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Abstraot

In this paper, to begin with we present a generalization of
the independence of irrelevant expansions assumption to the
situation with an arbitrary yet finite number of players, and
with the help of =& comparatively eimpler proof than the one
suggested by Thomson (1961), we uniquely characterize the Nash
bargaining sclution.

In &a recent paper, Lahiri (1993) introduces the concept of a
shift for bargaining problems. A shift for a bargaining problem
amounts to a8 displacement of the origin to a point in the
nonnegative orthant of a finite dimensional Euclidean space (in
which the bargaining problem is defined) s0 &g to reduce the
original problem to a new one consisting only of those points
that weakly Pareto dominate the new origin. A characterization of
Nash bargaining solution is alsoc obtained in this paper using s
convexity assumption. A related version of this convexity
assumption and a similar characterization theorem can be found in
Chun and Thomson (1990) and Peters (1892), An intermediate
property used in the latter characterization called localization,
which can be found in Peters (1992) 1is similar in spirit to the
independence of irrelevant alternatives assumption. We also
obtain a characterization of the Nash solution, by relaxing this

localization property and invoking Pareto continuity.



1. Introduction t- In Thamaon (1981) can be tound a
characterization of the Nash (1850) bargaining solution, which
relies on an axiom called independence of irrelevant expansions.
This axiom replaces Nagh's original axiom called independence of
irrelevant alternatives assumption.

The independence of irrelevant alternatives assumption
states that if while contracting a bargaining problem, we retain
the solution to the original problem, then the solution to the
new problem should coincide with the solution to +the old ons.
Independence of irrelevant expansions, proceeds in the reverse
direction:s if a bargaining problem 1is expanded to a new
bargaining problem by adding points below a specific supporting
line at the original solution point, then the new solution
outcome should weakly Pareto dominate the old one.

Thomson (1981), stated the axiom in the context ot two
person bargaining problems, and thus was able to wuniquely
characterize the two person Nash bargaining solution.

In this paper, to begin with we present a generalization of
the indeﬁendence of irrelevant expansions assumption to the

'situation with an arbitrary yet finite number of players, and
with the help ot a comparatively simpler proof than the one
gsuggested by Thomson, we uniquely characterize the Nash
bargaining solution.

In 3 recent paper, Lahiri (1993) introduces the concept of a
shift for baréaining problems. A shift for a bargaining problem
amounts toc a displacement of the origin +to a point in the |
nonnegative orthant of a finite dimensional Euclidean space (in
which the bargaining problem is defined) so as to reduce the
original problem to B8 new one consisting only of those points
that weakly Pareto dominate the new origin. A characterization of
Nash bargaining solution is also obtained in this paper wusing a
convexity assumption. A related version of this convexity
assumption and a similar characterization theorem can be found in
Chun and Thomson (1990) and Peters (1992). An {intermediate

property used in the latter characterization called localization,

1



¢hich can be tound in Peters (19892) ig similar in spirit to the

.ndependence of {irrelevant alternatives assumption. We also

sbtain & chargcterization of the Nash soclution, by relaxing this

ocalizetion property and invoking Pareto continuity.

2. The Model :- Following Moulin (1988), we adopt the following
framework of analysis: an n-person bargaining problem 1is a non-
empty subset S of lﬁ . We consider the following class E of n-
person bargaining problems:

S€EX it and only if

(i) oes

tii) S is compact and convex

(i11i) S i8 comprehensive i.e. ysx.xes =>» y€ES, where »x ,yel“,
(iv) S satisfies ainimal —transferability i.e. VxES,

Vi€(1,...,n}, x; >0 implies 3 vyE with yi<x; and yy>x
VjE(l....,ﬁ}.j [ i.c

Properties (i), (1i) and (iii) =&are gstandard in the

literature. Property (iv) helps to equate weak Pareto optimality
with Pareto optimality.

A bargeining solution on D is & function F:D—)l“‘ such that
F(5)ES VSE€ED, where DcE. D is called a domain.

We require the following axioms to be satisfied by &
bargaining solution F:

Axiom 1 :- (Pareto Optimality): F(S)EP(S) = (x&&/y>x,yES => x=y}
VY S€et.

Axiom 2 :- (Scale invariance): WxeR" Va®", , x=(x ; ,....x,),
8=(8y ,...,8y) define ax=(a y X; ,...,8 %X, ). If SR"

and a€R",, , define aS = {ax/x€S}. We require, V a®",,
Y SEEL, FlaS)=aF(S).

Axiom 3 3~ (Symmetpy): Given s one-to-one function o 1{1,...,n}
->{1,...,n} &and xR , define o(x)R" as follows:
Vi€{1,...,n}, o (x)=xy, . We require the following: if
S=0(S) Vo as sbove then F (S)=F,(S)\ﬁ.j€5(1.....n}.
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Axiom 4 - t- (independence of lrrelevent Expansions) :- VS€L,
3pel”, with Ef,, Ppy=1 such that

(i) p.x=p.F(S) is the equation of a supporting line of S at F(S)

(ii) w TEE with S & T and p.x¢p.F(8) Wx€T, we have F(T);F(S).

(Here P.x=E", Pj %; ).

Axiom 5 :- (Strict Individuasl Ratjonelity) :~ F(S)»>>0 V¥V SEC
with S » (0}.

Nash (1850) defined the following solution: N:£->l'u is

detined as N(S)= argmax £ X ;
XES

3. A First Theorem :-

Theorem 1 t- The only solution to satisfy Axiomge 1 to S on K is
N.

Proof :- Nash (1950) showed that N satisfied Axiom 1, 2 and 3 and
5. Axiom 4 is valid with P~ 1/Ni(S) i=i,...,n,

E% 1/N (S)

whenever SEE, S # {0}.

To prove the converse we need the fallowing Lemma.
Lemma 1 :- Let D=(SEL/x€P(S), x>>0 => 3 a unique peR"with E %,
P; =1, such that p.y=p.x is the equation of a supporting line of
S at x}.

1t F satisfies Axioms 1 to 4 on D thenyF(S)=N(S) VY SED.
Proof t- Let SED, 1If S={0}, there is nothing to prove. Hence
agssume S ¢ {0}, Thus N(S)>>0, By Axiom 2, we may assume N(S)=e
(the vector in l"with a8l! o-ordinates equal to onse).

Let A" =(xa@" /£, x| 1),

P (a™!) supports S at e.

By Axioms i1 and S’F(A'rl)=a

Let T={x€S/g(x)ES V o¢:(1,...,n}->{1,...n}) which are one to
onel.

e€T (the largest symmetric set in D, which is contained in
S).

By Axioms 1 and 3, F(T)=xe.



Further P(4 ™! ) supports T uniquely st e.

s& By Axiom 4, F(S)QF(T)-e.

But e {g Pareto optimal in S.

& F(S)=e.

To prove the main theorem, let us take any S s (0}, SEE. By
Axioms 2 and 5, we may assume F(S)=se. We have toc show that the
vector p in Axiom 4 is @/nDe. Suppose not i.e. suppose p v(ilv)e.
Then we can alwayg find a8 TED such that
(1) SgT; (11) p.x<p.e V x€ET; (iii) e€ET

By Lemma 1, gince TED, F(T)=N(T)

By Axiom 4, F(T)2F(S)re

Since e is Pareto optimal in T, e=F(T)=N(T)

But eince p uniquely supports T at e, pi}/ﬁ)e (since
F(T)=N(T))

This contradiction establishes the theorem.

Q.E.D.

4. Shifts in Bargaining Problems :- Given SEL, c€R ", let S(c)=
(S-{ch) AR",.

Let DgE be a given domain and F:D->R™be a bargaining
solution.

F is said to satisfy strong convexity if ¥ S, S(e)eD,

F(Ste))=ac tor some «20, then F(S)=pC€+F(S{pc)) for ngil wheneve:
S(pe)eD. B

F ie said to satisfy weak convexity if V SED and 05u<l.
F(S)=uF(S)+F(S(uF(S))) whenever S(pF(5))ED. B

Taking c=F(S) and «=0, it 1is easy to see that strong

convexity implies weak convexity on K.

The definitions are a minor adaptation of similas
definitions in Peters (1992). Convexity refers to & possibilit:
of congidering the wvariable origin to 1lie anywhere on th:
straightline connecting the old origin to the origin of th

shifted bargaining problem.
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S5, Taowards & second ocharacterization theorea :- We begin with a
lemma.
Lemma 2 :- It F:t-)lﬂ satisfies Axiom 5 and weak convexity, then
it must satisfy Axiom 1.
Proof :- Let SE€EE, S # (0} be given. Suppose F(S) € P(S). By SIR,
since S(F(S)) s (0}, F(S(F(S))) >> 0.

By weak convexity, F(S)=F(S)»+F(S(F(S))) >> F(S) which {a a

contradiction.

Hence F(S)&P(S).
Q.E.D.

Let us invoke the following property for F:D->R",:

Localization :- V¥V S,TED if UrS=U-T for an open neighbourncod U of
F(S), then F(S)=F(T).
Lemma 3 :- Let F:X—)l‘nsatisfy gstrong convexity and Axiom S.
Then F satisfies lacalization.
‘Progf t- Let S, TEE with S #» (0}, T # {0} and suppose thers
exlists a neighbourhoad of F(S) such that UAS=UANT

Now there exists O<u' <1 such that c=n'F(S)eurs.

By strong convexity (which implies weak caonvexity)
c+F(S(c))=F(S) ‘

Now S(c)=aT(e)

s F(S(e))=F(T(c))

By atrang canvexity, c+F(T(c))=F(T)
& F(S)YaF(T).

Q.E.D.

Lemma 4 t- The only solution on E to satisfy Axioms 1, 2, 3 and
localization is N, .

Progf 1- That N satisfies the abova propertias is clear. So, let
us establiah the converse. Lat SEE, S e (0} and suppose towards a
cantradiction that for an F satisfying the abave properties F(S)
# N(S)=2z, By Strong I(ndividual Rationality and Scale Invariance
.ot F, we may assume F(S)=e. Let T=(x€ ]“' /L% “m xy/z { <n}. Observe

]
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z>>0 by Strong Individual Rationality of N.

By Axioms L, 2, 3, F(T)=z=N(T) since F(a)=e=N(4) whare
a=(xeR", /E \zl ¥ <nl.
Supposa L%, 1/z { <n. Hence there exists O<al such that E",,
<(1-a)n.
Thus e€ES N K where K=(x€l“,/£“h1 Xy /zy S(i-a)n}. Further,
there exists a neighbourhood U of e such that U n S=U (S ~nK).
By localizatian F(S)=F(S m~ K). Thus F(S ~ K)=e,

On the other hand, F(K)=(1-&F(T)=(1~a)z.

llzi

Further (l1-ma)z belongs to the interior of S.

Thugs there exists a neighbourhoed V of (1-a)z such that V ~»
(S nK)=V K.

By localization F(S ~ K})=F(K)

A (l-a)z=8o.

But (1-&)z is not Pareto optimal in S whereas e is. This
contradiction establishes E", 1/z; =n.

Now suppose 2z ¢ e,

Since S is convex y=1/72(zte)€S

Note that the function R, -> R, B8 r> 1/8 is strictly
convex. Thus K“i,l Iry € 172 R“i,l 1/21 *O/Z)‘\r-n.

Let Wa(xeR", /BN, x;/y  ¢n}.

N(W)ay=F(W). Thus there exists O<a<l, such that E ",1/y,

<(1-a)n. By the same argument as above we get now t“bg/y i =n
which is a contradiction.
Hence z=e.
' Q.E.D.
As an immediate consequence of the above lemma we have:
Thegrem 2 t- The only solution on K to satisfy Axioms &, 2, 3, §

and strong convexity is N.
Prgof :- By lemmas 3 and 4 the proof is immediate.
ql E.Dl

By 1invoking a continuity assumption, we c¢an obtain ¢
characterization of the Nash bargalning solution using a property

slightly weaker than localization.



Weak Localizatign :- VS, TED if U A P(S)=U A P(T) for an open
neighbourhocod U of F(S) and if the set U A P(S) is a nanamptg)

nondagenarate ,convex sat, then F{(S)=F(T)

)
The proposed continuity property is derived as follows:
Let S,T ¢ R be nonempty closed sets. Then the Hausdorff
distance bhetween S and T denoted d(S,T) {a defined by

d(s,T)= sup {int | x-z |, int J y-z |} ?
XE€S, yET xET Z€S

where the norms in the definition are Euclidean norms.
A sequence of closed sets S1 .Sz.... is said to converge to

a closed set S if lim d(Sk »yS)=0.
k->a .

Axiom 6 :- (Pareto Continuity) :- For every sequence St .S?

....5% , . .€ED and SED, if lim d(P(S),P(S))=0,
k->m

then lim F(S¥ )=F(s).
k- >m

Thearem 3 :- The only solution on I to satisfy Axioms 1, 2, 3, 8.
énd Weak Localization is N.
Proot :-~ That N satisfies the above assumptions is cbvious. Thus
let F be any soiution on £ and let SEE, S #» {(0}). We may assume by
Axioms 1, 2 and 5 that N(S)=e. To show F(S)=e. Let a = (xeR™%E ",
Xy < n. By Axioms 1 and 3, F( 4 )=e and by Axiom 2, F(aa )= VY
ago-where o A ={ox/x€ A }.

Let Td(a)=(x A ) N S.

By, Weak Localization F(T(a))=F(x A )=aa V O0<x<l.

Let {a, fhl be a sesquence in the open interval (0,1) such

that lim &y =1
k->a

Then iim d(P(T(uk )))y) P(S))=0
k->mo

By Axiom 6, lim F(T(uk ))aF(S)
k- >m

i.a. F(S)=a.
Ql EI Do



An example belaow illuatrates the necessity at Axiom 6 in Theorem

3 above.

Example :- Let D, =(SELA x,yEP(S) such thatV tEL0,11,tx+(1-
t)YEP(S)} x @ ¥

D, ={SEE/3 a neighbourhood of U of N(S) such that Una

P(S) is a convex set containing N(S) in its

relative interiorl}.

Y SeD, (D,) V¥V a€R™,., aSED, (D,)
1 (D " 1 (Do

VSEED; (E<D,) Va€R",,, aSED; (E\D,).

Let uy (S)=max(‘ /Xx€ES} and u(S)=(u1 (s),. ..un(S))

Define K(S)=x(S)u(S) where &(S)=max{x€R ,/au(S)ES} V SEx,

Let F! (s)=) N(S) if seD

K(S) if SEED ,

FZ (S)=§ N(S) if SED
K(S) if SEE\D,

Both F1 and Fz satisfy Axioms 1, 2, 3 and Weak Localization.

Neither satisfies Axiom 8, however.

8. Conclusion :

- In the concluding section we clarify some vactbr
notation used in the paper: for x,yeR"

(1> x2y means x; >y,V i€{1,...,n}

(11) x>>y means x; >y, V i€{1,...,n}.
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