ∈ VT .

123

A. M. Kazachkov et al.

We will refer to a cut-and-branch tree as one in which all cut nodes are at the root,
before the first branch node.

While Definition 1 is generic, the abstraction we study is restricted to the single-
variable version in which �v and rv are the same for each branch node v ∈ VT . We
also drop the subscript v in cv , as in Sects. 4 and 6, we assume a constant cut quality
for each cut node v ∈ VT , while in Sect. 5, cut quality is only a function of the number
of cuts already applied.

3 The abstract branch-and-cut model

This section introduces the Single Variable Branch-and-Cut (SVBC) model, an
abstraction of a B&C tree as presented in Definition 1. First, we define a formal
notion of the time taken to process a B&C tree as the sum of the node processing
times, which in turn depends on the following definition of a time-function.

Definition 2 (Time-function) A function w : Z≥0 → [1,∞) is a time-function if it is
nondecreasing and w(0) = 1.

Definition 3 (Node time and tree time) Given a B&C tree T , node v ∈ VT , and
time-function w,

(i) the (node) time of v, representing the time taken to process node v, is
w(z), where z is the number of cut nodes in the path from the root of T to v.

(ii) the (tree) time of T , denoted by τw(T), is the sum of the node times of all the
nodes in the tree.

We simply say τ(T) when the time-function w is clear from context.

Definition 3 models the observation that cuts generally make the relaxation harder
to solve, and hence applying more cuts increases node processing time. Note that (i)
if w = 1, i.e., w(z) = 1 for all z ∈ Z≥0, we obtain the regular notion of size of a tree,
which counts the number of nodes in the tree, and (ii) the time of a pure cutting tree
with t cuts (i.e., t + 1 nodes) is

∑t
i=0 w(i).

Finally, we state the SVBC model in Definition 4. In this model, the relative bound
improvement at every cut node is always the same constant c, and every branch node
is associated to the same (�, r) pair of bound improvement values. We also assume
that the time to solve a node depends on the number of cuts added to the relaxation up
to that node.

Definition 4 (Single variable branch-and-cut (SVBC) tree) A B&C tree is a Sin-
gle Variable Branch-and-Cut (SVBC) tree with parameters (�, r; c,w) if the bound
improvement value associated with each branch node is (�, r), the bound improve-
ment by each cut node is c, and the time-function is w. We say such a tree is an
SVBC(�, r; c,w) tree.

Without loss of generality, we assume 0 ≤ � ≤ r .

Definition 5 (τ-minimality) Given a function w : Z≥0 → [1,∞), we say that a B&C
tree T that proves bound Z is τ-minimal if, for any other B&C tree T ′ that also proves
bound Z with the same (�, r; c,w), it holds that τ(T ′) ≥ τ(T).

123

An abstract model for branch and cut

0

3

6 6

3

6 6

(a) Pure branching: 7 nodes

0

1

...

5

6

(b) Pure cutting: 7 nodes

0

1

2

3

6 6

(c) Branch and cut: 6 nodes

Fig. 1 Three B&C trees proving Z = 6, with � = r = 3, c = 1, and w = 1

When w = 1, we may refer to a τ-minimal tree as minimal-sized.
It is often the case that applying a round of cuts at a node may not improve the

bound as much as branching at that node, but the advantage is that cutting adds only
one node to the tree, while branching creates two subproblems. A first question is
whether there always exists a minimal-size tree with only branch nodes or only cut
nodes. We address this in Example 6, which illustrates our notation, shows that cut
nodes can help reduce the size of a B&C tree despite improving the bound less than
branch nodes, and highlights the fact that finding a minimal-sized B&C tree proving
a particular bound Z involves strategically using both branching and cutting.

Example 6 (Branch and cut can outperform pure branching or pure cutting) Figure1
shows three B&C trees that prove the bound Z = 6. The tree in panel (a) only has
branch nodes, (b) only has cut nodes, and (c) has both branch and cut nodes. As seen
in the figure, branching and cutting together can create strictly smaller trees than pure
branching or cutting methods. �

Basu et al. [5, 6] also investigate the complementary effect of branching and cutting.
The authors prove that for pure binary problems, when cutting and branching are
derived from the same underlying logical conditions, then it suffices to only cut to
minimize the size of the tree [6]. When the second assumption is relaxed, the second
paper proves that combining cutting and branching can be exponentially better than
using either method alone [5]. We instead focus on specifying the optimal number of
cuts to add or where to place them in the tree for a particular instance.

4 Optimizing tree size

In this section, we examine the number of cuts that minimize the size |VT | of a B&C
tree T , i.e., optimizing τ(T) when w = 1. In Lemma 7, we first address the location
of these cuts—should they be at the root or deeper in the tree?

Lemma 7 For any target bound Z and a fixed set of parameters (�, r; c, 1), there exists
a τ-minimal SVBC(�, r; c, 1) tree that proves bound Z such that all cut nodes form a
path starting at the root of the tree.

123

A. M. Kazachkov et al.

Proof Let T be a τ-minimal SVBC(�, r; c, 1) tree. If all cut nodes in the tree T are at
the root, then we are done. Otherwise, let v ∈ VT be a cut node with a parent that is a
branch node, i.e., v has one child w. Let T ′ be the tree obtained by removing w from
T , i.e., contracting v and w, and instead inserting w immediately after the root. Let
v′ �= w be a leaf node of T , which is also a leaf of T ′. It holds that zT ′(v′) ≥ zT (v′),
since the path from the root to v′ in T ′ goes through the same branch nodes and at
least as many cut nodes as in T . Recursively applying this procedure, we move all
cut nodes to the root without increasing the tree size, proving the desired result by the
assumed minimality of T . 	

We have proved that for any minimal-size SVBC(�, r; c, 1) tree, it suffices to con-
sider cut-and-branch trees, where all cut nodes are at the root. To understand how
many cuts should be added, we start with the special case that c ≤ � = r .

A useful observation for our analysis is that one should not evaluate the effects of
cuts one at a time on the size of the tree, as tree size does not monotonically decrease
as the number of cuts increases from 0 to the optimal number of cuts. For example, if
c < � = r and Z = 2c (mod r), using one cut node would increase the overall tree
size, while two cut rounds would reduce tree size by 2�Z/r� − 2. This phenomenon
highlights a practical challenge in determining how to use a cut family and whether
cuts benefit an instance, as adding too few or too many cut nodes may increase tree
size while the right number can greatly decrease the overall size.

Instead, the key insight for Theorem 9 is reasoning about layers: adding a set of cut
nodes is beneficial when, together, the cut nodes improve the bound enough to remove
an additional layer of the branch-and-bound tree, and fewer cuts are added than the
number of removed nodes.

If a minimal-size tree T proving bound Z has k cut nodes at the root, then the
depth of the branching component, the subtree starting with the first branch node, is
δk := max{0, �(Z − ck)/r�}. The total size of the tree is

τ(T) = k + 2δk+1 − 1. We also know that the depth of the branching component
when the target bound is Z is never more than δmax := �Z/r�.

For any given δ ∈ {0, . . . , δmax} and target bound Z , the minimum number of cut
nodes at the root to achieve that depth of the branching component is

κZ (δ) := max{0, �(Z − δr)/c�},

where it can be seen that κZ(δ) = 0 if and only if δ = δmax, within the domain.

Lemma 8 When 0 < c ≤ � = r , the optimal number of cut nodes in a minimal-size
SVBC tree proving bound Z is κZ (δ) for some δ ∈ Z≥0.

Proof A branching component with depth δ proves a bound δr , leaving a bound of
max{0, Z − δr} to prove with cut nodes. Therefore, it is necessary and sufficient to
use κZ (δ) = max {0, �(Z − δr)/c�} cut nodes. 	

Next, we present Theorem 9, which provides the optimal number of rounds of cuts
for an SVBC(�, r; c, 1) tree when c ≤ � = r , as a function of the tree parameters and
the target bound. The theorem implies that the depth of the branching component in

123

An abstract model for branch and cut

a minimal-size tree can take one of four values, and it is at most δ∗ := ⌊
log2�r/c�

⌋
,

which is independent of the target bound Z . Thus, as Z increases, the proportion of
the bound proved by branch nodes goes to zero.

Theorem 9 Let δ∗ := ⌊
log2�r/c�

⌋
. When 0 < c ≤ � = r , the number of cut nodes to

minimize the size of an SVBC(�, r; c, 1) tree proving bound Z is

k∗ :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

κZ (δ
∗) if Z ≥ rδ∗ and κZ(δ

∗ − 1) − κZ (δ
∗) ≥ 2δ∗

κZ (δ
∗ − 1) if Z ≥ rδ∗ and κZ(δ

∗ − 1) − κZ (δ
∗) < 2δ∗

κZ (δ
max − 1) if Z < rδ∗ and κZ (δ

max − 1) < 2δmax

0 otherwise.

The optimal depth of the branching component is either min{δ∗, δmax} or
min{δ∗, δmax}−1. Moreover, the size of any minimal SVBC(�, r; c, 1) tree that proves
bound Z is at least 2�(Z−ck∗)/r�+1 − 1 + k∗.

Proof Given an instance for which bound Z needs to be proved, our goal is to under-
stand how the size of the SVBC(�, r; c, 1) tree changes as a function of k, the number
of cuts we apply at the root node. By Lemma 8, our goal is equivalent to finding the
optimal depth of the branching component.

Let Tδ denote the treewithκZ (δ) cuts added at the root node, followedby a branching
component of depth δ. Recall that κZ (δ) is the minimum number of cuts to achieve a
branching depth of δ. The bound zTδ (u) at each leaf node u of Tδ satisfies zTδ (u) ≥ Z .
Hence, for any node v that is a parent of a leaf node u of Tδ , the bound at v is zTδ (v) =
zTδ (u) − r ≥ Z − r . By definition of κZ (δ − 1), zTδ (v) + (κZ(δ − 1) − κZ (δ))c ≥ Z ,
as the last layer of the tree Tδ will no longer be necessary, and any fewer cuts will not
meet the target bound:

zTδ (v) + (κZ(δ − 1) − κZ(δ) − 1)c < Z .

Hence,

κZ (δ − 1) − κZ(δ) < 1 + Z − zTδ (v)

c
≤ 1 + r

c
,

so that the number of cuts to decrease the branching component by one more layer
is at most κZ(δ − 1) − κZ(δ) ≤ �r/c�. As there are 2δ leaf nodes in the last layer of
Tδ , τ(Tδ−1) > τ(Tδ) if and only if κZ (δ − 1) − κZ(δ) > 2δ , implying that adding the
κZ(δ−1)−κZ (δ) cut nodes is beneficial if δ > δ∗ = ⌊

log2�r/c�
⌋
. This is independent

of Z and we conclude that, if δ∗ ≤ δmax, then the optimal branching depth is at most
δ∗.

Now assume δ < δmax. For a leaf node u of Tδ , zTδ (u) < Z + c, as the definition
of κZ(δ) means κZ (δ) − 1 cut nodes would require another layer of branching to
prove bound Z . For any node v that is a parent of u, by definition of κZ (δ − 1),
zTδ (v)+ (κZ(δ − 1)− κZ (δ))c ≥ Z , which, together with zTδ (v) < Z − r + c, implies

123

A. M. Kazachkov et al.

that, when δ < δmax, the number of cuts to decrease the branching component by one
more layer is at least

lg κZ (δ − 1) − κZ (δ) ≥ Z − zTδ (v)

c
≥

⌈r

c

⌉
− 1. (1)

It follows that removing an additional layer weakly increases the size of the tree if
�r/c� − 1 ≥ 2δ , which holds if δ < δ∗ − 1, and so the optimal branching depth
is at least δ∗ − 1. Hence, the optimal number of cuts when δ∗ ≤ δmax is κZ(δ

∗) if
κZ(δ

∗ − 1) − κZ (δ
∗) ≥ 2δ∗

, and it is κZ (δ
∗ − 1) otherwise.

The last case to consider is when δ∗ > δmax, or equivalently Z < rδ∗. For all
δ ≤ δmax ≤ δ∗ −1, including the pure branch-and-bound tree, Tδ has at most 2δ∗−1 ≤
�r/c� − 1 leaf nodes. For depths δ < δmax, the lower bound in (1) implies that
τ(Tδ−1) ≥ τ(Tδ). However, at δ = δmax, it is still possible that κZ (δ

max − 1) < 2δmax
.

This precisely results in the last two cases in the definition of k∗ in the theorem
statement. 	

In Theorem 10, we show that even in general, for � �= r , it is always optimal to add
at least one cut round for sufficiently large target bounds.

Theorem 10 If 0 < c ≤ � ≤ r and Z > r
⌊
log2�r/c�

⌋
, then the minimal

SVBC(�, r; c, 1) tree proving a bound Z has at least one cut node.

Proof Consider a pure branching tree that proves Z . The number of leaf nodes of this
tree is at least 2�Z/r�, since � ≤ r , and all the parents of each of these leaf nodes
have a remaining bound in (0, r] that needs to be proved. Now suppose we add �r/c�
rounds of cuts. All of the leaf nodes of the pure branch-and-bound tree would then
be pruned, since the parent nodes would already prove the desired target bound of
Z . As a result, there is benefit to cutting when 2�Z/r� > �r/c�, which holds when
Z > r

⌊
log2�r/c�

⌋
. 	

Corollary 11 If 0 < c ≤ � ≤ r , then for Z := r
⌊
log2�r/c�

⌋
, every minimal

SVBC(�, r; c, 1) tree proving a bound Z > Z has at least � Z−Z
c � cut nodes.

Example 12 The following example, from Basu et al. [5], shows that SVBC trees with
constant c ≤ � = r have been studied in the literature and that cuts not only decrease
the size of a branch-and-bound tree, but in fact can lead to an exponential improvement.

Consider the independent set problem, defined on a graph G with vertices V
and edge set E , in which G consists of m disjoint triangles (cliques of size three):
maxx {∑v∈V xv : x ∈ {0, 1}|V |; xu + xv ≤ 1, ∀ {u, v} ∈ E}. The optimal value is
m, using xv = 1 for exactly one vertex of every clique, while the linear relaxation has
optimal value 3m/2, obtained by setting xv = 1/2 for all v ∈ V .

Suppose we branch on xv , v ∈ V , where v belongs to a clique with vertices u
and w. In the left (xv ≤ 0) branch, the objective value of the relaxation decreases by
� = 1/2 with respect to the parent. This is because the optimal values of the variables
for all vertices except u, v, and w remain unchanged, and the constraint xu + xw ≤ 1
along with xv ≤ 0 implies that the objective contribution of the triangle {u, v, w} is

123

An abstract model for branch and cut

at most 1, whereas at the parent node xu + xv + xw contributed 3/2 to the objective.
We can attain that contribution of 1 by setting either xu = 1 and xw = 0, or xw = 1
and xu = 0. Similarly, for the right branch, we can derive that r = 1/2.

Notice that once we branch on xv , the remaining problem can be seen as fixing the
values of the three variables corresponding to vertices in the triangle that v belongs to,
while keeping the remaining variables unchanged. In other words, it is a subproblem
with exactly the same structure as the original one, except removing the decision
variables for the vertices of a single clique.

Finally, we look at families of cutting planes that we can derive. By adding up the
three constraints corresponding to the edges of any triangle {u, v, w}, we obtain the
implication 2(xu + xv + xw) ≤ 3. Since all variables are integer-restricted, we can
infer that xu + xv + xw ≤ �3/2� = 1 for every clique. Each such cut corresponds to
a change of c = 1/2 in the objective, and there exists one such cut for every clique of
three vertices.

Hence, by Theorem 9, we have that, not counting cut nodes, the optimal depth of
the SVBC(�, r; c, 1) tree that proves the bound Z = m/2 is δ∗ = ⌊

log2�r/c�
⌋ = 0.

This implies that the optimal number of cut rounds is

k∗ =
⌈
Z

c

⌉

=
⌈
m/2

1/2

⌉

= m,

for a corresponding tree with m total nodes, compared to a pure branching tree that
would have depth �Z/r� = m and thus 2m+1 − 1 nodes, which is exponentially many
more than if cuts are used. �

5 Diminishing cut strength

In the SVBC model, the assumption of constant cut strength c implies that a tree
with only cut nodes proving a bound Z has size 1 + �Z/c�, growing linearly with Z .
Meanwhile, the tree size to prove the same bound by only branch nodes is exponential
in Z .While Example 12 illustrates that there exist caseswhere the constant cut strength
assumption is satisfied, a more realistic setting would reflect the empirically-observed
phenomenon of diminishing marginal bound improvements from cuts [4, 14]. In this
section, we study tree size (w = 1) when cuts deteriorate in strength across rounds,
for the special case that � = r .

5.1 Empirical motivation for worsening cuts

We first test 12 instances from the 2017 Mixed Integer Programming Library [17]
as examples of the evolution of the bound as rounds of cuts are applied at the root
node on an optimization solver. The subset of instances is based on auxiliary testing
showing that they have linear relaxations that solve relatively quickly and that Gomory
mixed-integer cuts [19] nontrivially affect the bound. We do not claim these instances
are representative.

123

A. M. Kazachkov et al.

0 20 40 60 80 100
Rounds of cuts

2.14

2.16

2.18

2.20

2.22
L
P
bo

un
d

×107

0

10

20

30

40

50

L
P
ti
m
e
(s
)

7758

cost266-UUE_presolved

LP bound Predicted bound LP time (s) Cumulative cuts (#)

0 10 20 30 40 50
Rounds of cuts

−950000

−900000

−850000

−800000

−750000

L
P
bo

un
d

0.00

0.05

0.10

0.15

0.20

0.25

L
P
ti
m
e
(s
)

1683

neos-3754480-nidda_presolved

LP bound Predicted bound LP time (s) Cumulative cuts (#)

Fig. 2 Applying rounds of Gomory cuts on two MIPLIB 2017 instances (after preprocessing) yields a
diminishing bound improvement (LP bound) and a linear tendency for LP resolve time (LP time). The
overlayed bar plot for each instance shows the cumulative number of cuts added after each round. The
predicted bound using the improvement from the first round follows a logarithmic function that is similar
to the actual bound evolution

Specifically, we apply rounds of Gomory mixed-integer cuts to instances that are
first presolved using Gurobi [21]. Cuts are computed in each round with the CglGMI
implementation in the Cut Generation Library [9]. The linear relaxation after each
round of cuts is solved using Clp [10]. Cut generation is terminated after either 100
rounds of cuts have been applied, one hour has elapsed, or no cuts are generated in a
given round. Experiments are performed with a single thread on HiPerGator, a shared
cluster through Research Computing at the University of Florida.

Figure2 depicts the results for two instances. Each plot shows four time series
after rounds of cuts: the linear relaxation optimal value (“LP bound”), the “Predicted
bound” corresponding to the model in Sect. 5.2, the number of seconds it takes to
solve the linear relaxation (“LP time”), and the total number of cuts in the relaxation
(“Cumulative cuts”). The results for the remaining 10 instances are plotted in Fig. 6 in
Appendix A. For the predicted bound series, the bound in round t is based on the first

123

An abstract model for branch and cut

round of cuts: if z0 is the initial linear programming relaxation optimal value, and z1
is the value of the linear relaxation after one round of cuts, then the predicted bound
z̃t at round t is computed as z̃t := z̃t−1 + (z1 − z0)/t , where z̃0 := z0.

Across the instances, we observe that cuts tend to provide diminishing marginal
bound improvements as more rounds are applied. Furthermore, the predicted bound
follows a logarithmic function that reflects the general trend in the bound, though it
becomes less accurate in later rounds when there is more substantial tailing off in
bound improvement.

The model introduced next only aims to capture the relative decrease in how cuts
affect the bound across rounds. The time to solve the linear relaxation as a function of
number of cut rounds is further discussed in Sect. 6.

5.2 Single variable branching with harmonically-worsening cuts

We define a model in which the total bound improvement by k cuts is the kth harmonic
number scaled by a constant parameter c, so that the number of cuts needed to prove
a bound Z grows exponentially in Z . Thus, we have two exponential-time procedures
(pure cutting and pure branching) that can work together to prove the target bound.
Let H : Z≥0 → R≥0 denote the kth harmonic number H(k) := ∑k

i=1 1/i .

Definition 13 (Single variable branching with harmonically-worsening cuts
(SVBHC)) A B&C tree is a Single variable branching with harmonically-worsening
cuts (SVBHC) tree with parameters (�, r; c,w), or SVBHC(�, r; c,w) tree, if the
bound improvement value associated with each branch node is (�, r), the bound
improvement by cut node k is c/k, and the time-function is w.

Lemma 7 can be extended to this setting when w = 1. Hence, without loss of
generality, we only need to consider cut-and-branch trees.

When the bound improvement by each cut node is a constant c, Theorem 9 shows
that for any target Z , at most rδ∗ of the bound (a constant independent of Z) is proved
by branching, and the rest by cutting. However, this is no longer true when cuts exhibit
diminishing returns. The proof of Theorem9 hinges onLemma8, fromwhichwe know
that analyzing the optimal number of root-node cuts is equivalent to understanding the
optimal depth of the branching component. As Lemma 16 will show, it continues to be
sufficient to analyze the number of branching layers in the SVBHC setting; the main
difference is that we no longer have an exact analytical expression for the number
of cuts such that the branching component has depth δ, which requires us to find the
minimum integer k such that cuts prove a bound of Z − δr , i.e.,

Z − δr ≤
k∑

i=1

c

i
= cH(k).

Define

κ(δ) := min
k

{

k ∈ Z≥0 : H(k) ≥ Z − δr

c

}

.

123

A. M. Kazachkov et al.

Note the similarity to the definition of κZ(δ) = max{0, �(Z − δr)/c�}. As there is
currently no proved exact analytical expression for H(k) and κ(δ), we avail of well-
known bounds on these functions to approximate the value k for the minimum number
of cuts needed to achieve a branching depth of δ.

Let H−1(x) := mink{k ∈ Z≥0 : H(k) ≥ x}, so that κ(δ) = H−1((Z − δr)/c).
Lemma 14 restates well-known bounds on H(k) and H−1(x).

Lemma 14 1. For any z ∈ Z>0, ln(z + 1) < H(z) ≤ ln(z) + 1.
2. It holds that H−1(0) = 0, H−1(x) = 1 for any x ∈ (0, 1], and for any x ∈ (1,∞),

ex−1 ≤ H−1(x) < ex − 1.

5.3 Overview of Algorithm 1 approximating optimal number of cuts

We consider the case where � = r , but could be different from c. In Algorithm 1,
we approximate the number of cut nodes in a minimal SVBHC tree. Our main result,
stated in Theorem 15, is that the tree with this number of cuts at the root and the
remaining bound proved by branching is no more than a multiplicative factor larger
than the minimal-sized tree.

Theorem 15 When � = r , let T denote the SVBHC(�, r; c, 1) cut-and-branch tree
T that proves a bound of Z using the number of cut nodes prescribed by Algo-
rithm 1. Let T � denote a minimal-size SVBHC tree proving bound Z. Then τ(T) ≤
max{8, e1+r/c}τ(T �).

We recommend deferring the reading of Algorithm 1 until the end of the section, as
its meaning is rooted in the results that follow. Intuitively, the algorithm is analogous to
Theorem 9, in that an approximately-optimal tree size can be obtained from checking
only one of a fewpossible values for the branching component depth.Wemust compute
H−1 for one of these values, but this is inexpensive given the conjectured tight bounds
mentioned above.

The rest of the section is dedicated to proving Theorem 15 by a series of lemmas,
organized as follows. Lemma 16 significantly reduces the search space of the opti-
mal number of cuts to finitely many options, based on the depth of the branching
component of the tree. Lemma 17 provides bounds on tree size as a function of the
branching component depth. These bounds apply at all but the largest possible depth
from Lemma 16. Lemmas 18, 19 find the continuous minimizers of the lower- and
upper-bounding functions of the total tree size. As the depth of the branching compo-
nent must be integral, convexity implies that the integer minimizers of the bounding

Algorithm 1 Approximating the number of cuts to be used in SVBHC
Require: r , c, Z .
Ensure: Number of cuts k to be used before proving the remaining bound by branching.
1: δ

c ← (
Z + c ln(r

c ln 4)
)
/ (r + c ln 2) . � Continuous minimizer of φ in Lemma 19.

2: δ̂∗ ← �(Z − c)/r�. � Maximum depth for which Lemma 17 bounds apply.
3: δ1 ← �δc�, δ2 ← �δc�. � Integer minimizer for φ is a rounding of δ

c
.

4: δ3 ← δ̂∗ + 1. � Only other possible minimal tree branching depth per Lemma 16.

5: Return κ(δ) for δ ∈ argminδ

{
κ(δ) + 2δ+1 − 1 : δ ∈ {δ1, δ2, δ3}

}
.

123

An abstract model for branch and cut

functions can be obtained by rounding the continuous minimizers. Lemma 20 bounds
the difference between the integer minimizers of the lower and upper bound functions.
Finally, the proof of Theorem 15 shows that a branching component depth set as the
integer minimizer of the upper-bounding function provides the desired approximation
factor to minimal tree size, when the upper-bounding function applies, and the only
other possible depth is explicitly checked.

5.4 Bounding SVBHC tree sizes

Lemma 16 is a refined analogue of Lemma 8, stating that the optimal number of cut
nodes in aminimal-sized SVBHC treemust correspond to κ(δ) for a restricted possible
range of δ, given that we allow for c > r in this context. This restricted range of δ is
later used to apply bounds on tree size in Lemma 17. Recall that the pure branching
tree has depth δmax := �Z/r�.
Lemma 16 In any minimal SVBHC(�, r; c, 1) tree with � = r that proves bound
Z, the number of cut nodes in the tree is κ(δ), for some branching depth δ ∈
{0, . . . ,max{0, δmax − �c/r�}}.
Proof As in Lemma 8, it is clear that the optimal number of cut nodes is κ(δ) for
some depth δ of the branching component. If a single cut node proves at least as much
bound as two branch nodes, it is better to add the cut rather than branch, as long as the
target bound has not been attained. Hence, the minimal-sized SVBHC tree will have
at least k cuts, where k is the maximum integer such that c/k ≥ r or H(k) ≥ Z . If
the latter holds, then the optimal branching depth is 0. Otherwise, for a large enough
target bound, the former inequality implies that at least �c/r� cut nodes will be used.
Moreover, as each of these cut nodes will yield at least r bound improvement, the
remaining bound by branching only requires a depth of at most δmax − �c/r�. 	

When � = r , an SVBHC(�, r; c, 1) cut-and-branch tree that proves bound Z and
for which the depth of the branching component is δ has size κ(δ) + 2δ+1 − 1, but
κ(δ) is not explicit. In the lemma below, we provide functions φ, φ which respectively
provide lower and upper bounds for SVBHC tree sizes.

Lemma 17 When � = r , consider an SVBHC(�, r; c, 1) cut-and-branch tree proving
a target bound Z, where the branching component has depth δ. Let Zδ := Z − δr
denote the bound to be proved by cut nodes when the branching component has depth
δ. Then the size of the tree is equal to 2δ+1 − 1 if Zδ ≤ 0, equal to 2δ+1 if Zδ ∈ (0, c],
and otherwise, for all δ ≤ δ̂∗ := �(Z − c)/r� ,

1. at least φ(δ) := eZδ/c−1 + 2δ+1 − 1.

2. at most φ(δ) := eZδ/c + 2δ+1 − 2.

Proof Using κ(δ) = H−1(Zδ/c), we apply Lemma 14 to the size of a tree of branching
component depth δ. Specifically, κ(δ) = 0 if Zδ ≤ 0, κ(δ) = 1 if Zδ ∈ (0, c], and
otherwise eZδ/c−1 ≤ κ(δ) < eZδ/c − 1. 	

Next, Lemmas 18, 19 identify the minimizers of the lower and upper bounding
functions identified in Lemma 17, with no integrality restrictions on the depth δ. We

123

A. M. Kazachkov et al.

will then argue in Lemma 20 that since this is a one-dimensional convex minimization
problem, the optimum after imposing integrality restrictions on δ is a rounding of the
continuous optimum.

Lemma 18 The unique (continuous) minimum of φ(δ) defined in Lemma 17 occurs at

δc := Z + c
(
ln

(r
c ln 4

) − 1
)

r + c ln 2
.

Proof The function φ(δ) is a sum of two strictly convex differentiable functions. Thus,
φ(δ) is also a strictly convex differentiable function. The derivative with respect to δ

is

φ′(δ) = −r

c
e

Z−δr
c −1 + 2δ+1 ln 2.

Setting the above to zero, the unique minimum of φ(δ) is at δc. 	

Lemma 19 The unique (continuous) minimum of φ(δ) defined in Lemma 17 occurs at

δ
c := Z + c ln

(r
c ln 4

)

r + c ln 2
.

Proof The function φ(δ) is a sum of two strictly convex differentiable functions. Thus,
φ(δ) is also a strictly convex differentiable function. The derivative with respect to δ

is

φ
′
(δ) = −r

c
e

Z−δr
c + 2δ+1 ln 2.

Setting the above to zero, the unique minimum of φ(δ) is at δ
c
. 	

Having found the continuous minima of φ and φ, now we prove that the integer

minimizers of φ and φ cannot be too far away from each other.

Lemma 20 Let δ and δ be minimizers of φ(δ) and φ(δ), as defined in Lemma 17, over

the set of nonnegative integers. Then, −1 ≤ δ − δ ≤ 2.

Proof The integer minimizer of a one-dimensional convex function is either the floor
or ceiling of the corresponding continuous minimizer. Hence, δ ∈ {�δc�, �δc�} and
δ ∈ {�δc�, �δc�}. Let ε := δ

c − δc. Using ln 2 > 2/3, we bound

ε = 1

r/c + ln 2
∈ (0, 1.5).

We then have that

δ − δ ≤ �δc� − �δc� = �δc + ε� − �δc� ≤ �ε� ≤ 2.

123

An abstract model for branch and cut

Similarly,

δ − δ ≥ �δc� − �δc� = �δc + ε� − �δc� ≥ �δc� − �δc� ≥ −1. 	

From Lemma 20, there is a possibility for δ to be equal to, less than, or greater than

δ, leading to prescribing different numbers of cut nodes fromboth bounds. To complete
the proof, we show that the tree size when using the number of cuts prescribed by the
lower bound is not too different from the tree size when using cuts as prescribed by
the upper bound. This, in turn, implies the desired approximation with respect to the
minimal tree size, when combined with checking the additional possible branching
component depth at which the approximations in Lemma 17 do not apply.

5.5 Proof of Theorem 15

Proof of Theorem 15 Let Tδ denote the SVBHC(�, r; c, 1) tree that proves bound Z
with branching component having depth δ and κ(δ) cut nodes at the root. Let δ

c

be the continuous minimizer of the upper-bounding function on tree size φ(δ) from
Lemma 19, and let δ ∈ {�δc�, �δc�} be the integer minimizer, as defined in Lemma 20.
From Lemma 17, the bounds on φ and φ only apply for δ ≤ δ̂∗ := �(Z − c)/r� . At
the same time, from Lemma 16, the maximum possible optimal branching depth is
�Z/r� − �c/r� ≤ δ̂∗ + 1.

In Algorithm 1, we explicitly check τ(T̂δ∗+1), and for the remaining possibilities,
we will prove that it suffices to check τ(Tδ) to get the desired approximation of the
size of a minimal SVBHC tree T � that proves bound Z .

Note that if δ > δ̂∗, then the bounds on φ and φ do not apply, but for this case, we
do not need to rely on the below approximation, as we are explicitly checking the tree
size for depth δ̂∗ + 1, the only other possible branching depth in a minimal tree. Thus,
for the ensuing discussion, assume that δ ≤ δ̂∗.

Let δc be the continuous minimizer of φ(δ) from Lemma 18, and let δ be the integer
minimizer from Lemma 20. Let δ� be the branching component depth of T �. Then

φ(δ) ≤ φ(δ�) ≤ τ(T �) ≤ τ(Tδ) ≤ φ(δ).

We have that φ(δ) ≤ φ(δ�) because δ is an integer minimizer of φ. The second
inequality holds because φ(δ) is a lower bound on the size of a tree with branching

depth δ. The next inequality follows from the minimality of T �. Finally, τ(Tδ) ≤ φ(δ)

as φ(δ) upper bounds the size of a tree having branching depth δ. Thus, we have that

1 ≤ τ(Tδ)

τ(T �)
≤ φ(δ)

φ(δ)
.

The goal is to bound τ(Tδ)/τ(T
�), which we pursue by first bounding

φ(δ)

φ(δ)
= e(Z−δr)/c + 2δ+1 − 2

e(Z−δr)/c−1 + 2δ+1 − 1
. (2)

123

A. M. Kazachkov et al.

We bound this ratio for three cases based on the values of δ and δ.

Case 1 δ > δ. In this case, κ(δ) > κ(δ), i.e., our tree Tδ has more cuts than Tδ .
We upper bound the number of “extra” cuts this might result in. It holds that
2δ+1 ≤ 2δ < 2δ+1 + 1. Thus, using (2) and that the exponent of e in the
numerator is larger than in the denominator,

φ(δ)

φ(δ)
≤ e(Z−δr)/c + 2δ+1 − 1

e(Z−δr)/c−1 + 2δ+1 − 1
≤ e(Z−δr)/c

e(Z−δr)/c−1
= e1+

r(δ−δ)
c ≤ e1+

r
c ,

where the final relation follows from δ − δ ≤ 1 from Lemma 20.
Case 2 δ = δ.

φ(δ)

φ(δ)
≤ e(Z−δr)/c − 1

e(Z−δr)/c−1
< e.

Case 3 δ < δ. In this case, κ(δ) < κ(δ). The tree we are evaluating, Tδ , has fewer
cuts than as suggested by the lower bounding function.
We have to ensure that cutting less has not made the branching part of the tree
too large. Hence, applying δ − δ ≤ 2 from Lemma 20, and 2δ+1 ≥ 2,

φ(δ)

φ(δ)
≤ 2δ+1 − 1

2δ+1 − 1
= 2δ−δ − 1/2δ+1

1 − 1/2δ+1 ≤ 22 − 1/2δ+1

1/2
≤ 8 − 2−δ ≤ 8.

Combining the bounds above gives the result. 	

5.6 Cuts prove a constant portion of the bound

Theorem 15 proves an approximation to the optimal number of cut nodes in an optimal
SVBHC tree. Next, as a complement, Theorem 21 states that, in the limit, the number
of cut nodes prescribed by Algorithm 1 proves a constant fraction of the target bound
relative to the portion proved by branching.

Theorem 21 Let � = r and c > 0 be fixed. For a given target bound, consider a
SVBHC(�, r; c, 1) cut-and-branch tree where the number of nodes is calculated via
Algorithm 1. As the target bound Z goes to infinity, the fraction of the bound proved
by the cut nodes converges to the constant c ln 2/(r + c ln 2).

Proof Algorithm 1 evaluates three different branching depths to determine the number
of cut nodes that approximately minimize overall tree size.

First, consider a tree with branching depth δ3 = �Z/r� − �c/r� from Step 4 of
the algorithm, which is an upper bound on the depth when k cuts are added, where k
is the maximum integer such that c/k ≥ r . As Z increases, nearly all of the bound
is proved by branching in this case, with the bottom layer of the tree containing 2δ3

leaf nodes. There exists a k′ such that adding k′ − k more cut nodes will satisfy

123

An abstract model for branch and cut

c/(k+1)+· · ·+ c/k′ ≥ r , where k′ is independent of Z . Hence, for sufficiently large
Z , δ3 will not be the minimizer selected in Step 5.

Next, recall from Lemma 19 that the continuous minimizer of φ, which provides
an upper bound on the total size of the tree as a function of the depth of the branching
component, is δ

c
, and the other two possible outputs are δ1 = �δc� and δ2 = �δc�

from Step 3.
Since δ1 and δ2 are at most one unit away from δ

c
, the amount of bound proved by

branching is in the range [(δc − 1)r , (δ
c + 1)r].

Substituting in the value of δ
c
and dividing by Z ,

δ
c
r

Z
± r

Z
= Zr + rc ln(r

c ln 4)

Z(r + c ln 2)
± r

Z
,

both the upper and lower bound of the fraction of bound proved by branching nodes
tends to r/(r + c ln 2) as Z goes to infinity, implying that the fraction of bound proved
by branching nodes also tends to the same value. This further implies that as Z → ∞,
the fraction of bound proved by cut nodes is

1 − r

r + c ln 2
= c ln 2

r + c ln 2
.

	

Theorem 21 provides an indication of the tradeoff between cutting and branching

in the harmonically-worsening cuts model, and it applies, for example, to an increas-
ingly difficult family of instances (quantified by an increasing target bound), for a fixed
relative strength of cutting and branching. For example, if the first cut is a factor of
1/ ln 2 ≈ 1.44 stronger than branching, then around half of the bound is proved by cut-
ting, in the limit. More generally, if λ > 0 such that c = λr/ ln 2, then approximately
λ/(1 + λ) proportion of the target bound is proved by cut nodes as Z → ∞.

Theorems 15, 21 hinge on bounds on harmonic numbers and the function H−1.
Improving these bounds can lead to an improvement in the approximation factor,
or even an exact algorithm, for the optimal number of cut nodes, and hence of the
optimal tree size. For example, Hickerson [31, A002387] conjectures that, if n ∈ Z≥0,
H−1(n) = ⌊

en−γ + 1/2
⌋
for n ≥ 2, where γ denotes the Euler-Mascheroni constant,

approximately 0.577.1

6 Optimizing tree time

We now return to the SVBC setting in which cuts have constant quality. Whereas the
previous sections focus on decreasing the size of a branch-and-cut tree, in practice the
quantity of interest is the time it takes to solve an instance. The two notions do not
intersect: it can be that one tree is smaller than another, but because the relaxations
at each node solve more slowly in the smaller tree, the smaller tree ultimately solves

1 See references and notes in https://oeis.org/A002387 and https://oeis.org/A004080.

123

https://oeis.org/A002387
https://oeis.org/A004080

A. M. Kazachkov et al.

in more time than the larger one. This plays prominently into cut selection criteria, as
strong cuts can be dense, and adding such cuts to the relaxation slows down the solver.

6.1 Time-functions bounded by a polynomial

We first show that if the time-function is bounded above by a polynomial, then for
sufficiently large Z , it is optimal to use at least one cut node. Figure2provides empirical
motivation for this assumption. The secondary vertical axis is the time (in seconds) to
resolve the linear relaxation over (up to) 100 rounds of Gomory cuts. It can be seen
from these plots that, approximately, the time grows linearlywith the number of added
cuts. Our experiments with additional instances, reported in Appendix A, support the
linearity observation, or even a sublinear increase in time, as the number of cuts added
in later rounds tends to be smaller compared to the initial rounds.

Theorem 22 Suppose we have an SVBC(�, r; c,w) tree T and the values of w are
bounded above by a polynomial. Then, there exists Z > 0 such that every τ-minimal
SVBC tree proves a bound of Z > Z has at least one cut node.

Proof Let w(z) ≤ 1+αzd for some α, d > 0 be the polynomial upper bound for each
z ∈ Z≥0. A pure branching tree TB proving a bound Z has at least 2�Z/r�+1 − 1 nodes.
The same lower bound holds for τ(TB).

Now consider a pure cutting tree TC proving bound Z . Such a tree has exactly
k = �Z/c�+1 nodes. The tree time for TC is τ(TC) = ∑k−1

i=0 w(z) ≤ k+α
∑k−1

i=1 z
d ≤

k + α(k − 1)d+1 < p(k), where p is some polynomial. For sufficiently large values
of Z , 2�Z/r�+1 − 1 > p

(� Z
c �) for any polynomial p, implying that a τ-minimal tree

has at least one cut node. 	

Theorem 22 implies that when cuts affect the time of a tree in a consistent way

(through a fixed time-function) for a family of instances, then cuts are beneficial for
a sufficiently hard instance. A complementary result also holds: if we are considering
different cut approaches for a given instance that increasingly slow down node time,
then eventually pure branching is optimal. Specifically, for any �, r , c, and Z , there
exists a linear time-function such that the corresponding τ-minimal tree has no cuts.
For example, let a pure branching tree of size s prove a bound of Z . Then, choosing
w(z) := sz + 1 ensures that the pure branching tree is τ-minimal. This is because the
tree time of the pure branching tree is s while a B&C tree with at least one cut will
have a tree time of s + 1.

Next, we observe that an analogue of Lemma 7 does not hold for τ-minimality.
Figure3 provides an example where the unique τ-minimal B&C tree has no cuts at
the root. Despite that, for the special case where � = r , we prove in Theorem 23 that
there is a τ-minimal tree having only root cuts.

Theorem 23 If � = r , then, for any time-function and target bound Z, there exists a
τ-minimal tree with only root cuts.

We prove Theorem 23 in Sect. 6.4. On the way, we present several intermediate
results of independent interest, which relate properties of general time-functions to
the optimal number and location of cuts in the tree.

123

An abstract model for branch and cut

0 layer time = 1

3

5 layer time = 1.5

7 layer time = 2

7 layer time = 2

0 layer time = 1

2 layer time = 1.5

4 layer time = 2

7 11 layer time = 4

Fig. 3 Consider the SVBC tree that must prove a bound Z = 7, with parameters � = 3, r = 7, c = 2, and
w(z) = z/2+ 1. The time of the first tree is 6.5 and of the second tree is 8.5. Thus, cutting at the root node
is strictly inferior to cutting at the leaf. One can also check that the pure branching tree has a time of 7 and
the pure cutting tree has a time of 10, showing that the unique τ-minimal B&C tree is the tree in the left
panel

6.2 Minimality of subtrees and symmetric trees

First, in Lemma 24, we prove that a subtree of a minimal tree is also minimal. Given
a tree T and any node u ∈ T , let KT (u) denote the number of cut nodes on the path
from the root of T to u.

Lemma 24 Let T be a τ-minimal SVBC(�, r; c,w) tree proving bound Z. The subtree
Tu rooted at u is a τ-minimal SVBC(�, r; c,w) tree proving bound Z − z(u), where
w(z) := w(KT (u) + z)/w(KT (u)) for all z ∈ Z≥0.

Proof Let T ′ denote any SVBC(�, r; c,w) tree proving bound Z that coincides with
T for all nodes not in Tu . Intuitively, if the time for T ′

u is less than that of Tu , then as
both subtrees prove the same bound using the same branch and cut values, replacing
Tu by T ′

u in T would contradict the minimality of T .
More directly, the minimality of T implies that τw(T) ≤ τw(T ′) and hence

0 ≥ τw(T) − τw(T ′)

=
∑

v∈T
w(KT (v)) −

∑

v∈T ′
w(KT ′(v))

=
⎛

⎝
∑

v∈T \Tu
w(KT (v)) +

∑

v∈Tu
w(KT (v))

⎞

⎠

−
⎛

⎝
∑

v∈T ′\T ′
u

w(KT ′(v)) +
∑

v∈T ′
u

w(KT ′(v))

⎞

⎠

=
∑

v∈Tu
w(KT (v)) −

∑

v∈T ′
u

w(KT ′(v))

=
∑

v∈Tu
w(KT (u) + KTu (v)) −

∑

v∈T ′
u

w(KT ′(u) + KT ′
u
(v))

123

A. M. Kazachkov et al.

= w(KT (u))
∑

v∈Tu
w(KTu (v)) − w(KT ′(u))

∑

v∈T ′
u

w(KT ′
u
(v))

= w(KT (u))τw(Tu) − w(KT ′(u))τw(T ′
u),

which implies that τw(Tu) ≤ τw(T ′
u), as desired. 	

Next, in Lemma 25, we observe that symmetric trees suffice when � = r .

Lemma 25 If � = r , then there exists a τ-minimal tree that is symmetric, having the
same number of cut nodes along every root-leaf path.

Proof The result follows from Lemma 24, because when � = r , if u and v are two
nodes at the same depth with KT (u) = KT (v), then zT (u) = zT (v). Hence if T is
τ-minimal, then we can assume without loss of generality that the subtree Tu rooted
at u is identical to the subtree Tv rooted at v. 	

6.3 Adding k cuts along every root-to-leaf path

We analyze adding k cuts to a generic SVBC(�, r; c,w) tree and prescribe how many
should be placed before the first branch node.

Lemma 26 Consider a B&C tree in which each root-to-leaf path has exactly k cut
nodes, and each cut node can only be located either before or immediately after the
first branching node. Then the time of the tree is minimized by adding

t� ∈ argmin0≤t≤k

{

w(t) −
t−1∑

i=0

w(i)

}

cut nodes before the first branch node, and k − t� cut nodes in a path starting at each
child of the first branch node.

Proof Suppose tree T has t cut nodes at the root, followed by a branch node, then
k − t cut nodes at each child of the branch node, followed by subtrees TL and TR in
the left and right child; refer to Fig. 4. Then, the tree time is

τ(T) =
t∑

i=0

w(i) + 2

(
k∑

i=t

w(i)

)

+ τ(TL) + τ(TR).

The first sum corresponds to the time of the nodes before branching, the t cut nodes
and 1 branch node. The next term is the time of the k− t cut nodes added after the first
branch node, for each branch. Finally, we add the times of the remaining subtrees.

We are interested in finding t that minimizes the tree’s time. Hence,

t� ∈ argmin0≤t≤k

{
t∑

i=0

w(i) + 2
k∑

i=t

w(i) + τ(TL) + τ(TR)

}

123

An abstract model for branch and cut

Fig. 4 What is the optimal
choice of the number of cut
nodes t to add at the root before
we start branching, given a fixed
budget of k cut nodes that will
be added either before or
immediately after the first
branch node?

time = w(0)

...

time = w(t− 1)

time = w(t)

time = w(t)

...

time = w(k)

time = w(t)

...

time = w(k)
TL TR

= argmin0≤t≤k

{
k∑

i=0

w(i) + w(t) +
k∑

i=t

w(i)

}

= argmin0≤t≤k

{

w(t) +
k∑

i=t

w(i)

}

= argmin0≤t≤k

{

w(t) +
k∑

i=0

w(i) −
t−1∑

i=0

w(i)

}

= argmin0≤t≤k

{

w(t) −
t−1∑

i=0

w(i)

}

.

	

Lemma 27 If � = r , and T is a symmetric τ-minimal tree proving bound Z with a
path of k cut nodes incident to each child of the root node, then for all q ∈ [1, k], it
holds that

w(q) ≥ 1 +
q−1∑

i=0

w(i). (3)

Proof Applying Lemma 26, the minimality of T implies that placing the k cuts after
the root node is weakly better than shifting any number q ∈ [1, k] cut nodes to
the root. In other words, the minimizer in Lemma 26 is t� = 0, which implies that
w(q) − ∑q−1

i=0 w(i) ≥ w(0) = 1 for any q ∈ [1, k]. 	

6.4 Proof of Theorem 23

Proof of Theorem 23 Let distT (u) denote the length of the path in T from the root to
node u. Define ncutsT (u) as the number of cut nodes in the subtree rooted at node u.

123

A. M. Kazachkov et al.

For a tree T , denote the deepest branch node in T that has cut nodes as descendants
by

last_b_then_c(T) ∈ argmaxu∈T {distT (u) : ncutsT (u) > 0, u branch node},

where we define last_b_then_c(T) as the root of T if there are no cuts or they all form
a path at the root.

Let T denote a symmetric (without loss of generality by Lemma 25) τ-minimal
SVBC(�, r; c,w) tree proving bound Z such that, among all τ-minimal trees, T min-
imizes distT (last_b_then_c(T)). There is nothing to prove if there are no cut nodes
or they all form a path at the root, so assume for the sake of contradiction that the cut
nodes do not all form a path at the root.

Let T � denote the subtree rooted at u := last_b_then_c(T). In T �, u is a branch
node, each child of u is a cut node, and after a path of ncutsT (u) cut nodes from each
child, the remainder of the tree is only branch or leaf nodes. Note that, by Lemma 24,
T � is a τ-minimal SVBC(�, r; c,w) tree proving bound Z − zT (u), where w(z) :=
w(K + z)/w(K) for any z ∈ Z≥0 and K is the number of cut nodes on the path
from the root of T to u. For convenience, define k := ncutsT (u), and (without loss of
generality) assume K = 0, so w = w. Our contradiction will come from proving that
T � cannot be τ-minimal.

From Lemma 27 with q = k, moving the k cuts up to the root node must increase
the tree time with respect to T �:

w(k) > 1 +
k−1∑

i=0

w(i). (4)

Let T ′ denote the subtree rooted at the left child of u. Figure5 depicts T ′ and a
tree T ′′ obtained from T ′ by shifting the k cuts down a layer. By Lemma 24, T ′ is a
τ-minimal SVBC(�, r; c,w) tree proving bound Z ′ := Z − zT (u) − r . Let v denote
the child of the last cut node; if v is a branch node, let T denote the subtree rooted at
either child of v, and if v is a leaf node, let T be empty. Then inequality (4) implies
that

τ(T ′) =
k−1∑

i=0

w(i) + w(k) + 2w(k)|T | > 1 + 2
k−1∑

i=0

w(i) + 2w(k)|T | = τ(T ′′).

The last expression is precisely the time of the new tree T ′′ that proves bound Z ′, in
which the k cuts are shifted down one layer. In T ′′, v replaces the root of T , rather than
being the root node’s parent as in T ′, with bound zT ′′(v) = r + kc; all other nodes in
T have the same bound in both T ′ and T ′′.

Note that if T is empty, i.e., v is a leaf node, then define T ′′ as a tree rooted at
a branch node attached to two paths of length k, corresponding to the left and right
branches consisting of k − 1 cut nodes and a leaf node. When v is a leaf node in T ′,
zT ′(v) = kc ≥ Z ′, which implies that the leaf nodes of T ′′ have bound r + (k − 1)c ≥
Z ′; in other words, the “shift” operation decreases the total number of cut nodes.

123

An abstract model for branch and cut

u

layer time = w(0)

layer time = w(1)

layer time = w(k − 1)

v layer time = w(k)

subtree time = w(k)|T |T

u

layer time = w(0)

v

subtree time = w(k)|T |

layer time = 2w(0)

layer time = 2w(1)

layer time = 2w(k − 1)

T

Fig. 5 The left panel shows tree T ′, rooted at the cut node child of u, while the right panel shows T ′′, the
tree obtained from T ′ by shifting the k cuts down one level, where v is now the root of T

In either case, the above inequality implies that τ(T ′) > τ(T ′′), contradicting the
τ-minimality of T ′ and hence of T �. 	

7 Conclusion and potential extensions

We analyze a framework capturing several crucial tradeoffs in jointly making branch-
ing and cutting decisions for optimization problems. For example, we show that adding
cuts can yield nonmonotonic changes in tree size, which can make it difficult to eval-
uate the effect of cuts computationally. Our results highlight challenges for improving
cut selection schemes, in terms of their effect on branch-and-cut tree size and solution
time, albeit for a simplified setting in which the bound improvement from branching
is assumed constant and known, and the bound improvement from cutting is either
constant or changing in a specific way. There do exist contexts in which the relative
strength of cuts compared to branching decisions can be approximated, such as by
inferring properties for a family of instances, an idea that has seen recent success with
machine learning methods applied to integer programming problems [7, 16, 22, 26,
27, 32–34]. This lends hope to apply our results to improve cut selection criteria for
such families of instances and this warrants future computational study, though it is
far from straightforward.

This paper focuses on the single-variable version of the abstract branch-and-cut
model. Some results extend directly to bounds for a generalization of the model per-
mitting different possible branching variables, by assuming the “single branching
variable” corresponds to the best possible branching variable at every node, but an in-
depth treatment of the general case remains open. Further, an appealing extension of
the general time-functions considered in Sect. 6 is to investigate branching on general
disjunctions [11, 24, 30], which has been the subject of recent computational study
[35].

123

A. M. Kazachkov et al.

Wedo not consider some important practical factors, such as interactionwith primal
heuristics, pruning nodes by infeasibility, or the time it takes to generate cuts.

Finally, most of the results we present in Sect. 6 for general time-functions assume
that branching on a variable leads to the same bound improvement for both children.
The general situation of unequal and/or nonconstant bound improvements remains
open, both regarding the best location of cut nodes and the optimal number of cuts to
be added, and merits future theoretical and experimental investigation.

Acknowledgements Theauthors thankAndreaLodi,CanadaExcellenceResearchChair inDataScience for
Real-Time Decision Making, for financial support and creating a collaborative environment that facilitated
the interactions that led to this paper, as well as Monash University for supporting Pierre’s trip to Montréal.

A Computational results with selectedMIPLIB instances

Figure6 shows the linear relaxation bound, predicted bound (using the harmonically-
worsening cuts model of Sect. 5.2), linear relaxation resolve time, and cumulative
number of Gomory cuts added after up to 100 rounds of cuts have been applied to
ten additional instances, using the same computational setup described in Sect. 5. The
same general trends are observed as in the two plots in Fig. 2. For several instances,
such as air05, binkar10, and swath3, the predicted bound—which is calcu-
lated based only on the improvement from the first round of cuts—is quite close to
the actual bound changes after tens of rounds. The prediction tends to be inaccurate
(a large overestimate) as more significant tailing in bound improvement occurs, but
occasionally underestimates the bound improvement, such as for eil33-2.

B Experiments with optimal proportion of cut rounds in SVBHC

Theorem 15 proves that, in the SVBHCmodel of Sect. 5, the number of cuts prescribed
by Algorithm 1 is approximately optimal in the sense that the resulting tree is at
most a multiplicative factor larger than the optimal tree size. Theorem 21 shows that
using this approximately-optimal number of cuts proves a constant proportion of the
overall bound, in the limit when the target bound goes to infinity. However, since the
multiplicative factor in Theorem 15may be quite large, it is not clear if the same type of
limit exists forminimal-size trees. In Fig. 7, we address this question computationally,
showing that the proportion of bound proved by cut nodes tends to the same limit in
a minimal tree for four artificial instances of the SVBHC model. Experiments with
more instances have shown the same behavior and therefore are omitted.

123

An abstract model for branch and cut

0 5 10 15 20
Rounds of cuts

25900

25905

25910

25915

25920
L
P
bo

un
d

1

2

3

4

5

6

7

L
P
ti
m
e
(s
)

3084

air05_presolved

LP bound Predicted bound LP time (s) Cumulative cuts (#)

0 20 40 60 80 100
Rounds of cuts

9000

10000

11000

12000

13000

14000

15000

16000

17000

L
P
bo

un
d

0

50

100

150

200

250

300

350

L
P
ti
m
e
(s
)

17962

b1c1s1_presolved

LP bound Predicted bound LP time (s) Cumulative cuts (#)

0 5 10 15 20 25 30 35
Rounds of cuts

6649

6650

6651

6652

6653

L
P
bo

un
d

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

L
P
ti
m
e
(s
)

1529

binkar10_1_presolved

LP bound Predicted bound LP time (s) Cumulative cuts (#)

0 5 10 15 20 25 30 35
Rounds of cuts

817

818

819

820

821

822

L
P
bo

un
d

0.2

0.4

0.6

0.8

L
P
ti
m
e
(s
)

855

eil33-2_presolved

LP bound Predicted bound LP time (s) Cumulative cuts (#)

0 10 20 30 40 50 60 70
Rounds of cuts

−56000

−55000

−54000

−53000

−52000

−51000

−50000

L
P
bo

un
d

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

L
P
ti
m
e
(s
)

4435

mik-250-20-75-4_presolved

LP bound Predicted bound LP time (s) Cumulative cuts (#)

0 20 40 60 80 100
Rounds of cuts

−80.5

−80.0

−79.5

−79.0

−78.5

−78.0

−77.5

−77.0

L
P
bo

un
d

2

4

6

8

10

12

14

16

L
P
ti
m
e
(s
)

6914

roi2alpha3n4_presolved

LP bound Predicted bound LP time (s) Cumulative cuts (#)

0 20 40 60 80 100
Rounds of cuts

35

40

45

50

55

L
P
bo

un
d

0.0

0.1

0.2

0.3

0.4

L
P
ti
m
e
(s
)

4374

sp150x300d_presolved

LP bound Predicted bound LP time (s) Cumulative cuts (#)

0 20 40 60 80 100
Rounds of cuts

335

340

345

350

355

L
P
bo

un
d

0

1

2

3

4

5

6

7

8

L
P
ti
m
e
(s
)

1388

swath1_presolved

LP bound Predicted bound LP time (s) Cumulative cuts (#)

0 5 10 15 20 25 30 35
Rounds of cuts

335

336

337

338

339

340

341

342

343

L
P
bo

un
d

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

L
P
ti
m
e
(s
)

716

swath3_presolved

LP bound Predicted bound LP time (s) Cumulative cuts (#)

0 5 10 15 20 25 30 35
Rounds of cuts

100000

120000

140000

160000

180000

200000

L
P
bo

un
d

0

2

4

6

8

10

12

14

L
P
ti
m
e
(s
)

2817

tr12-30_presolved

LP bound Predicted bound LP time (s) Cumulative cuts (#)

Fig. 6 Applying rounds of cuts on assorted MIPLIB 2017 instances (after preprocessing) typically yields
diminishing bound improvement. Several instances showa linear tendency inLP resolve time. The overlayed
bar plot for each instance shows the cumulative number of cuts added after each round. The predicted bound
using the improvement from the first round follows a logarithmic function that is similar to the actual bound
evolution until cut strength exhibits more pronounced tailing off

123

A. M. Kazachkov et al.

0.0

0.2

0.4

0.6

0.8

1.0
r = 50; c = 49 r = 50; c = 99

0 2000 4000
0.0

0.2

0.4

0.6

0.8

1.0
r = 100; c = 49

0 2000 4000

r = 100; c = 99

Fr
ac
tio

n
of

bo
un

d
pr
ov
ed

by
cu
ts

Target bound (Z)

Fraction of bound proved by cuts c ln 2/(r + c ln 2)

Fig. 7 Fraction of bound proved by cut nodes in an (exactly-)optimal SVBHC tree, exhibiting convergence
to the bound from Theorem 21 provided by the approximately-optimal number of cut nodes prescribed by
Algorithm 1

References

1. Achterberg, T.,Wunderling, R.:Mixed integer programming: analyzing 12 years of progress. In: Facets
of Combinatorial Optimization, pp. 449–481. Springer, Heidelberg (2013)

2. Al-Khayyal, F.A.: An implicit enumeration procedure for the general linear complementarity problem.
In: Computation Mathematical Programming, pp. 1–20. Springer, Heidelberg (1987)

3. Anderson, D., Le Bodic, P., Morgan, K.: Further results on an abstract model for branching and its
application to mixed integer programming. Math. Program. 190, 811–841 (2021)

4. Balas, E., Fischetti, M., Zanette, A.: On the enumerative nature of Gomory’s dual cutting planemethod.
Math. Program. 125(2), 325–351 (2010)

5. Basu, A., Conforti, M., Di Summa, M., Jiang, H.: Complexity of branch-and-bound and cutting planes
in mixed-integer optimization—II. Combinatorica 42(1), 971–996 (2022)

6. Basu, A., Conforti, M., Di Summa, M., Jiang, H.: Complexity of branch-and-bound and cutting planes
in mixed-integer optimization. Math. Progam. 198(1), 787–810 (2023)

7. Berthold, T., Francobaldi, M., Hendel, G.: Learning to use local cuts. arXiv:2206.11618 (2022)
8. Burer, S., Vandenbussche, D.: A finite branch-and-bound algorithm for nonconvex quadratic program-

ming via semidefinite relaxations. Math. Program. 113(2), 259–282 (2008)
9. COIN-OR Cut Generation Library. https://github.com/coin-or/Cgl

123

http://arxiv.org/abs/2206.11618
https://github.com/coin-or/Cgl

An abstract model for branch and cut

10. COIN-OR Linear Programming 1.16. https://projects.coin-or.org/Clp/
11. Cornuéjols, G., Liberti, L., Nannicini, G.: Improved strategies for branching on general disjunctions.

Math. Program. 130(2, Ser. A), 225–247 (2011)
12. Dey, S.S., Dubey, Y., Molinaro, M., Shah, P.: A theoretical and computational analysis of full strong-

branching (2021)
13. Dey, S.S., Dubey, Y., Molinaro, M.: Branch-and-bound solves random binary packing IPs in polytime.

In: Marx, D. (ed.) Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA
2021, Virtual Conference, January 10–13, 2021, pp. 579–591. SIAM (2021)

14. Dey, S.S., Kazachkov, A.M., Lodi, A., Munoz, G.: Cutting plane generation through sparse principal
component analysis. SIAM J. Optim. 32(2), 1319–1343 (2022)

15. Dey, S.S., Dubey, Y., Molinaro, M.: Lower bounds on the size of general branch-and-bound trees.
Math. Program. (2022)

16. Gasse, M., Chételat, D., Ferroni, N., Charlin, L., Lodi, A.: Exact combinatorial optimization with
graph convolutional neural networks. In: Advances in Neural Information Processing Systems, pp.
15580–15592 (2019)

17. Gleixner, A., Hendel, G., Gamrath, G., Achterberg, T., Bastubbe, M., Berthold, T., Christophel, P.M.,
Jarck, K., Koch, T., Linderoth, J.,M. Lübbecke,Mittelmann, H.D., Ozyurt, D., Ralphs, T.K., Salvagnin,
D., Shinano, Y.: MIPLIB 2017: data-driven compilation of the 6th mixed-integer programming library.
Math. Program. Comput. (2021)

18. Gomory, R.E.: Outline of an algorithm for integer solutions to linear programs. Bull. Am. Math. Soc.
64, 275–278 (1958)

19. Gomory, R.E.: An algorithm for the mixed integer problem. Technical Report RM-2597, RAND
Corporation (1960)

20. Gomory, R.E.: An algorithm for integer solutions to linear programs. Recent Adv. Math. Program. 64,
260–302 (1963)

21. Gurobi Optimization, Inc.: Gurobi Optimizer Reference Manual. http://www.gurobi.com (2018).
Version 8.0.1

22. Huang, Z., Wang, K., Liu, F., Zhen, H.-L., Zhang,W., Yuan, M., Hao, J., Yong, Yu., Wang, J.: Learning
to select cuts for efficient mixed-integer programming. Pattern Recognit. 123, 108353 (2022)

23. Jünger, M., Liebling, T., Naddef, D., Nemhauser, G., Pulleyblank, W., Reinelt, G., Rinaldi, G., Wolsey
L. (eds.): 50 Years of Integer Programming 1958–2008. Springer, Berlin (2010). From the early years
to the state-of-the-art, papers from the 12th Combinatorial Optimization Workshop (Aussois 2008)
held in Aussois, January 7–11, 2008

24. Karamanov, M., Cornuéjols, G.: Branching on general disjunctions. Math. Program. 128(1–2, Ser. A),
403–436 (2011)

25. Kazachkov, A.M., Le Bodic, P., Sankaranarayanan, S.: An abstract model for branch-and-cut. In:
Integer Programming and Combinatorial Optimization: 23rd International Conference, IPCO 2022,
Eindhoven, The Netherlands, June 27–29, 2022, Proceedings, Lecture Notes in Comput. Sci., pp.
333–346. Springer, Berlin (2022)

26. Khalil, E.B., Le Bodic, P., Song, L., Nemhauser, G., Dilkina, B.: Learning to branch in mixed integer
programming. In: Thirtieth AAAI Conference on Artificial Intelligence (2016)

27. Khalil, E.B., Dai, H., Zhang, Y., Dilkina, B., Song, L.: Learning combinatorial optimization algorithms
over graphs. In: Advances in Neural Information Processing Systems, pp. 6348–6358 (2017)

28. Land, A.H., Doig, A.G.: An automatic method of solving discrete programming problems. Economet-
rica 28, 497–520 (1960)

29. Le Bodic, P., Nemhauser, G.: An abstract model for branching and its application to mixed integer
programming. Math. Program. 166(1–2), 369–405 (2017)

30. Mahajan, A.: On selecting disjunctions in mixed integer linear programming. PhD thesis, Lehigh
University (2009)

31. OEIS Foundation Inc.: The On-Line Encyclopedia of Integer Sequences. Published electronically at
https://oeis.org (2022)

32. Paulus, M.B., Zarpellon, G., Krause, A., Charlin, L., Maddison, C.: Learning to cut by looking ahead:
Cutting plane selection via imitation learning. In: Chaudhuri, K., Jegelka, S., Song, L., Szepesvari,
C., Niu, G., Sabato, S. (eds.) Proceedings of the 39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning Research, pp. 17584–17600. PMLR (2022)

33. Tang, Y., Agrawal, S., Faenza, Y.: Reinforcement learning for integer programming: learning to cut.
In: Proceedings of the 37th International Conference on Machine Learning (ICML 2020) (2020)

123

https://projects.coin-or.org/Clp/
http://www.gurobi.com
https://oeis.org

A. M. Kazachkov et al.

34. Turner, M., Koch, T., Serrano, F., Winkler, M.: Adaptive cut selection in mixed-integer linear
programming (2022)

35. Yang, Yu., Boland, N., Savelsbergh, M.: Multivariable branching: a 0–1 knapsack problem case study.
INFORMS J. Comput. 33(4), 1354–1367 (2021)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

	An abstract model for branch and cut
	Abstract
	1 Introduction
	2 Preliminaries
	3 The abstract branch-and-cut model
	4 Optimizing tree size
	5 Diminishing cut strength
	5.1 Empirical motivation for worsening cuts
	5.2 Single variable branching with harmonically-worsening cuts
	5.3 Overview of Algorithm 1 approximating optimal number of cuts
	5.4 Bounding SVBHC tree sizes
	5.5 Proof of Theorem 15
	5.6 Cuts prove a constant portion of the bound

	6 Optimizing tree time
	6.1 Time-functions bounded by a polynomial
	6.2 Minimality of subtrees and symmetric trees
	6.3 Adding k cuts along every root-to-leaf path
	6.4 Proof of Theorem 23

	7 Conclusion and potential extensions
	Acknowledgements
	A Computational results with selected MIPLIB instances
	B Experiments with optimal proportion of cut rounds in SVBHC
	References

