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Introduction

The purpose of this paper is to prove by induction the theorem ( in Aizerman and
Malishevski [1981]) that a choice funtion which satisfies Chernoff's axiom and
Outcasting can always by expressed as the union of the solution sets of a finite
number of maximization problems. The proof we offer is considerably simpler
than the one in Aizerman and Malishevski [1981). In Moulin [1985], a discussion
of a similar result is available. Our framework closely resembies the one of
choice theory as enunciated in Moulin [1985]. it is well known that a combination
of Chernoff's axiom and QOutcasting is equivalent to a property called Path
Independence (See Moulin [1985]).

The Framework
Let X be a finite, non empty universal set. If S is any non-empty subset of X, let
[S] denote the set of all non-empty subsets of S. A choice function on X is a

function C:[X] — [X] such that C(S)c SV S € [X].

Given S e [X], let [ S| denote the cardinality of S. C is said to satisfy:



a) Chernoff Axiom (CA),if VS8, Te[X], ScTimpliesC(T)~nScC(S);

b) Outcasting (0),if v S, T € [X], C(T) = S < T implies C(T) = C(S).

¢) Aizerman (A), if v S, T e [X], C(T) = S — T implies C(S) < C(T).

Chernoff Axiom was originally proposed in Chernoff [1954].Outcasting, which
occurs under its present nomenclature in Aizerman and Aleskerov [1995],has
been attributed to Nash [1950],by Suzumura [1983].Aizerman has been in the
literature for a while ( for example,see Fishburn [1975]). However,its prominent
role was recognized only recently (Aizerman and Malishevsky [1981]).

Clearly, Outcasting implies Aizerman.it is also quite easy to see that Aizerman
and Chernoff together imply Outcasting.Hence, a choice function satisfies
Aizerman and Chernoff if and only if it satisfies Outcasting and Chernoff,

The issue here is the foliowing theorem in Aizerman and Malishevski [1981] :

Theorem 1: Let C be a choice function on X which satisfies CA and Q. Then
there exists n € N and functions f;: X - N, ie {1, ..., n} such that v S e [X],

C(S) = 91{x eS/f(x)2f(y)V yeS}

Before we provide a new proof of this theorem, let us provide two examples to
show that neither CA nor O is alone sufficient for the above theorem.

Example 1: Let X={x,y,z}, C(X)={x}, and C(8) =S V S € [X], S = X. Clearly
C satisfies CA but not O Towards a contradiction suppose there exists n ¢ N

and functions f.: X - N, i=1, ..., n such that

C(S)={JtacS/f(a)21,(b)vbeS}¥Se[X]



Then C(X) = {x} implies f; (x) > max {fi(y), f(2)} V i.

However, C{{x,y}) = {x,y} implies f; (y) = f; {x) for some i, which condtradicts what

we obtained before.

Example 2 : Let X = {x,y,z}, C(X) = X, C({x,y}) = {x}, C({y.z}) = {y}, C ({x.z}) = {z},
C({a}) = {a} ¥ a € X. Clearly C satisfies O but not CA. Towards a contradiction

suppose there exist n ¢ N and functions f: X > N, i=1, ..., n such that

C(S)=|J{aeS/f(a)2f,(b)VbeS}VSelX].

i=1

Then C(X) = X implies there exists i € {1, ..., n} such that f; (v) = f; (x). However,
then y € C({x,y}), contrary to our definition of C.

Proof of Theorem 1 :

We will prove this theorem by induction on the Cardinality of X.

If | X| =2, then there are two possibilities :

a) C(X)=X: then definef: X — W as follows :

flay=1vae X

b) C(X) = X: then define f: X — N as follows :

fla)=2ifa e C(X)
=1ifae X\ C(X)



Clearly C(S)={a e S | f(a) > f(b) v b  S}.

Hence suppose the theorem is true for | X| < {1,...,m-1} and suppose |X| =m e

N. Let C(X) = {x,,..., X}, for some p € N. Foreach x; € C (X), let Yi= X\ {x }.

Then

V(B2)ScTcY,, C(T)nS < C(S)

V(@2 ScTcY,, if C(T) = S then C(S) = C(T).
Let Ci: [Yi] — [Yi]| be defined as follows :
Ci(S)=C(S)vSelY],ie{1, ....,p}

By the induction hypothesis Vi e {i,..,p}, there exists my e Nand g : Y; > N,

1l
-

] m; such that

C(8) = U{a eS/gia) > gi(b)vb < S}, VS <[Y].

j=1
Let g/(x,) = [max{g/(a)/a e ¥}]+],
Vief{t1,.mhLic{1, .. 0}

Now suppose S « [X].
Suppose Sc Y Vie{1,.p}

Then C(S) = C(S) = LmJ {acS/gl(a)=al(b)vb eS}Vie{1,..p}
=1



U{a e S/gl(a)z gi(b)vb e S}.

=1

i
Co

=~ C(S)

i=1

—

Hence suppose S < Y for some i € {i,...,p}.

Case1:C(X)<= S
Then, by (O), C(S) = C(X).

S CS) =pu.xt= U U{a e S/gia)> gi(b)¥vb e S}.
i=1%j=1

Case2: C(X)z S.
letA={i/x ¢S} @
ThusScY VieA

By the induction hypothesis,

C(s)=C(S)= ({a « S /gi(a) = gi(b)vb c S}, Vie A.

Hence,

cs)c U U'fa e S /gi(a)= gi(b)vb e S}

i=1j=1

Now suppose i € A. Thus ;€ C(X) » S. By CA, xi € C(S)

{aeS/gli(a)>gi(b)ybeS}c C(S).

3

i Aj=1

.
n

But, C(S)=C(S)= U {a « S /gi(a) > gi(b)Vb € S},Viec A.
=1
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'{aeS/glita)z gi(b)vb e S}c C(S).

p
= 1

TC3

i=1

Hence C(S)= ) U'{a € S/gi(a)> g/(b)vb e S},¥ S e [X].

i=1j=1
The theorem was shown to hold for le = 2 and has now been shown to hold
for |X| = mif it holds for |X| = m-1. Hence it is true for all finite non-empty X.
Q.E.D.

Remark: In Moulin {1985] there is a property called Expansion. C is said to
satisfy:
Expansion (E) ,if v S, T e[X], C(T)~C(8)cC (SuT).

The result due to Schwarz [1976],which we refer to in the introduction as the one

available in Moulin [1985] impiies the following:

Let C be a choice function on X which satisfies CA E and O. Then there exists n

e N and functionsfi: X -+ N, ie {1,..., n}suchthatv S e [X],
(HC(8) = Lj{x e SIf(x)=f(y)V y € S}and (2) C(S) = {xeS/ xeC({x,y})V¥

yeS}.Conversely (1) and (2) imply C satisfies CA,E and O.

The following example shows that (1) above may be satisfied even if C does not
satisfy E.

Example 3 : Let X = {x,y,z}, C(X) = {y.z}, C({x,y}) = {x.y}, C{y.2}} = {y.z}, C ({x.z})
= {x,z}, C({a}) = {a} V¥ a € X. Clearly C satisfies CA and O but not E, since
xeC{{x,a})¥ aeX and yet xgC(X). Let f;: X - N, i = 1, 2 be such that f, (y)=3>

fi(x) =2> f, (2)=1 and f, (2)=3> f, (x)=2> f2 (y)=1. However,



C(S)=Lj{aeSIfi(a)zf,(b)vbeS}vSe[X].

=1

Quasi-Trangitive Binary Relations

A binary relation Q on X is any non-empty subset of X x X. Given a binary
relation Q on X its asymmetric part denoted P(Q) = {(x, y) € Q/ (y. ) ¢ Q }.A
binary relation Q on X is said to be

(i) reflexiveif (x, x) e QV x e X;

iy completeifx,ye X, x=yimplies (x,y) e Qor{y, x) € Q;

(iii) quasi-transitiveif Vx, y, 2 e X, (x, y) € P (Q) and {y, z) € P(Q) implies
(x,2) € P(Q);

(iv) aquasiorder if it is reflexive,complete and quasi-transitive.

We are concerned here with the foliowing theorem, which may be found in
Roberts [1979], Aizerman and Malishevsky [1981] Moulin [1985] (and which has
been generalized in Lahiri [1999] to the case where the universal set X is
possibly infinite) and which now follows as an easy corollary of our Theorem 1:

Theorem 2: Q is a quasi order on X if and only if there exists a positive integer n
and functions ;X > R, i e {1, ..., n} such that Q = { (x, y) € X x X/fi(x) = f; (y) for
someie {1, .. n}}

Proof:- it is easy to see that if there exists a positive integer n and functions
fiX> R, ie{1, .., n}suchthatQ={(x y) e XxXA(x)=fi{y) forsomeic {1, ..,
n}} then Q is a quasi order.To prove the converse assume that Q is a quasi
order. For S e [X], let C(8) ={xe8/(x,y) €eQ V y € X }.Clearly C(S) ¢ whenever S
e [X], since Q is a quasi order. Hence C as defined above is a choice
function.Further it is easy to verify that C satisfies CA and O. Hence,by Theorem
1, there exists a positive integer n and functions f,: X > R fori e {1, .., n}, such

that C(S) = g{x eS/f(x)2f(y)V yeS} VSelX] Since (x,y) Q if

and only if x € C({x,y}), and since x € C({x,y}) if and only if f(x) > f; (y) for some i
e {1, ..., n},the proof of the thecrem is thereby complete.

Q.E.D.



Stronger Consequences

The following lemma permits to strengthen the two theorems obtained above:
Lemma 1 : Let XN (:the set of real numbers) be given. Then, there exists a

positive integer n and one to one functions f:X -N, i € {1, ..., n} such that

{(x, y) € Xx XHf(x) =f(y)} ={(x, y) € Xx Xffi{x) = fi(y) for someie {1, ..., n}}.
Proof :- Let {f(x)/ x eX} = {s4,..., 84 } where q is a positive integer and s; < Su4 Vj
e {1, ..., g-1}Letn;=|{x eX/ f(x)= §;}| and let n= (n, )ix...x(ng )}
Let g X -»N be defined as follows:
g{x) = ny, if f(x) = s,
gix)=ni+..+ny iff(x) = 5
Clearly, vx,yeX : [ f(x) = f(y) if and only if g(x) = g(y)].
A function = : {1,...,, ny +...4ns } > X is called a restricted permutation if v k ¢
{1,.., m+. . +ng} (1) [n (k) € {x eX/ f(x)= s} ifandonly (1<k <y )] &{2) [n (k)
{x eX/f(x)=s}ifand only (niy <k <n; and 1 <i < q) ].Let IT denote the set of all
restricted permutations.Since X is finite so is I1. For = € I1, define f,: X— {1,...,
Ny +...+n, } as follows: YxeX , f,( x) = k if and only if = (k) =x. It is now easy to
verify that, { (x, y) € X x Xf(x} = f(y)} = {(x, y) e Xx X/g(x) 2 9 ()} = {(x, ¥) € XX
Xff(x) 2 T (y) for some = < I1}. This proves the lemma.

QED.

in view of Lemma 1 and Theorems 1 and 2 we have the following:

Theorem 3: Let C be a choice function on X which satisfies CA and O. Then

there exists n € N and one to one functions f,: X - N, i € {1, ..., n} such that

vSe[X, C(S)=Uf{xeS/f(x)2f(y)¥ yeS}.

Theorem 4: Q is a quasi order on X if and only if there exists a positive integer n

and one to one functions f:X -»N, i € {1, ..., n} such that Q = { (x, y) € X x Xffi(x)

> fi(y) forsomeie {1, ..., n}}.
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