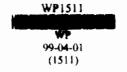


EXTENDED PARTIAL ORDERS: A NOTE

By

Somdeb Lahiri

W.P.No.99-04-01 / 15 / 1 April 1999



The main objective of the working paper series of the IIMA is to help faculty members to test out their research findings at the pre-publication stage.

INDIAN INSTITUTE OF MANAGEMENT AHMEDABAD - 380 015 INDIA

PURCHASED APPROVAL GRATIS/REGHANGE

PAICE

VIERAM SARADBAS LIBRARS

S. L. M. ANMEDABAD.

Abstract

The purpose of this paper is to establish the equivalence of two axioms one of which appear in Nehring [1997] and the other in Nehring and Puppe [1999]. The one in Nehring and Puppe [1999] is due to Aizerman and Malishevski [1981]. We there by improve the existing characterisation of choice functions rationalized by extended partial orders. In an appendix to this paper we provide a proof of a related statement appearing in Nehring [1997]. This paper makes extensive use of the rather elegant device known as finite mathematical induction.

Extended Partial Orders: A Note By

Somdeb Lahiri Indian Institute of Management Ahmedabad - 380 015 India

March 1999

- 1. Introduction:— The purpose of this paper is to establish the equivalence of two axioms one of which appear in Nehring [1997] and the other in Nehring and Puppe [1999]. The one in Nehring and Puppe [1999] is due to Aizerman and Malishevski [1981]. We there by improve the existing characterisation of choice functions rationalized by extended partial orders. In an appendix to this paper we provide a proof of a related statement appearing in Nehring [1997]. This paper makes extensive use of the rather elegant device known as finite mathematical induction.
- 2. The Model: Let X be a finite non-empty set of alternatives and let [X] denote the set of all non-empty subsets of X. An extended relation (ER) is any non-empty subset of [X] x X. An extended relation P is said to be an extended preference relation (EPR) if it satisfies the following two properties:
 - (a) Irreflexivity (IRR): \forall (A, x) \in P, A \ {x} \neq \neq and (A \ {x}, x) \in P;
 - (b) Monotonicity(MON): If $(A,x) \in P$ and $A \subset B$, then $(B,x) \in P$.

An extended relation P is said to be <u>acyclic</u> if $\forall A \in [X]$, there exists $x \in A$: $(A, x) \notin P$; it is said to be <u>transitive</u> if $\forall x, y \in X$ and $A \in [X]$, $(A \cup \{y\}, x) \in P$ & $(B, y) \in P$ implies $(A \cup B, x) \in P$.

It has been observed in Nehring [1997] that if an EPR P is transitive then it is acyclic. As in Nehring [1997], we refer to a transitive EPR as an <u>extended partial</u> order.

A choice function is any function C: $[X] \rightarrow [X]$ such that, $\phi \neq C$ (A) \subset A \forall A \in [X].

Given a choice function C, let $P_c = \{ (A, x) \in [X] \mid x \mid X \mid x \notin C (A \cup \{x\}) \}.$

Given an ER P, and $A \in [X]$, let $L(A, P) = \{x \in A/(A, x) \notin P\}$.

The following observation is immediate:

Observation 1:- Let C be a choice function. Then

- (a) $C(A) = L(A, P_c) \forall A \in [X];$
- (b) P_c satisfies IRR and acyclicity;
- (c) $(A, x) \in P_c$ implies $(A \cup \{x\}, x) \in P_c$ (: a property which we may refer to as Weak Monotonicity).

The following axioms on a choice function appear in the sequel:

A choice function C is said to satisfy:

- (1) Chernoff's Axiom(CA) if \forall A, B \in [X], [A \subset B implies C(B) \cap A \subset C(A)];
- (2) New Quasi-Transitivity Axiom (NQTA) if $\forall A \in [X], \forall x, y \in A \setminus C(A)$ implies $x \notin C(A \setminus \{y\})$;
- (3) Generalized Axiom of Revealed Preference(GA) if [y ∈ A \ C(A), C(A) ⊂ B] implies [y ∉ C(B)] ∀ A, B ∈ [X] and y ∈ X;
- (4) Nehring's Axiom of Revealed Preference (NA) if y ∈ A \ C (A) implies y
 ∉ C (C (A) ∪ {y});
- (5) Aizerman and Malishevski's Axiom (AMA) if \forall A, B \in [X], [C (A) \subset B \subset A] \rightarrow [C (B) \subset C (A)];
- (6) Outcasting Axiom (OA) if $\forall A, B \in [X]$, [C (B) $\subset A \subset B$] implies C(A) = C(B).

CA is an assumption which now forms an integral part of rational choice theory; NQTA originally appears as axiom η in Nehring [1997], but is used under its present nomenclature to characterize quasi-transitive rational choice in Lahiri [1999]; GA and NA appear in Nehring [1997] with the latter under the name of ρ_4 ; AMA originates in the work of Aizerman and Malishevski [1981]. This axiom has been used in Nehring and Puppe [1999], and hence the main result reported here, has obvious implications in that paper as well. OA is an axiom which has been attributed to Nash [1950] by Suzumura [1983]. It appears under its present nomenclature in Aizerman and Aleskerov [1995].

3. The Main Results -

<u>Theorem 1</u>:- AMA \leftrightarrow NQTA

<u>Proof</u>:- The fact that AMA implies NQTA is obvious. Hence let us prove the converse and that too by induction. Thus suppose C is a choice function which satisfies NQTA. Let A, B \in [X], C(A) \subset B \subset A, and x be an arbitrary element of A \ C(A). We prove our result by backward induction on the cardinality of B.

Let $B = A \setminus \{y\}$ for some $y \in A \setminus C$ (A). By NQTA, $x \notin C$ (B). Since x is arbitrary, C (B) \subset C (A) whenever $B = A \setminus \{y\}$ and $y \in A \setminus C$ (A).

Now suppose for any $y_1, ..., y_r \in A \setminus C(A)$, if $B = A \setminus \{y_1, ..., y_r\}$, then $C(B) \subset C(A)$.

Let $y_{r+1} \in A \setminus C(A), y_{r+1} \notin \{y_1, ..., y_r\}$.

Let $B = A \setminus \{y_1, ..., y_r\}$ and thus $B = B \setminus \{y_{r+1}\}$

By NQTA, C (B) \subset C (B). However, by the induction hypothesis, C (B) \subset C(A). Hence, C (B) \subset C (A).

Since the result has been proved for r = 1 and has now been shown to be true for r+1 if it assume true for r, it is therefore true in general.

Q.E.D.

Theorem 2:- AMA & CA \leftrightarrow GA.

<u>Proof:</u> Let C be a choice function which satisfies AMA and CA. Let A, B \in [X] and let $y \in A \setminus C$ (A) with C (A) \subset B.

Consider $A \cap B$. Clearly $C(A) \subset A \cap B \subset A$. By AMA, $C(A \cap B) \subset C(A)$.

By CA, $A \cap B \subset B$ implies $C(B) \cap (A \cap B) \subset C(A \cap B)$.

Thus $C(B) \cap A \subset C(A \cap B) \subset C(A)$.

Thus $y \notin C(B)$.

Thus C satisfies GA.

Conversely, let C satisfy GA. Then it obviously does satisfy AMA. To show that it satisfies CA, let A, B \in [X] with A \subset B.

Let $x \in C(B) \cap A$. If $x \notin C(A)$, then since $C(A) \subset B$, by GA, $x \notin C(B)$ which is a contradiction. Thus, $x \in C(A)$. Thus $C(B) \cap A \subset C(A)$. Thus C satisfies CA.

Q. E. D.

Example to show that AMA (\leftrightarrow NQTA) does not necessarily imply GA: Let X = $\{x, y, z\}$, $C(X) = \{x, y\}$, $C(\{x, y\}) = \{x\}$, $C(\{y, z\}) = \{y\}$, $C(\{x, z\}) = \{z\}$, $C(\{y, z\}) = \{y\}$, $C(\{x, z\}) = \{z\}$, $C(\{y, z\}) = \{y\}$, $C(\{x, z\}) = \{z\}$, $C(\{y, z\}) = \{y\}$, $C(\{x, z\}) = \{z\}$, $C(\{y, z\}) = \{y\}$, C

VIERAE BARAMA LIMBER WAS INSTITUTE OF MANAGEMEN. VASTRAPIO, ANNED ARAB-MUSIC $(\{a\}) = \{a\} \ \forall \ a \in X$. C satisfies AMA (and NQTA). However, $y \in \{x, y\} \setminus (\{x, y\})$, C $(X) \subset \{x, y\}$ and yet $y \in C(X)$. Thus C does not satisfy GA.

Example to show that CA does not necessarily imply GA: Let $X = \{x, y, z\}$, $C(X) = \{x\}$, $C(A) = A \forall A \in [X]$, $A \neq X$. C satisfies CA. However, $y \in X \setminus (X)$, $C(X) \subset \{x, y\}$ and yet $y \in C(\{x, y\})$. Thus C does not satisfy GA.

- Theorem 3: (a) CA & AMA implies OA; OA implies AMA;
 - (b) OA need not imply CA;
 - (c) AMA need not imply OA.
- **Proof**: (a) is easy to establish.
 - (b) Let $X = \{x, y, z\}$, $C(X) = \{x, y\}$, $C(\{x,y\}) = \{x, y\}$, $C(\{y,z\} = \{y\}, C(\{x,z\}) = \{z\}$. C satisfies OA. However, $\{x,z\} \subset X$, $x \in C(X) \cap \{x, z\}$ but $x \notin C(\{x,z\})$. Thus C does not satisfy CA.
 - (c) Let $X = \{x, y, z\}$, $C(X) = \{x, y\}$, $C(\{x,y\}) = \{x\}$, $C(\{y,z\} = \{y\})$, $C(\{x,z\}) = \{z\}$. C satisfies AMA. However, $C(X) = \{x, y\} \subset \{x, y\}$ $\subset X$, but $C(\{x, y\}) \neq C(X)$. Thus C does not satisfy OA.

O. E. D.

In view of Theorems 1, 2 and 3 above and Theorem 2 in Nehring [1997] we may now state the following:

Theorem 4: Let C be a choice function. Then the following are equivalent:

- (a) P_c is an EPO
- (b) C satisfies CA and NQTA
- (c) C satisfies CA and AMA
- (d) C satisfies CA and OA.

In Theorem 2 of Nehring [1997] it is also mentioned that P_c is an EPO if and only if C satisfies CA and NA. However, CA seems to play a more significant role in this result than in our Theorem 3 as the following result shows:

Theorem 5: AMA implies NA. However, the converse need not be true.

Proof:- Let C satisfy NA and let $A \in [X]$, $y \in X$ with $y \in A \setminus C(A)$. Thus $C(A) \subset C(A) \cup \{y\} \subset A$. By AMA, $C(C(A) \cup \{y\}) \subset C(A)$. Thus, $y \notin C(C(A) \cup \{y\})$. Thus C satisfies NA.

We show that the converse need not be true by means of an example. Let $X = \{x, y, z, w\}$. Let $C(X) = \{x\}$; $C(A) = A \forall A \in [X]$ with three elements; and for all $A \in [X]$ with one or two elements, $C(A) = \{x\}$ if $x \in A$ and C(A) = A otherwise.

Now y, $z \in X \setminus C(X)$ and yet $y \in C(X \setminus \{z\})$. Thus C does not satisfy NQTA, which has been shown in Theorem 1 above to be equivalent to AMA. Yet C satisfies NA.

Q. E. D.

However if the cardinality of X is three or less, then NQTA (: and hence AMA) is equivalent to NA. For cardinality of X equal to one or two, there is nothing to prove. If cardinality of X is three and C satisfies NA, then $x, y \in A \setminus C(A)$ for some $A \in [X]$ with $x \neq y$, implies A = X. Thus if $\{x, y, z\} = X$, then $C(X) = \{z\}$. By NA, $a \notin C(\{z, a\})$ where $a \in \{x, y\}$. Thus $b \notin C(X \setminus \{a\})$, where $a, b \in \{x, y\}$. Thus C satisfies NQTA and hence AMA.

Example to show that NA does not necessarily imply GA:- Let $X = \{x, y, z\}$, $C(X) = \{x, y\}$, $C(\{x, y\}) = \{x\}$, $C(\{y, z\}) = \{y\}$, $C(\{x, z\}) = \{z\}$, $C(\{a\}) = \{a\} \forall a \in X$. C satisfies NA. However, $C(\{x, y\}) \subset X$, $y \in \{x, y\} \setminus C(\{x, y\})$ and yet $y \in C(X)$. Thus C does not satisfy GA.

Appendix

Theorem: Let $C(A) = L(A, P) \forall A \in [X]$ where P is an EPO. Then $\forall A \in [X], y \in A \setminus C(A)$ implies $(C(A), y) \in P$.

<u>Proof</u>:- We prove this theorem by induction on the cardinality of $A \setminus C(A)$. Suppose $A \setminus C(A) = \{y\}$. Thus $(A, y) \in P$ and hence by Irreflexivity, $(A \setminus \{y\}, y) \in P$. Thus $(C(A), y) \in P$.

Suppose the theorem is true for $A \setminus C(A) = \{y_1, ..., y_k\}$ where k is any positive integer less than or equal to "r". Now suppose, $A \setminus C(A) = \{y_1, ..., y_{r+1}\}$. Let $x \in C(A)$ and consider $A \setminus \{z\}$ where $z \in \{y_1, ..., y_{r+1}\}$. Suppose towards a contradiction $x \notin C(A \setminus \{z\})$. Thus $(A \setminus \{z\}, x) \in P$. Thus by Monotonicity, $(A, x) \in P$ which contradicts $x \in C(A)$. Thus $x \in C(A \setminus \{z\})$. Hence $C(A) \subset C(A \setminus \{z\})$.

Suppose towards a contradiction $w \in C(A \setminus \{z\}) \setminus C(A)$.

$$\therefore$$
 (A, w) \in P. Thus ((A \ {z})) \cup {z}, w) \in P

Further $(A, z) \in P$ implies by Irreflexivity, $(A \setminus \{z\}, z) \in P$. Since P satisfies transitivity, $(A \setminus \{z\}, w) \in P$, contradicting $w \in C (A \setminus \{z\})$.

$$\therefore C(A \setminus \{z\}) = C(A)$$

Now $(A \setminus \{z\}) \setminus C (A \setminus \{z\})$ has cardinality "r". Hence by induction hypothesis, $(C(A \setminus \{z\}), y) \in P \forall y \in (A \setminus \{z\}) \setminus C (A \setminus \{z\})$

 $\therefore (C(A), y) \in P \ \forall \ y \in (A \setminus \{z\}) \setminus C(A).$

Choosing $z \neq y$, we establish the result for the case when the cardinality of $A \setminus C(A)$ is r + 1 having assumed it for the case when the cardinality of $A \setminus C(A)$ is r. The result has been shown to be true for the case when the cardinality of $A \setminus C(A)$ is one. Hence the result is true in general.

Q. E. D.

Reference

- 1. M. A. Aizerman and F. Aleskerov [1995]: "Theory of Choice", North-Holland.
- 2. M. A. Aizerman and A. V. Malishevski [1981]: "Genera; Theory of Best Variants Choice: Some Aspects", IEEE Trans. Automat. Control 26:1030-1040.
- 3. S. Lahiri [1999]: "Quasi Transitive Rational Choice", mimeo.
- 4. J. F. Nash [1950]: "The Bargaining Problem", Econometrica 18:155-162.
- 5. K. Nehring [1997]: "Rational Choice and Revealed Preference Without Binariness", Social Choice Welfare, 14:403-425.
- 6. K. Nehring and C. Puppe [1999]: "On The Multi-preference Approach to Evaluating Opportunities", Social Choice and Welfare, 16:41-63.
- 7. K. Suzumura [1983]: "Rational Choice Collective Decisions and Social Welfare", Cambridge University Press, Cambridge.

PURCHASED
APPROVAL
GRATIS/EXCHANGE
PRICE
ACC NO.
VIERAM SARASHAI LIBRAY.
I. E. M., AHMEDASAD