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Abstract

We describe an O(n?2K 4+ n3*) algorithm for the uncapacitated network
design problem where K is the number of commodities, and n the number
of nodes in the graph.
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1 Introduction

In this paper, we study the uncapacitated multi commodity network design
problem, which can be described as follows. Consider an undirected graph
G = (N, A), with node set N, arc set A, and origin destination pairs sy, t,
with demand of 1 unit between every pair for k = 1,..., K. Capacity can
be purchased on each arc (z,j) € A at cost w;; > 0. Flow costs are as-
sumed to be zero. The objective is to minimise the total cost while satisfying
demand between every origin destination pair. The Steiner Tree problem,
which is known to be NP-complete, is a special case of this problem in which
all commodities have a common origin. Balakrishnan, Magnanti and Wong
(1989) have studied the uncapacitated network design problem and solved
large instances using a dual ascent based procedure. They also provide de-
tailed references to the literature on this problem. Several aglorithms for the
Steiner Tree problem are known. Hakimi (1971) described a spanning tree
enumeration algorithm. Balakrishnan and Patel (1987) describe an enumer-
ation algorithm based on an implicit degree constrained formulation of the
problem. Dreyfus and Wagner (1971) and Levin (1971) describe a dynamic
programming based algorithm. Hwang, Richards and Winter (1992) provide
d-tailed references to the literature on Steiner trees. The uncapacitated multi
nmodity network design (UMC) problem can be formulated as follows.

-oblem UMC

Min E Wi Y5
(i.j)€A
subject to:
-1 ifz'zsk
Yahi-2k) = ¢ 1 ifi=
J 0 otherwise
v, 2 i+
z,y > 0;y€{0,1}.

Let m = |A| and n = |N| denote the number of arcs and nodes repectively,
and let K = {1,..., K} be the set of commodities. The arcs are undirected
and have symmetric cost, i.e., w;; = wj;. The flow variables rfj are directed
and have zero flow cost. In the next section we characterise the optimal
solutions and describe a O(n?2* 4+ n3%) algorithm to solve the problem.



2 An Exact Algorithm

It is possible to convert the undirected arc set to a set of directed arcs by
using the following transformation. We replace each undirected arc (1,j)
with five directed arcs, (3,1'), (7,7"), (¥',5'), (',4) and (§’, 7). Arc (¢,j) has
cost w;, and the other four arcs have zero costs. For ease of exposition, we
consider the directed version of the problem. The following result enables us
to confine our search for optimal solutions to 0 — 1 flows.

Lemma 1 There is an optimal solution in which each commodity k flows on
ezactly one path between s, and .

Proof

If a commodity flows on two paths, we can redirect all flow from one path to
the other without increasing cost since capacity is unrestricted.

0

Hereafter, we only consider optimal solutions with each commodity & having
exactly one path from s, to t; and 0—1 flows for each commodity on any arc.
Let Q@ C K denote a subset of commodities. Let a(i,j) denote the shortest
distance from node ¢ to node j using w;; as arc costs. In the algorithm, we
implicitly allow the fixed charge variables y;; to take any nonnegative integer
value. In any feasible solution, we say that an arc (t,j) shares at most ¢
commodities if y;; > 2 whenever zfj =1 for ¢ + 1 or more commodities.

The algorithm finds #;(Q), the minimum cost of sending one unit of flow from
nodes s, : k € @) to node i, using a generalisation of Dijkstra’s shortest path
algorithm for graphs with nonnegative arc costs. Similarly, it finds 7;(Q), the
minimum cost of sending one unit of flow from node ¢ to nodes ¢, : k € Q.
Thus, 7,(Q) + 7:,(Q) is the minimum cost of sending one unit from s; to #;
for all k € Q if all commodities flow through node i. By varying @Q over all
subsets of K, the algorithm finds the optimal solution.



Algorithm Multi Path

Let A(z) denote the set of arcs adjacent to node :

Initialise

pred(i, k) «— si and succ(i, k) «— t; foralli € N, ke K

7i(®) = 7:(®) = 0, mi({sk}) = a(sk.1), 7i({tx}) = a(i,t;) forall: € N
OPT — Z a(sg,tx)

keK
for g =2to K do
begin
for all subsets @ C K such that |Q| = ¢ do
begin
W;(Q) = Z a(sk’i)’ Ti(Q) = EkEQ a(t, 1)
keQ

7i(Q) = min {m(Q1) + m(Q2): Q1 NP2 =9, QL UQ, = Q}
7(Q) = min {7i(Q1) + 7:(Q2) : i N Q2 =9, Q1 U Q> = @}
S— o, T— 0
while |S| < nor |T| <n do
begin
choose 7 € S such that 7;(Q) = min {r;(Q):j € S}
S« Su{i}, § «— S5 —{i}
fOI‘j € A(l) if Wj(Q) > I;(Q) + w;; then
begin
7;(Q) = mi(Q) + wy;
pred(j, k) «— i for all k € Q
end
choose i € T such that 7;(Q) = min {r;(Q):j € S}
T—TuU{i}, T —T - {i}
for ] € A(l) if T,’(Q) > T;(Q) + w;; then
begin
7;(Q) = 7(Q) + w;;
succ(j, k) ——t for all k € Q
end
end{while}
OPT(Q) = min {r(Q) +7(Q) :i € N}
OI;T(Q) =min {OPT(Q,) + OPT(Q;) : Q1N Q2 =®, Q1 UQ,; =Q}
en
end



Let the iterations in which ¢ varies from 2 to K be the outer iterations. Let
the iterations in which we choose all subsets @ of cardinality |Q| = ¢ be the
tntermediate tterations, and those in which we vary the cardinality of the
sets S and T, the inner iterations.

Theorem 1 Algorithm mulli path solves the uncapacitated multi commodity
network design problem UMC.

Proof

To establish the result, we use the following inductive hypotheses on the
cardinality of the sets @, S and T. For a given value of ¢, and set Q : |Q| = g,
and some set S or T in an inner iteration,

(i) 7:(Q) is the mimimum cost of reaching node i from nodes s; : k € Q, and
7:(@) is the mimimum cost of reaching nodes ¢, : k € @ from node i.

(i) 7;(Q) (7;(Q)) for any node j ¢ S (j ¢ T) is the mimimum cost of reaching
node j (nodes t : k € Q@) from nodes s, : k € @, (from node j) either using
only nodes in S (nodes in T') as intermediate nodes, or the shortest paths
from si : k € Q (from j) to node j (to tx : k € Q).

(i1i) At the start of any intermediate iteration, and before the start of the
inner iterations, 7;(Q) (7:(Q)) equals the minimum cost of reaching node :

(nodes ¢ : k € Q) from origins s, : k € Q (from node 1) if at most ¢ — 1
commodities share an arc.

(iv) At the end of any outer iteration with |Q] = ¢, OPT(Q) equals the
minimum cost of sending flow from s, to t; for k € Q.

Typotheses (i), (ii), (iii) and (iv) are valid for ¢ = 1 and |Q| = 1 immediately
fter initialization. We first show that hypotheses (iii) is valid. At the
start of the intermediate loop we set 7(Q) = Y ieq a(sk,7) and 7(Q) =
min {7(Q1) + 7:(Q2) : Q1N Q2= ®, @, UQ: = Q}. This can be re-written

as

7(Q) = min {7(Q1)+7(Q2) : QiNQ2 = &, QUQ; = Q, 1 < Q1] < g1, Y a(ss, i)}

keQ

By inductive hypothesis (i), 7,(@,) and =,(Q,) are the minimum costs of
reaching node from nodes s, : k € @, and nodes s : k € Q. Since [Q,| <
g — 1, it follows that 7;(Q) is the minimum cost of reaching node ¢ if at most
g — 1 commodities share an arc.



Consider hypotheses (i) and (ii). In the inner loop we choose a node i € S.
Suppose we reach node ¢ from some node j ¢ S. From the way we choose
node 1, it follows that 7;(Q) > ;(Q). Since w;; > 0, it follows that =,(z,Q) >
7;(Q) > 7i(Q), where 7;(i,Q) is the minimum cost of reaching node : via
node j ¢ S. Hence, the cost of reaching node i from any node j ¢ S is at
least as much as m;(Q). From hypothesis (ii), 7;(Q) is the minimum cost
of reaching node ¢ using only nodes in S or the shortest paths from origins
sk : k € Q to node i. Hence, 7;(Q) is the minimum cost of reaching node 1,
establishing hypothesis (i).

Consider hypothesis (i1). From hypothesis (iii), the minimum cost of reaching
node j ¢ S with at most ¢ —1 commodities sharing an arc is 7;(Q). The cost
of reaching node j ¢ S from nodes in S may go down after we shift node 1
to S. But this can only happen if we all Q commodities flow from i to j on
arc (1,7). Since the algorithm updates the value of 7;(Q), this establishes
hypothesis (ii).

Thus, for a given set S, we obtain the optimum values of 7;(Q) at the end of
the inner iterations. The same arguments establish that hypotheses (i), (i),
and (iii) are valid for 7,(Q).

Now consider hypothesis (iv). There are two cases to consider. In the first
case, the optimum way of sending flow from s; to ¢, for k € @ involves some
arc (1, 7) that has @ commodities on it. In that case, min {7;(Q)+7:(Q):1 €
N} gives the minimum cost. In the second case, any arc has at most ¢ — 1
commodities on it in the optimum solution. Therefore, min {OPT(Q,;) +
OPT(Q;) - NQ=d, Q;UQR.=Q, 1< |Q| < q—1} is the minimum
cost. The result follows.

Lemma 2 Algorithm multi path takes O(n*2X 4 n3¥) iterations.

Proof

For given ¢ and Q, it is clear that there are O(n?) inner iterations. At the
start of the intermediate loop we update the 7;(Q) values over all nodes
1 € N and all subsets of Q. This takes O(n2?) time. Therefore, to complete
all intermediate iterations for a given value of ¢ takes O(*C,n? +¥ C,n2%)



iterations. The total number of iterations is therefore

Py
o> (Fem® +* C2m)).

q=1

Snee (1+ 1)K = Zle .’"Cq and (1+ ) = Z;‘;, K(,29, it follows that the
-orithm takes O(nQQ" + n3") iterations.
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