

A CONSEQUENCE OF CHERNOFF AND OUTCASTING

Ву

Somdeb Lahiri

W.P.No.99-12-03 / 1566 December 1999

The main objective of the working paper series of the IIMA is to help faculty members to test out their research findings at the pre-publication stage.

INDIAN INSTITUTE OF MANAGEMENT AHMEDABAD-380 015 INDIA

250037

PURCHASED APPROVAL

GRATIS/EXCHANGE

PRICE

ACC NO.

VIKRAM SARABHAI LIBP.

L. E. M., ARMEDABAC

A CONSEQUENCE OF CHERNOFF AND OUTCASTING

BY

Somdeb Lahiri
Indian Institute of Management
Ahmedabad-380 015
India.

e-mail:lahiri@iimahd.ernet.in

December 1999.

Introduction

The purpose of this paper is to prove by induction the theorem (in Aizerman and Malishevski [1981]) that a choice funtion which satisfies Chernoff's axiom and Outcasting can always by expressed as the union of the solution sets of a finite number of maximization problems. The proof we offer is considerably simpler than the one in Aizerman and Malishevski [1981]. In Moulin [1985], a discussion of a similar result is available. Our framework closely resembles the one of choice theory as enunciated in Moulin [1985]. It is well known that a combination of Chernoff's axiom and Outcasting is equivalent to a property called Path Independence (See Moulin [1985]).

The Framework

Let X be a finite, non empty universal set. If S is any non-empty subset of X, let [S] denote the set of all non-empty subsets of S. A choice function on X is a function $C:[X] \to [X]$ such that $C(S) \subset S \ \forall \ S \in [X]$.

Given $S \in [X]$, let |S| denote the cardinality of S. C is said to satisfy:

- a) Chernoff Axiom (CA), if \forall S, T \in [X], S \subset T implies C (T) \cap S \subset C (S);
- b) Outcasting (O), if \forall S, T \in [X], C(T) \subset S \subset T implies C(T) = C(S).
- c) Aizerman (A), if \forall S, T \in [X], C(T) \subset S \subset T implies C(S) \subset C(T).

Chernoff Axiom was originally proposed in Chernoff [1954]. Outcasting, which occurs under its present nomenclature in Aizerman and Aleskerov [1995], has been attributed to Nash [1950], by Suzumura [1983]. Aizerman has been in the literature for a while (for example, see Fishburn [1975]). However, its prominent role was recognized only recently (Aizerman and Malishevsky [1981]).

Clearly, Outcasting implies Aizerman. It is also quite easy to see that Aizerman and Chernoff together imply Outcasting. Hence, a choice function satisfies Aizerman and Chernoff if and only if it satisfies Outcasting and Chernoff.

The issue here is the following theorem in Aizerman and Malishevski [1981]:

Theorem 1: Let C be a choice function on X which satisfies CA and O. Then there exists $n \in \mathbb{N}$ and functions $f_i: X \to \mathbb{N}$, $i \in \{1, ..., n\}$ such that $\forall S \in [X]$,

$$C(S) = \bigcup_{i=1}^{n} \{x \in S \ / \ f_i(x) \ge f_i(y) \ \forall \ y \in S \}$$

Before we provide a new proof of this theorem, let us provide two examples to show that neither CA nor O is alone sufficient for the above theorem.

Example 1: Let $X = \{x,y,z\}$, $C(X) = \{x\}$, and $C(S) = S \ \forall \ S \in [X]$, $S \subset\subset X$. Clearly C satisfies CA but not O Towards a contradiction suppose there exists $n \in \mathbb{N}$ and functions $f_i: X \to \mathbb{N}$, i = 1, ..., n such that

$$C(S) = \bigcup_{i=1}^{n} \{a \in S / f_i(a) \ge f_i(b) \ \forall \ b \in S \} \ \forall \ S \in [X].$$

Then $C(X) = \{x\}$ implies $f_i(x) > \max \{f_i(y), f_i(z)\} \forall i$.

However, $C(\{x,y\}) = \{x,y\}$ implies $f_i(y) \ge f_i(x)$ for some i, which condtradicts what we obtained before.

Example 2: Let $X = \{x,y,z\}$, C(X) = X, $C(\{x,y\}) = \{x\}$, $C(\{y,z\}) = \{y\}$, $C(\{x,z\}) = \{z\}$, $C(\{a\}) = \{a\} \ \forall \ a \in X$. Clearly C satisfies O but not CA. Towards a contradiction suppose there exist $n \in \mathbb{N}$ and functions $f_i : X \to \mathbb{N}$, i = 1, ..., n such that

$$C(S) = \bigcup_{i=1}^n \left\{ a \in S \, / \, f_i(a) \geq f_i(b) \, \forall \, \, b \in S \, \right\} \, \forall \, \, S \in [X].$$

Then C(X) = X implies there exists $i \in \{1, ..., n\}$ such that $f_i(y) \ge f_i(x)$. However, then $y \in C(\{x,y\})$, contrary to our definition of C.

Proof of Theorem 1:

We will prove this theorem by induction on the Cardinality of X.

If |X| = 2, then there are two possibilities:

- a) C(X) = X: then define f: X → N as follows:
 f(a) = 1∀ a ∈ X.
- b) $C(X) \neq X$: then define $f: X \to \mathbb{N}$ as follows: $f(a) = 2 \text{ if } a \in C(X)$ $= 1 \text{ if } a \in X \setminus C(X).$

Clearly C(S) = $\{a \in S \mid f(a) \ge f(b) \forall b \in S\}$.

Hence suppose the theorem is true for $|X| \in \{1,...,m-1\}$ and suppose $|X| = m \in \mathbb{N}$. Let $C(X) = \{x_1,...,x_p\}$, for some $p \in \mathbb{N}$. For each $x_i \in C(X)$, let $Y_i = X \setminus \{x_i\}$. Then

$$\forall$$
 ($\emptyset \neq$) $S \subset T \subset Y_i$, $C(T) \cap S \subset C(S)$

$$\forall (\emptyset \neq) S \subset T \subset Y_i$$
, if $C(T) \subset S$ then $C(S) = C(T)$.

Let $C_i: [Y_i] \to [Y_i]$ be defined as follows:

$$C_i(S) = C(S) \forall S \in [Y_i], i \in \{1, ..., p\}.$$

By the induction hypothesis $\forall i \in \{i, ..., p\}$, there exists $m_i \in \mathbb{N}$ and $g_i^j : Y_i \to \mathbb{N}$, $j = 1,..., m_i$ such that

$$C_i(S) = \bigcup_{j=1}^{m_i} \{a \in S \mid g_i^j(a) \geq g_i^j(b) \forall b \in S\}, \forall S \in [Y_i].$$

Let
$$g_i^j(x_i) = [\max\{g_i^j(a) / a \in Y_i\}] + 1$$
,

$$\forall \; j \in \{\; 1, \ldots, m_i \; \}, \; i \in \{\; 1, \; \ldots \; , p\}.$$

Now suppose $S \in [X]$.

Suppose $S \subset Y_i \ \forall \ i \in \{1,...,p\}.$

Then
$$C(S) = C_i(S) = \bigcup_{j=1}^{m_i} \{a \in S \ / \ g_i^j(a) \ge g_i^j(b) \forall \ b \in S \} \ \forall \ i \in \{1,...,p\}.$$

$$\therefore C(S) = \bigcup_{i=1}^{p} \bigcup_{j=1}^{m_{i}} \{ a \in S / g_{i}^{j}(a) \geq g_{i}^{j}(b) \forall b \in S \}.$$

Hence suppose $S \subset Y_i$ for some $i \in \{i,...,p\}$.

Case 1 : C(X) ⊂ S

Then, by (O), C(S) = C(X).

$$\therefore C(S) = \{x_1, ..., x_p\} = \bigcup_{i=1}^p \bigcup_{j=1}^{m_i} \{a \in S / g_i^j(a) \ge g_i^j(b) \forall b \in S \}.$$

Case 2 : C(X) ⊄ S.

Let $A = \{i \mid x_i \notin S\} \neq \emptyset$

Thus $S \subset Y_i \ \forall \ i \in A$.

By the induction hypothesis,

$$C(S) = C_i(S) = \bigcup_{j=1}^{m_i} \{ a \in S \ / \ g_i^{\, j}(a) \geq \ g_i^{\, j}(b) \forall \ b \in S \ \}, \ \forall \ i \in A \ .$$

Hence.

$$C(S) \subset \bigcup_{i=1}^p \bigcup_{i=1}^m \{a \in S \ / \ g_i^i(a) \geq g_i^i(b) \forall \ b \in S \}.$$

Now suppose $i \notin A$. Thus $x_i \in C(X) \cap S$. By CA, $x_i \in C(S)$

$$\therefore \bigcup_{i \in A} \bigcup_{i=1}^{m_i} \{a \in S \mid g_i^j(a) \geq g_i^j(b) \forall b \in S \} \subset C(S).$$

But,
$$C(S) = C_i(S) = \bigcup_{i=1}^{m_i} \{a \in S \ / \ g_i^{\ i}(a) \ge g_i^{\ i}(b) \forall \ b \in S \}, \ \forall \ i \in A .$$

$$\therefore \bigcup_{i=1}^{p} \bigcup_{j=1}^{m_i} \{a \in S \mid g_i^j(a) \geq g_i^j(b) \forall b \in S \} \subset C(S).$$

Hence
$$C(S) = \bigcup_{i=1}^{p} \bigcup_{j=1}^{m_i} \{a \in S \mid g_i^j(a) \ge g_i^j(b) \forall b \in S \}, \forall S \in [X].$$

The theorem was shown to hold for |X| = 2 and has now been shown to hold for |X| = m if it holds for |X| = m-1. Hence it is true for all finite non-empty X. Q.E.D.

Remark: In Moulin [1985], there is a property called Expansion. C is said to satisfy:

Expansion (E), if \forall S, T \in [X], C (T) \cap C(S) \subset C (S \cup T).

The result due to Schwarz [1976], which we refer to in the introduction as the one available in Moulin [1985] implies the following:

Let C be a choice function on X which satisfies CA ,E and O. Then there exists n $\in \mathbb{N}$ and functions $f_i: X \to \mathbb{N}$, $i \in \{1, ..., n\}$ such that $\forall S \in [X]$,

(1) C (S) =
$$\bigcup_{i=1}^{n} \{x \in S \mid f_i(x) \ge f_i(y) \ \forall \ y \in S \}$$
 and (2) C(S) = $\{x \in S \mid x \in C(\{x,y\}) \forall y \in S \}$. Conversely (1) and (2) imply C satisfies CA,E and O.

The following example shows that (1) above may be satisfied even if C does not satisfy E.

Example 3: Let X = {x,y,z}, C(X) = {y,z}, C({x,y}) = {x,y}, C({y,z}) = {y,z}, C ({x,z}) = {x,z}, C({a}) = {a} ∀ a ∈ X. Clearly C satisfies CA and O but not E, since $x ∈ C({x,a}) ∀ a ∈ X$ and yet x ∉ C(X). Let $f_i : X → N$, i = 1, 2 be such that $f_1(y) = 3 > f_1(x) = 2 > f_1(z) = 1$ and $f_2(z) = 3 > f_2(x) = 2 > f_2(y) = 1$. However,

$$C(S) = \bigcup_{i=1}^{2} \left\{ a \in S / f_{i}(a) \geq f_{i}(b) \ \forall \ b \in S \right\} \ \forall \ S \in [X].$$

Quasi-Transitive Binary Relations

A binary relation Q on X is any non-empty subset of X x X. Given a binary relation Q on X its <u>asymmetric</u> part denoted $P(Q) = \{(x, y) \in Q \mid (y, x) \notin Q \}$. A binary relation Q on X is said to be

- (i) reflexive if $(x, x) \in Q \ \forall \ x \in X$;
- (ii) complete if $x, y \in X, x \neq y$ implies $(x, y) \in Q$ or $(y, x) \in Q$;
- (iii) quasi-transitive if \forall x, y, z \in X, (x, y) \in P (Q) and (y, z) \in P(Q) implies (x,z) \in P(Q);
- (iv) a quasi order if it is reflexive, complete and quasi-transitive.

We are concerned here with the following theorem, which may be found in Roberts [1979], Aizerman and Malishevsky [1981], Moulin [1985] (and which has been generalized in Lahiri [1999] to the case where the universal set X is possibly infinite) and which now follows as an easy corollary of our Theorem 1:

Theorem 2: Q is a quasi order on X if and only if there exists a positive integer n and functions $f_i: X \to \Re$, $i \in \{1, ..., n\}$ such that $Q = \{(x, y) \in X \times X/f_i(x) \ge f_i(y) \text{ for some } i \in \{1, ..., n\}\}.$

<u>Proof:</u>- It is easy to see that if there exists a positive integer n and functions $f_i:X \to \Re$, $i \in \{1, ..., n\}$ such that $Q = \{(x, y) \in X \times X/f_i(x) \ge f_i(y) \text{ for some } i \in \{1, ..., n\}\}$ then Q is a quasi order. To prove the converse assume that Q is a quasi order. For $S \in [X]$, let $C(S) = \{x \in S/(x,y) \in Q \ \forall \ y \in X \}$. Clearly $C(S) \neq \emptyset$ whenever $S \in [X]$, since Q is a quasi order. Hence C as defined above is a choice function. Further it is easy to verify that C satisfies CA and O. Hence, by Theorem 1, there exists a positive integer n and functions $f_i: X \to \Re$ for $i \in \{1, ..., n\}$, such that $C(S) = \bigcup_{i=1}^n \{x \in S \ / f_i(x) \ge f_i(y) \ \forall \ y \in S \} \ \forall \ S \in [X]$. Since $(x, y) \in Q$ if and only if $x \in C(\{x,y\})$, and since $x \in C(\{x,y\})$ if and only if $f_i(x) \ge f_i(y)$ for some $i \in \{1, ..., n\}$, the proof of the theorem is thereby complete.

Q.E.D.

Stronger Consequences

The following lemma permits to strengthen the two theorems obtained above: <u>Lemma 1</u>: Let $f:X\to\Re$ (:the set of real numbers) be given. Then, there exists a positive integer n and one to one functions $f_i:X\to \mathbb{N}$, $i\in\{1,...,n\}$ such that

$$\{ (x, y) \in X \ x \ X/f(x) \ge f(y) \} = \{ (x, y) \in X \ x \ X/f_i(x) \ge f_i(y) \ \text{for some } i \in \{1, ..., n\} \}.$$

Let $g:X \to N$ be defined as follows:

$$g(x) = n_1$$
, if $f(x) = s_1$

$$g(x) = n_1 + ... + n_i$$
, if $f(x) = s_i$

Clearly, $\forall x,y \in X$: [$f(x) \ge f(y)$ if and only if $g(x) \ge g(y)$].

A function $\pi: \{1,..., n_1 + ... + n_q\} \to X$ is called a restricted permutation if $\forall k \in \{1,..., n_1 + ... + n_q\}$: (1) $[\pi(k) \in \{x \in X/f(x) = s_1\}$ if and only $(1 \le k \le n_1)]$ & (2) $[\pi(k) \in \{x \in X/f(x) = s_i\}$ if and only $(n_{i-1} \le k \le n_i \text{ and } 1 \le i \le q)$]. Let Π denote the set of all restricted permutations. Since X is finite so is Π . For $\pi \in \Pi$, define $f_\pi: X \to \{1,..., n_1 + ... + n_q\}$ as follows: $\forall x \in X$, $f_\pi(x) = k$ if and only if $\pi(k) = x$. It is now easy to verify that, $\{(x, y) \in X \times X/f(x) \ge f(y)\} = \{(x, y) \in X \times X/g(x) \ge g(y)\} = \{(x, y) \in X \times X/f_\pi(x) \ge f_\pi(y) \text{ for some } \pi \in \Pi\}$. This proves the lemma.

Q.E.D.

In view of Lemma 1 and Theorems 1 and 2 we have the following:

Theorem 3: Let C be a choice function on X which satisfies CA and O. Then there exists $n \in \mathbb{N}$ and one to one functions $f_i : X \to \mathbb{N}, i \in \{1, ..., n\}$ such that $\forall S \in [X], C(S) = \bigcup_{i=1}^n \{x \in S \mid f_i(x) \geq f_i(y) \forall y \in S \}$.

<u>Theorem 4</u>: Q is a quasi order on X if and only if there exists a positive integer n and one to one functions $f_i: X \to N$, $i \in \{1, ..., n\}$ such that $Q = \{(x, y) \in X \times X/f_i(x) \ge f_i(y) \text{ for some } i \in \{1, ..., n\}\}.$

References

- M. Aizerman and F. Aleskerov [1995]: "Theory of Choice", North Holland.
- M. Aizerman and A.V. Malishevski [1981]: "General Theory of Best Variants Choice: Some Aspects", IEEE Transactions on Automatic Control, Vol. AC-26, No. 5, pages 1030-1040.
- P. Fishburn [1975]: "Semiorders and choice functions", Econometrica 22:422-443.
- S.Lahiri [1999]: "A Note on Numerical Representations of Quasi-Transitive Binary Relations", (mimeo).
- H. Moulin [1985]: "Choice Functions Over a Finite Set: A Summary ", Social Choice Welfare 2: 147-160.
- J.F. Nash [1950]: "The Bargaining Problem", Econometrica 18:155-162.
- F.J. Roberts [1979]: "Measurement Theory", in Rota (ed.) Encyclopedia of mathematics and applications, Vol. 7, Addison-Welsey, London Amsterdam.
- T.Schwarz [1976]: "Choice Functions, Rationality Conditions and Variations on the Weak Axiom of Revealed Preference", Journal of Economic Theory 13:414-427.
- K. Suzumura [1983]: "Rational Choice, Collective Decisions, and Social Welfare", Cambridge University Press, Cambridge.

