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Abstract

Consider a rooted acyclic graph G with weights on arcs. In this graph, a
minimum weight rooted arborescence (MRA) can be defined as one whose
sum of arc weights is less than or equal to that of any other rooted
arborescence (RA) in that graph. We introduce a Lagrangian heuristic for this
problem and present computational results.

First, we formulate the MRA problem as a zero-one integer program and
discuss a heuristic H to construct an RA in a G. This heuristic generates an
upper bound on the value of the objective function for the MRA problem.
Next, we formulate a Lagrangian problem LMRA by relaxing one set of
constraints of the zero-one program. In the process of relaxation, a set of
multipliers U are required, one for each constraint to be relaxed. For a given
set of U's, LMRA can be easily solved to optimality by separating it into
several independent knapsack problems. Finaily, for MRA, we propose a
Lagrangian heuristic that iterates between the upper bound heuristic H and the
knapsack solution for LMRA. Beginning with an upper bound generated by H,
and an initial set of multipliers U's, we solve LMRA and obtain a lower
bound for MRA, at the same time generating a partial solution which can be
completed by H, thus getting a new upper bound for MRA. The iterations
continue till either the best upper bound and best lower bound come close
enough, or a suitable stopping condition is satisfied.

The Lagrangian heuristic was tested with fifty test problems, the number of
nodes in the problems varying from ten to fifty-five. The following output was
collected for each test problem: the vatue of the best upper bound, the value
of the best lower bound, iteration numbers corresponding to the best upper and
lower bounds, initial upper bound given by heuristic H, total number of
iterations executed when the program stopped, number of times the value of
the solution given by H was improved, and the total execution time in milli-
seconds. :

In 2 high percentage (86%) of the test cases, the Lagrangian heuristic yielded
optimal solution. In forty percent of the cases, the initial solution obtained by
the heuristic H itself turned out to be optimal. The execution time was less
than 2 seconds for most of the test problems. Thus, the proposed heuristic
seems promising enough to warrant further study.



Primal and Lagrangian Heuristics for
Minimum Weight Rooted Arborescence Problem

1. Introduction

A connected acyclic graph, G, with one of its nodes (root node) not having
any incoming arcs and having exactly one outgoing arc (root arc), consists of,
in general, several rooted (not necessarily spanning) arborescences.
Depending on whether the graph has weights on nodes, on arcs, or on both,
it is possible to define, with different objective functions, several different
problems, each concerned with finding an optimal rooted arborescence in the
graph under consideration. Of the different types of rooted acyclic graphs,
we are in particular interested in two: 1. rooted acyclic graph with weights
on nodes, and 2. rooted acyclic graph  with weights on arcs. In the first
" category, an optimal rooted arborescence can be defined as one whose sum
of node weights is less than or equal to that of any other rooted arborescence
in G; the problem of finding such an arborescence is called the minimum
weight rooted arborescence problem in an acyclic rooted graph with weights
on nodes. Similarly, in the second category, an optimal rooted arborescence
can be defined as one whose sum of arc weights is less than or equal to that
of any other rooted arborescence in G; the corresponding problem is called
the minimum weight rooted arborescence problem in a rooted acyclic graph
with weights on arcs.

The minimum weight rooted arborescence problem with weights on arcs was
introduced in [5]. As we show later, this problem is related to the
uncapacitated plant location problem. Further, the minimum weight rooted
problem with weights on nodes, which turns out to be a special case of the
problem with weights on arcs arises in an integer programming model of a
multistage production system [3]. Hence, we have chosen to focus this paper
on the minimum weight rooted arborescence problem with weights on arcs
(MRA problem).

This paper is a sequel to [5], our earlier paper on the same subject. [5]
outlined certain algorithms for the MRA problem, but, as the algorithms were
not tested at that time, the paper did not report computational results. This
paper fills that gap. Even though this paper is mainly concerned with testing
of the algorithms already proposed in [S], we repeat here, for the sake of
completeness, the definition of the problem and the statement of the
algorithms, with improved notation and terminology.

In section 2 we introduce the basic definitions, notation, and terminology of
the paper. We formulate in section 3 the MRA problem as a zero-one integer
programming problem. In section 4 we discuss the relation between MRA
problem and the uncapacitated plant location problem (UL). We present in
section 5 a heuristic to construct a rooted arborescence RA in G. In section
6, we discuss the formulation of a Lagrangian Dual of MRA problem. We
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propose a Lagrangian heuristic for the MRA problem in section 7. In section
8, we report our computational experience with the heuristics. Finally, in
section 9 we give concluding remarks.

2. Definitions, Terminology and Notation

Let G = {N,A} be a connected acyclic graph, with N>2. The nodes are
indexed with consecutive integers 1, 2, ..., N in the topologically sorted
order; that is, the nodes are indexed such that an arc is always directed from
a lower index node to a higher index node. If an arc is directed from node
1 to node j, i is said to be an immediate predecessor of j, and j an immediate
successor of i. The set P(j) consists of the indices of the immediate
predecessors of j, and S(j) the indices of the immediate successors of j.

Additionally, G is called a rooted acyclic graph if it is an acyclic graph
possessing exactly one node, called the root node, with no incoming arcs; this
root node, node 1, is connected only to node 2 by arc (1,2), called the root
arc. If each arc (i,j) of G carries a weight W(i,j), where W(i,j) is any real
number, positive, negative or zero then G is called a rooted acyclic graph
with weights on arcs. From now on, by default, we deal with only rooted
acyclic graphs with weights on arcs.

A subgraph RA(G) of G is called a rooted arborescence of G if: 1. RA(G)
contains the root arc as one of its arcs, 2. RA(G) is connected, and 3. no two
arcs of RA(G) are directed towards the same node. The sum of weights of the
arcs in RA(G) is called the weight of the rooted arborescence.

As mentioned earlier, a rooted arborescence of a graph G is called a
minimum weight rooted arborescence (MRA) of G if its weight W[MRA] is
less than or equal to the weight of every other rooted arborescence RA(G) of
that graph. See Figure-1 for an illustration of MRA.

A rooted path for a node k, k> 1, in G is an alternating sequence of nodes
and arcs, starting with root node 1 and ending with node k, which can be
written as

[1, (1,2), 2, ...., (i.), }, G,k), k].

The sum of weights of the arcs in a rooted path of a node is called the weight
of the rooted path; among all the rooted paths of node k, that which has the
minimum weight is called the minimum rooted path of node k, denoted by
MWRP(k), and its weight by w(MWRP(k)). Among all the nodes of G, let i
be the node which has the lowest weight minimum rooted path. Then the
minimum weight rooted path of i is called minimum weight rooted path in G,
or simply the min-weight rooted path, denoted by MWRPG. The value of the
weight of MWRPG is denoted by w(MWRPG). MWRPG can be easily found
by a shortest path algorithm.



Figure 1a. A rooted acvclic graph with weights on arcs

Figure 1b. MRA of the graph of Figure 1a. w(MRA) = -6

Figure 1. MRA: an 1l{ustration .
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See appendix-1 for a summary of the important symbols used in this paper.

3. Relation between Uncapacitated Plant Location Problem (UL) and
MRA Problem.

.We show here that UL [1] can be formulated as an MRA problem. This
reduction is significant, because UL is a widely studied NP-Hard problem.

Consider an UL with m plants and n demand points, with a fixed cost
associated with each plant, and a variable cost associated with each plant-
demand point pair. Reduce this UL to an MRA as follows. Formulate a
directed bi-partite graph with the first set of nodes corresponding to the plants
and the second set corresponding to demand points. Link each plant-node with
each demand-node by an arc directed from the plant-node to the demand-node,
. and let the arc carry a weight equal to the corresponding variable cost. Create
a directed root arc with a weight of zero and connect its end node to each of
the plant nodes by arcs directed towards the plant-nodes, each such arc
carrying a weight equal to the fixed cost of the corresponding plant. Finally,
create a duplicate node for each demand-node, and link it by an arc directed
away from the original demand-node and carrying a weight of minus infinity.
It can be seen that a minimum weight arborescence of this graph corresponds
to an optimal solution of UL. Figure 2 contains an illustration of a UL and its
MRA. :

4. Mathematical Formulation of MRA Problem.

The MRA problem can be stated as a zero-one program as below:

Z=Min ¥y Wi, )Y, )) (1)
@ ped

.Y Yip<1, j=23,.., N ()

iePy)

Yi) <Y, Yk, for i, pe A\ (1,2) (3)
o

¥(1,2)=1 @

Y(i j))€{0,1} for (i, e A\ (1,2) 5)

In the above problem, each zero-one variable, Y(i,j), corresponds to an arc
(1,j)€ A. In the solution, Y (i,j) = 1 implies that arc (i,]) is present in MRA;
Y(i,j) = O implies that arc (i,j) is absent. Constraints (2) ensure that, in the
selected subgraph, not more than one arc is directed towards a selected node;
constraints (3) ensure that an arc is not selected, unless at least one of its
predecessor arcs is also selected. Constraint (4) ensures that the root arc is
definitely present in the final solution. In future, we refer to the constraints
(2) as incidence constraints and (3) as connectivity constraints.



Demand
Fixed Cost

Var. cost / unit

Plants @ 300

Demand points
Figure 2a. UL

(Thick lines indicate an optimal solution)

D3
Figure 2b . Rooted acyclic graph
for the UL of Figure 2a
(Thick lines indicate an MRA)

Figure 2. UL and MRA Problem: an
lustration



5.(& Heuristic H for the MRA Problem

A heuristic solution for the MRA problem has two uses: first, it can be used
as a solution algorithm; second, the weight of the heuristic solution serves as
an upperbound for WIMRA].  Before presenting a heuristic, let us first
introduce a restricted version of the MRA problem, which will be referred to
as MRA, problem. The restriction is in the form of necessarily requiring
some arcs to be present in the solution; these arcs are specified as members of
set 6,. Thus MRA, problem can be stated as below:

Min Y Wi j)Y(i) ©
iNHeA

s.t. (2), (3),and

Y(iH=1, (i))ed, )

Yi.)e{0,1}, (ij)eA\0,, (8)

When 6, = {(1,2)}, the resulting MRA problem is the same as the
unrestricted MRA problem that we have considered in the previous sections.
As MRA problem is a special case of MRA, problem, an algorithm for the
latter problem can be automatically used for the former.

We present below a four-phase heuristic H for selecting a rooted arborescence
from a given G. This is similar to, but not the same as, the heuristic
presented in Section V of [4]. ‘

Phase 1. For each (i,j)€ @, if there are any other arcs directed towards j,
make the weights of those arcs o to prevent them from entering the solution.
Open two arc lists Bl and B2, and make them empty.

Phase 2. Find MWRPG in G. If w(MWRPG) is negative, then append the
arcs of MWRPG to list B1. Update to zero the weights of all the selected
arcs. Furthermore, update to infinity the weight of each unselected incident
arc on each selected node. Once again, in the updated graph, find MWRPG,
and if its weight is negative then append all its arcs to B1, except those
already present in B1, while at the same time updating the weights of the arcs
as described above. Contmue this process until w(MWRPG) happens to have
a zero or positive weight.

Phase 3. As long as there are negatively weighted arcs in the graph continue
to select the MWRPG; and update its arc weights as described above. But,
in this phase, append the selected arcs ( excepting those already in Bl) to a
second list B2. Also, keep a running total of the original weights of the arcs
entered in B2. When this total becomes negative, append all the arcs of B2
to B1, and make B2 empty.

End this phase only when no negative weight arcs are left in G.
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Phase 4: For each unselected arc (i,j), if any, in 0,, find the minimum weight
rooted path. Select from among these paths that with the lowest weight and
append the corresponding arcs not already selected, to B1. Update the weights
of its arcs as described in phase 2. Repeat this processes till arcs of @, are
selected.

At the end of phase—4 all the arcs in Bl form the arcs of the desired RA.

The above heuristic is defined in the form of a pseudocode in appendix-2.

Example to illustrate H. Figure 3a shows a G with 11 nodes and 14 arcs.
6. = {(1,2),(8,9)}.The above four phase heuristic is applied on this graph to
generate an MRA of this graph. The status of the graph G at important stages
in the application of H is shown in Figure 3a through 3d. The major steps are
described below:

Phase 1. On node 9, two arcs, (4,9) and (8,9) are incident. Make W(4,9) as
00,

Phase 2. This phase is comprised of three iterations. During each iteration,
find the node which has the MWRPG. Figure 3b shows the weight of the
minimum weight rooted path for each node during iteration 1. At the end of
iterations 1, 2, and 3, the end nodes of MWRPG are 6,7, and 5 respectively.
End this phase here, as none of the nodes has a minimum rooted path with a
negative weight (Figure 3c). The arcs selected for the arborescence in this
phase are: (1,2), (2,3), (3,6), (3,7), and (3,5). The computations of this phase
are summarised in Table 1.

Table 1. Summary of computations in Phase 2 of the example for H

Iteration |Min-weight [Arcs which |Arcs whose |
No. rooted path |are added to|weights are
(MWRPG) |B1 and updated to
in the graph |whose infinity
Weight[Node|Weights are
of path updated to
Zero
1 -115 |6 |(1,2), (2,3),[(5,6)
(3,6)
2 -80 |7 3., (6,7)
3 -5 S |(3,5) -
7 VIKRAR SARABRA UBRAR®
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Phase 3. The acyclic graph still consists of three negatively weighted arcs.
Therefore, add their minimum weight rooted paths to B2. At this point, the
sum of the onginal weights of the arcs in B2 becomes negative. Therefore,
transfer to B1 all the arcs of B2, that is arcs (2,4),(4,8),(8,10),(8,11),(8,12).
Stop this phase here, as none of the arcs in the acyclic graph has a negative
weight (Figure 3d). The computations of this phase are summarized in Table
2.

Phase 4. (8,9) is in 8, and is not in B1. Hence add (8,9) to B1.

Thus, finally the arborescence selected by the heuristic consists of the
following arcs:

(1,2),(2,3),(3,6),(3,7),(3,5),(2,4),(4,8),(8,10),(8,11),(8,12),(8,9). Theweight
of this arborescence is -200.

Table 2. Summary of computations in Phase 3 of the example for H

Iteration [Min- weight [Arcs which |Arcs whose |Sum of
No. rooted path |are added to|weights are  |original
in the graph |[B2 and  |updated to  |weights
Weight|Node whpse infinity of arcs
of path weights are of B2
updated to
Zero
1 1 10 |(2,4), (4,8), |- 1
(8,10)
2 -1 11 |(8,11) - 0
3 -1 12 [(8,12) - -1

6. Lagrangian Relaxation of the MRA Problem

The motivation for studying a Lagrangian relaxation, LMRA, for MRA
problem is two fold: 1. using LMRA, it will be possible to obtain a lower
bound on the optimal objective value of the MRA problem; 2. a powerful
heuristic for the MRA problem can be developed using LMRA. We discuss
below two alternative ways of formulating the Lagrangian problem.

1. The constraint set chosen for relaxation is the set of the  incidence
constraints (3). For this, consider the multipliers U = {U(j), j=2, ...,N},
each U(j) associated with the constraint corresponding to the j* node. We can
formulate our first Lagrangian problem as:

Max Min
U=0 Y

%4 (3), (4) and (5)

N
(}: Wi NYG)+Y UDUY Yi)-1} )
I, NEA =2

ieP)



Figure 3a. G for the example of
section 5

-100
7 W(MWRPG)
-
5 -115
-90
6 5
80 =
| 100/ -s
5 3
. 4 201 s ﬂWRP(B))

Figure 3b. MWRPG computation 1n iteration ! of phase 2

(The number in square bracket near node k is w(MWRP(k)
The thick arrows jndicate MWRPG)

Figure 3. [llustration of H
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Figure 3c. G at the end of phase 2 .

Figure 3d. G at the end of phase 3 .

Figure 3 (Contd.)
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The constraints of the above problem resemble those of MRA problem with
weights on nodes [4]. However, the objective function (13) does not exhibit
any known form.

2. The constraint set chosen for relaxation here is the set of connectivity
constraints (3). For this, consider the multipliers U = {U(,j)| (i,j)e A, i
>1}, each U(i,j) being associated with the connectivity constraint
corresponding to arc (i,)). Therefore, the second Lagrangian problem
(LMRA) can be written as

LMRA

Max  Min{ (E W(iJ)Y(iJ))+ Y UGp (Y(iJ)-E Y(k,n)} (10)
(i

U=0 Y ifeA GheAi>1 KeP)
s.t.2), (4) and (5)

As a given arc (i,j) is directed towards only one node j, the different
constraints in (3) are separable for each j. Further, the constraints (2) are in
the form of Knapsack constraints. Hence, for a given set of multipliers U,
LMRA can be solved by splitting it into several independent knapsack
problems, one for each j whose S(j) is not null, j > 1. It is useful to rewrite
the objective function (10), by regrouping the terms, in the following form:

Max Min{z YG.)) [W6 j)+UGH-T U(j,k)” (11)

U=0 Y Llipe £

Example on the formulation of LMRA. To illustrate the separability of
LMRA into several knapsack problems, let us consider an example using the
graph shown in Figure 4. We give below the Lagrangian problem LMRA for
the graph of Figure 4.

This problem can be separated into three independent problems whose
objective functions are Z,(U), Z,(U), and Z,(U). Then overall objective
function of the problem can be written as

Z=%ax Z(U)=Al4]ax {Z,(D)+Z,(D)+Z,(U)} (12)
where:
Z,(U) = Min {Y(1,2)[W(1,2)+U(1,2)-U2,3)-U<2,4)+
Y(2,3)[W(2,3)+U(2,3)-U(3,4)-U@G3,5)1} 3
s.t. Y(1,2)=1, and Y(2,3) € {0.,1) )

11



Z,(U) = {Ain {Y(3,4)[W(3,4)+U(3,4)-U4,95)] +

Y(2,4)[W(2,4)+U(2,4)-U@4,9]} (15)
s.t. Y3,4)+Y(2,4) < 1 - (16)
Y(3,4), Y(2,4) € {0,1} a7

Z,(U) = Min {Y(3.,5)[W(3,5)+U(3,5)]+Y(4,5)[W(4,5)+U(4,5]} (18)
s.t. Y(3,5)+Y4,5) <1 (19)
Y(3,5),Y4,5) €{0,1} (20)

It can be seen that the problem (13)-(14) can be easily solved and that
(15)-(17) and (18)-(20) can be solved by picking the variable with least
negative coefficient in the objective function; no variable is picked if all
coefficients are positive. By substituting the given U's and the values of
Y(i,j)'s obtained as above in the objective function (11) we obtain a lower
bound for the MRA problem.

7. Lagrangian Heuristic L for MRA Problem

We propose a heuristic solution for MRA problem based on LMRA discussed
above. At each Lagrangian iteration, for a given set of U's, we obtain a
lower bound for MRA problem by solving (13) subject to (3), (5) and (6).
This will return a set of Y(i,j)’s with value one, which may not satisfy (4).
Through heuristic H of section S, we can construct a feasible solution to
MRA problem with the above Y(i,j)’s set at 1. Hence, at every Lagrangian
iteration we generate a lower bound as well as an upper bound for MRA
problem. This heuristic procedure is described below:

Step 1 (Initialize): With 8, = {(1,2)} obtain an initial upper bound by using
heuristic H described in section 5. Initialize the Lagrange multipliers U(i,j)
= (, for (i,j) € A. Initialize the best lower bound Z, to -o

Step 2 (Find lower bound): For a given U, solve (13) subject to (3), (5) and
(6). This provides a lower bound for w(MRA). Update the best lower bound
Z,p if necessary.

Step 3 (Find upper bound): Step 2 fixes some of the Y(i,j)’s at one. Let this
set of Y(i,j)’s constitute 6,. With this 8, apply heuristic H to generate a
feasible solution and an upper bound for w(MRA). Update the best upper
bound, Z"8, if necessary .

Step 4 (Apply stopping rule): If any of the following three conditions are
satisfied, stop: 1. Z"® = Z , + ¢; 2. The iteration count has exceeded a
given limit; 3. The best lower bound converges to a given value. If none of
the above conditions is satisfied, go to step S.

12



C g >}*
Figure 4. Graph to illustrate LMRA
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Step 5 (Update U(,j)’s). Update the Lagrange multipliers using the
subgradient procedure described below. If the subgradients are all zero, stop.
Else go to step 2.

Subgradient procedure. The subgradient procedure used in our algorithm is
described now. For a detailed analysis of subgradient optimization see [2].
Let Y*(i,j) be the optimal solution to the Lagrangian problem LMRA. Let k
be the iteration number. We then compute the subgradients NU(i,j) for U(i,j)
as

NUG, j)= i)=Y YV(h,i)

(h.)eA

The Lagrange multipliers are then updated as follows:
u(i j)**' =max{u(i j)* +t, NU(i j),0}
where

t,=A(Z"- u,)/(z; INUG HP
iJ

We start with an initial value of A equal to 1 and halve the value every 8
iterations if the lower bound does not improve.

8. Computational Results.

Heuristic L was tested on ten different graph structures, with the number of
nodes ranging from ten to fifty-five, in intervals of five. From each structure,
we generated five test problems by changing the arc weights, thus getting fifty
test problems in all. The graph structures and arc weights were generated
randomly, while ensuring that trivial solutions do not occur. Figure 5 shows
one of the graphs used in the testing.

In each of the problems, the arc weights were integers. For the stopping rule,
e was given as 0.99, and the maximum number of iterations permitted was
500.

The programs were written in TURBO C and run under DOS on a Pentium
PC with 100 MHZ clock, and 16 MB RAM.

The following statistics were collected for each problem while running L
(Table 3): best upper bound value (BESTUB), best lower bound value
(BESTLB), the iteration number when the BESTUB was found (ITERUB), the
iteration number when the BESTLB was found (ITERLB), value of the
feasible solution found by H initially (INITHEUR), iteration number when L
stopped (TOTITER), number of times the upper bound was updated
(NUPDT), execution time in milli seconds taken by L (TIMEMSEC).

14



Figure 5. One of the test graphs, T35A
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When judged by its ability to reach an optimal solution, the performance of
L in the testing was quite satisfactory. In eighty-six percent of the test
problems, L found the optimal solution.

As mentioned before, H could be used as a stand alone heuristic for MRA.
The above testing revealed the efficacy of the solution given by H, when no
arcs are forced to be in the solution. The value of this solution of H in L was
recorded as INITHEUR. In forty percent of the test problems, INITHEUR
itself turned out to be the BESTUB; out of these, in seventy five percent of the
cases, the INITHEUR was confirmed to be optimum, as BESTLB and
BESTUB were equal in those cases. Without testing L, in which H was an
embedded step, the above insight could not have been achieved.

One of the purposes of L was to improve the initial solution given by H. In
sixty four percent of the test problems, INITHEUR was improved at least
once. The average percent improvement in INITHEUR as measured by
100*Abs(INITHEUR-BESTUB)/INITHEUR over all the test problems was
6.53. For the test problems with at least one improvement in INITHEUR, the
above measure was 10.21.

During the tests, we also measured the duality gap, to find how close the
BESTLB found by L was to the optimal solution. The average value of the
duality gap, calculated as Abs(100*(BESTUB-BESTLB)/BESTUB), over all
the test problems, was 2.74 percent. For the test problems with duality gap
greater than zero percent, this average was 12.46 percent.

As expected, the time of execution per iteration tended to increase with the
number of nodes, although the increase was not monotonic: it varied from a
fraction of a milli second for problems upto 20 nodes, to six milli seconds for
problems with 55 nodes. However, the total number of iterations taken by a
problem did not necessarily depend on its size. The complexity of a problem,
obviously, was governed not only by its size but also by the graph structure:
in the 35 node problems, four out of five exceeded the iteration limit of 500,
whereas all the fifty node problems could be solved to optimality within the
same iteration limit.

9. Concluding Remarks

Our major contribution in this paper was to present a new, computationally
hard problem and to propose heuristics to solve it. The computational results
of these heuristics are promising enough to warrant further study of this
problem and its solution methods. More over, the proposed heuristics add to
the existing repertoire of solution methods for UL. Further, suitable
enumeration techniques could be studied to close the non- zero duality gap, if
any, resulting from an application of L on MRA problem.

16



Table 3. Summary of computational resuits.

—_—  ———
Problem |N |BESTUB [BESTLB \TERLB |INITHEUR [TOTITER [NUPDT [TIME
itle MSEC
10A 10 -15] -15.8982 1 16 15 16 0 )
108 10 -18| -18.9800 1 64 -8 64 ) 60
10C 0 23| -23.8739 1 15 23 15 ) 0
10D 10 18| -18.9309 1 16 18 16 ) E]
10E 10 16| -16.9890 1 14 T 14 ) )
15A 15 94| -97.5373 1| 143 94 500 o] 220
158 15| -116(-122.0026 1| 306 116 500 0| 270]
15C 15| -243]-247.0023 1| 218 243 500 o| 270
%so 15 86|-114.0212 1 171 -86 500 o| 280
n‘;se 15| -152)-152.9943 1 90 52 30 ) 50
20A 20 46| -46.9102 1 19 -a2 19 1 )
208 20 53| -53.9815 1 26 53 26 0 60
T20C 20 49| -49.9359 1 24 49 24 0 )
20D 20 85| -65.9934 1 25 55 25 2 )
T20€E 20 34| -34.9499 20 21 32 21 1 )
25A 25 95| -95.8689 1 22 95 22 ) 0
T258 25 99| -99.7528 2 10 -90 10 1 60
75C 26 -103|-103.9339 2 10 101 10 1 )
25D 25| -108|-108.8514 2 7 96 7 1 )
26E 25| -102|-102.9167 2 17 101 17 1 )
30A 30| -410|-412.5039 1| 198 410 500 o| 770
T308 30| -427|-427.8703 1 ) 427 ) O| 50|
30C 30| -435|-435.8993 ) 5 432 3 2 60
30D 30| -435|-435.9390 2 ) 435 ) 1 3l
30E 30 29| -41.5145 2| 156 27 500 1| 820}
T35a 35| -103|-103.9903 2 87 101 87 1| 220§
1 358 35 89| -89.9352 1 a4 -89 ry) o| 110
35C 35 97| -97.9674 1 1) 97 T o] 110
35D 35 97| -97.9460 1 a6 97 46 o| 110
35E 35 96| -98.0506 a8 a7 3 a8 il 110
iT40A 30| -328|-328.9909 12 é8 -292 63 4| 220
208 30| -338|-338.9822 16 76 -294 76 3| 270
a0C 40| -349|-349.9822 16 76 -301 76 3| 330
20D 40| -342|-342.9822 16 76 291 76 3| 280
40E 20| -378|-378.9836 16 76 326 76 3| 270
a5A 45 -368|-368.9741 12 71 332 71 2| 330
458 45| -409|-409.9912 15| 125 ~3683 125 3| 500
Ta5C 35| -443|-443.8936 31 30 387 31 3| 110
25D 35| -449|-448.9999 a6 a5 440 26 3| 160
a5t 45| -427|-427.0436 33 32 398 33 3| 160
50A 50| -344|-344.9848 13 76 306 76 5| 380
508 50| -340|-340.9776 13 74 ~301 74 6| 380
50C 50| -350|-350.9996 17 86 -299 86 3| 4401
50D 50| -356)-356.9928 17 82 320 82 a| 440
TSOE 50| -345|-345.9964 17 82 302 82 3| 440
TE5A 55| -392|-392.9908 12 75 328 33 5 440
558 55| -356|-356.9581 14 81 305 81 7| 500
55C 55| -364|-364.9807 18 82 321 82 7| 500
55D 55| -366|-367.0064 56| 264 299 500 9| 3020
55E 55| -396|-396.9578 16 88 359 88 5| 550
re——. 4= ——— ———
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Appendix-1

Summary of Notation

Symbol Meaning - T )

G Rooted acyclic graph with weights on arcs.

N Number of nodes in G.

A The set of arcs in G.

(i,)) Arc starting at node i and ending at node j.

t\v’(i,j) | The weight of arc (i.)).

u(i,j) The updated weight of arc (i,j) in heuristic H.

MRA Minimum weight rooted arborescence

UL Uncapacitated plant location problem.

MWRP() |Minimum weight rooted path for node j.

MWRPG  (The rooted path which has the smallest weight among the
MWRP() for all i in G, i > 1.

w(MRA) Weight of minimum weight rooted arborescence in G.

w(MWRP(j)) [Weight of MWRP(j).

w(MWRPG) (Weight of MWRPG.

H Upper bound heuristic for MRA problem.

LMRA Lagrarian relaxation of the MRA problem.

Ud,j) Lagrange multiplier used for the connectivity constraint
corresponding to arc (i,j) in formulating LMRA.

Y(@,)) - 0-1 variable for arc (i,j) in the 0-1 integer program for
MRA problem.

S The set of arcs required to be prcsent in the rooted
arborescence.

S() The set of immediate successors of node j in G.

P(j) _ _Il;he set of ﬂn?edﬂreieiess%_ of n‘odf jin G. 1

19




Appendix-2

Pseudo-code for heuristic H

Begin
Inidatize
Apply Phase 1
Apply Phase 2
Apply Phase 3
Apply Phase 4
: Output the list of arcs in Bl as the RA
End

Pseudocode for “Initialize”

Begin
Input N and A of G
Input W(i,j) for each (i)
in A
Bl « ¢
B2« ¢
For each (i,j) in G

Wu(@i,j) « W(iJ)

EndFor
wW(MWRPG) « + oo
6. « {(1,2)}

End

Pseudocode for "Apply Phase 1°

Begin
Foreach (i,j) ¢ © ,
For each (k,j) e A, k * i
W(k,j) « o
Wu(k,j) « o
EndFor
EndFor
End

Pseudocode for "Apply Phase 2"

Begin
Find MWRPG
'While wWMWRPG) < 0
For each (i,j) which is in MWRPG and not in Bl
Append (i,j) to Bl
Wu(i,j) « 0
Foreach (k,j) e A , k =i
Wu(k,j) « o
EndFor
EndFor
Find MWRPG
EndWhile
End
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/
Pseudocode for "Apply Phase 3"

Appendix-2 (contd...)

Begin
SUMB2 « 0
[While there exists an (i,j) in G such that Wu(i,j) < 0
Find MWRPG
For each (i,j) which is in MWRPG and not in B1 por in B2
SUMB2 « SUMB2 + W(,j)
Wu(i,j) « 0
Foreach (kj)e Aand k # i
Wu(k,j) « o
EndFor
Append (i,j) to B2
EndFor
If SUMB2 < 0 Then
Transfer all arcs of B2 into Bl
B2« ¢
SUMB2 « 0
EndIf

EndWhile
End

Pseudocode for "Apply Phase 4"

[Begin
While there exists an (i,j) such that (i,j) is in 6, and not in Bl
minnode « 1
minwt « oo
For each (i,j) € 6, and not((i,j) ¢ B1)
Find MWRP(j)
If wMWRP(j)) < minwt Then
minnode « j
minwt « w(MWRP(j))
EndIf ,
For each (i j) which is in MWRP(minnode) and not in Bl
Append (i,j) to Bl
Wu(i,j) « 0
For each (k,j) e Aand k.# i
EndFor
EndFor
EndWhile
End
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Pseudocode for *Find MWRPG”

p

Appendix-2 (contd...)

Begia

(MWRPG) « o
IMWRPG « |
WMWRP(1)) « 0
Forj=2toN
WMWRP())) « oo
For each i ¢ P(j)

If wMWRP(i)) + W(i,j) < w(MWRP(j)) Then
w(MWRP(j))) « w(MWRP(1)) + W(i,j)

EndIf
EndFor
If wMWRP(j)) < w(MWRPG) Then
w(MWRPG) « w(MWRP(j))
IMWRPG « j
EndIf
EndFor
End
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