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Abstract: A four-step strategy is proposed [or scheduling a set of partially ordered resource-
constrained activities on a given number of identical parallel machines. For regular measures, the
generated schedule is optimal. In the first stcp, the difficulty level of the problem instance is
estimated using the problem parameters as arguments. Easy problems are solved using a best-first
tree search algorithm. For harder problems, an approximate algorithm is employed to determine a
good upper bound on the measure. This bound is fed to a breadth-first tree search algorithm,
making the pruning more effective and reducing the memory requirement of breadth-first search.
When the number of parallel machines is 2, 3, 4, 5 or unlimited, this strategy is able to solve all
except a small number of the benchmark PROGEN problems on a Linux-based Pentium PC or a
UNIX-based RS 6000 machine. On projects without resource constraints, the proposcd method is
faster than the earlier method of Chang and Jiang {1994] by orders of magnitude.

Keywords:  Resource constrained project scheduling, parallel machines, breadth-first search,
best-first search

1 Introduction: Perhaps the most commonly studied problem in the area of project scheduling is
the Multiple Resource-Constrained Project Scheduling Problem (RCPSP). The objective in the
RCPSP is to schedule the partially ordered activitics belonging to a given project in a non-
preemptive manner without violating any rcsource constraints so as to minimizc some regular
performancc measurc such as the schedule length (makespan). A regular performance mcasure
[French 1982, pp 13-14} is one that is non-decreasing in the completion times of activities; this
implies that in an optimal schedule it is never necessary to keep a machine deliberately idle if a
ready job is available for scheduling. A number of exact algorithms are currently available for
solving instances of the RCPSP [Stinson er al 1978], [Patterson 1984], [Christofides er al 1987,



[Demeulerncester and Herroelen 1992 1997]. These generally make use of a best-first or depth-first
tree scarch scheme augmented with pruning rules. In the search tree, nodes correspond to partial
schedules; in particular, the root node corresponds to the empty schedule and leaf nodes
correspond to complete feasible schedules. The effectiveness of a solution method depends mainly
on how quickly the pruning rules are able to weed out partial schedules that are provably sub-
optimal. The RCPSP is an NP-complete problem [Garey and Johnson 1979, pp 236-242], and even
small problem instances involving thirty or fewer activities can be quite hard to solve. For larger
instances, both the running time and the memory requirement are often excessive. Not many of the
proposed methods are able to solve optimally the complete set of 680 benchmark PROGEN
problems [Kolisch er al 1995] even on the most powerful PCs and workstations.

Two new exact algorithms for the RCPSP, called Best. MRS and Breadth MRS, have been
proposed recently by Nazareth er al [1999]. Best_ MRS employs a conventional best-first tree
search scheme that makes use of the standard makespan heuristic, while Breadth_ MRS employs
breadth-first search, in which the nodes in the search tree are processed in a level-by-level manner.
Experiments indicate that Best_ MRS is generally faster than Breadth MRS. But on hard problems,
Best MRS occasionally runs out of memory. Most people believe breadth-first search to be
inefficient since it is unable to direct the search to a goal. But in the area of resource constrained
project scheduling it is superior to best-first search in the utilization of memory. The two algorithms
were coded in C and run on a 64 MB 100 MHz Pentium PC in a SCO UNIX environment.
Breadth_MRS solved all the 680 PROGEN problems (First Lot: 480, Second Lot: 200), but for
nine of the problems it took more than 1,000 secs of runtime. Best_ MRS ran out of memory on
five problems, all belonging to the First Lot; however, the maximum runtime for a problem it did
solve was only 384 secs.

A novel feature of the two algorithms is that both permit the rerraction of activities. An activity
in a partial schedule that has alrcady been scheduled and is currently being processed can be
retracted in a descendant schedule. This means that the processing of the activity can be suspended
and its status rolled back, so that it is as if the activity has not been scheduled at all. This feature
drastically reduces the branching factor of the search tree, making it possible to solve problem
instances of larger size within the given memory limits.

This paper tries to extend the range of application of the tree search schemes described in
[Nazareth er al 1999}. It 1s concerned with a vanant of the RCPSP called the Parallel Machine
Resource-Constrained Scheduling Problemt (PMRCSP). In the PMRCSP, a set of partially ordered
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activities must be scheduled in a non-preemptive manner under resource constraints on a specified
number of identical parallel machines so as to optimize some regular performance measure such as
makespan or mean flow time. Specifying the number of parallel machines amounts to imposing an
upper bound on the number of actxvmes that can be processed simultaneously at any instant of time.
Consider a multiprocessor computer systern with /m processors. In this system at most m programs
can run at the same time. We can think of a processor as a type of renewable resource. Its total
availability equals m, the number of processors in the system, and a program that is running has a
requirement of one processor at each time instant. The partially ordered set of programs need not
be viewed as a project; it can be viewed merely as a collection of activities. The objective could be
to minimize the makespan or the mean flow time or the maximum tardiness or the number of tardy
jobs. In the special case when the number of processors is infinite, the PMRCSP reduces to the
RCPSP. No method that is reasonably efficient in solving the PMRCSP is available in the technical
literature. The algorithm of Chang and Jiang [1994] does not take resource constraints into
account. Our main goal in this paper is to proposc a breadth-first search strategy based on
Breadth_ MRS that can find exact solutions to the PMRCSP for problems such as the ones in the
PROGEN set, with an additional constraint on the number of processors. The PROGEN problems
were chosen because the difficulty level is high and there is no standard benchmark set for the
PMRCSP.

Direct use of Breadth MRS or Best_ MRS fails to solve the PMRCSP for many of the
PROGEN problems when the number of available processors is 3 or 4. This led us to adopt the
more elaborate four-step strategy OPT_MEASURE described in Section 2. This strategy is exact.
Whenever it solves a problem, it finds the optimal solution. In the first step, an attempt is made to
estimate roughly the difficulty level of a problem instance from the problem parameters. If the
problem instance is found to be easy, Best MRS is run on it. If it is hard or if Best_ MRS fails to
solve it, a good upper bound on the performance measure of intercst is obtained with the help of a
fast approximate algorithm, and then Brecadth MRS is run on it. When an upper bound is supplicd
to a breadth-first search scheme such as Breadth MRS, the pruning becomes far more effective.
For harder problems the runtime and memory requirement are both drastically cut down, making it
possible to solve many more problem instances than by a direct application of Breadth_MRS alone.

OPT_MEASURE has been tested experimentally on a UNIX-based RS 6000 machine and a
Linux-based Pentium PC with the number m of parallel machines set to the following values: 2, 3,
4, 5 and infinity. With makespan as the performance measure, for m = 2, 5, and infinity, it found



solutions on the RS 6000 to all 480 problems in the First Lot of PROGEN; for m = 4 it found
sotutions to 478 problems, and for m = 3 to 472 problems. Thus out of a total of 480 * 5 = 2,400
problems, only 10 were not solved. Inlthe Second Lot, out of a total of 200 * 5 = 1,000 problems,
only 41 were not solved. The Linux-based PC solved a slightly smaller number of problems because
it had less memory. The approximate algorithm GET_MEASURE that forms part of
OPT_MEASURE also gave excellent results. For example, for infinite m it found optimal solutions
on the RS 6000 to 406 of the 480 problems in the First Lot within 20,000 iterations taking no more
than 37 secs per problem. For the problems it did not solve optimally in 20,000 iterations, it was
within two units of the optimal on the average. Section 2 gives a detailed description of
OPT_MEASURE and Section 3 contains our experimental results. Section 4 lists some areas in
which the work reported in this paper can be extended.

2 The Solution Method: We first formulate the problem, and then describe the solution method
OPT_MEASURE in detail.

2.1 Problem Formulation: The problem formulation is similar to that in [Nazareth er al 1999].
We are given a set of N activities for some N > 2. Activity a; has duration d; > 0, a set P; of
predeccessor activitics, a set S; of successor activities, and a requirement of r; > O units of the jth
resource type for each of the M > 1 distinct types of resource. All resources are assumed to be
rencwable. The total availability R; of the jth resource type, 1 < j < M, is constant and specified in
advance. Resource type M corresponds to parallel machines, so that Ry = m, the specified number
of parallel machines. Each activity has a requircment of one unit of resource M at cvery instant
during execution. It is assumed that the schedule is non-preemptive, i.e., an activity once started
cannot be interrupted. It is also assumed that a unit of resource cannot be simultaneously allocated
to two activities. The resources used by an activity are allocated to it when processing begins, and
released by it when processing gets complcted. At any moment of time, the total number of units of
the j* resource type allocated to all the activities taken together cannot exceed R;. Given g, P; and {
rj, | <j<M } for cach activity a,, | <i< N, and the pool of available resources R;, 1 <j <M, the
problem is to determine the start time s, of each activity a; such that the appropriate performance
measure is minimized. All numeric parameters are integers. Following standard convention we
assume that the project has two dummy activities, a start activity a; and a finish activity an, which
have zero duration and do not consume any resources. For convenience we also assume that
activities are so numbered that if a; is in P; then 1 < j. If §; represents the finish time of activity a;, then

the makespan problem can be formulated mathematically as follows:



Minimize fy subject to the conditions

1) f - fj> d; for each precedence constraint (a;,a;), 1 <1i,j<N;and

if) Zr; < R for each j, 1 < j <M, at every integer time instant t, 0 < t < fy, where the

summation is over all i such that activity & is in progress during the time interval [t, t+1).

2.2 The Solution Strategy OPT_MEASURE: Given an instance of the PMRCSP, the solution

strategy OPT_MEASURE tries to solve the problem in four steps as follows:

Step 1:  Estimate the difficulty level of the given problem from the basic problem parameters
such as the numbers of activities and resource types, the resource availabilities, and the
activity durations and resource requirements.

Step 2: If the estimated difficulty level is low, try to solve the problem using Best_ MRS.

Step 3:  If the estimated difficulty level is high, or if Best_ MRS in Step 2 runs out of memory,
run algorithm GET_MEASURE to determine a good upper bound GM on the
specified measure.

Step4:  Run Breadth MRS with the upper bound GM that has been found n Step 3.

We now describe each step of the solution method in greater detail, assuming that makespan is
the performance measure.

2.3 Estimation of Difficulty Level: The first step in OPT_MEASURE involves the estimation of

the difficulty level of a problem from the problem parameters. We can compute, as explained in

[Kolisch er al 1995], the following three characteristics of the given problem: network complexity

(NC), resource factor (RF) and resource strength (RS). NC measures the difficulty level of the

project network in terms of the number of nodes and edges in the network; the smaller the value of

NC, the fewer the precedence constraints and the harder the problem. RF reflects the average

resource requirement of activities; RF = 1 means all activities request all types of resource, while

RF = 0 means no activity requests any type of resource. RS measures how close the resource

requircment is to resource availability. When the number m of parallel machines is infinite, a

difficulty level DL can be computed from these three factors using the following thumb rule:

DL =NC*/7.5 + 1/RF + RS’/25

This thumb rule was obtained by trial-and-error. We found experimentally that when DL > 3, the

problem instance can be solved directly by Best_MRS on the RS 6000, but when DL < 3, a more

elaborate solution procedure has to be adopted.

Unfortunately, DL fails to serve as a reliable indicator of the difficulty level when m is a small
integer such as 2, 3, 4 or 5. In such cases an alternative approach is needed. Let m be specified, 2 <
m < 5. We first compute DL as above for the given problem instance and find an optimal schedule
S for an infinite number of processors using the strategy outlined below. A scrutiny of schedule S



reveals the time instants at which the number of activities being processed equals k for k = 1, 2, ...,
m, m+1, ... The significant instants are those at which k exceeds m, since at most m activities can be
processed simultaneously. Suppose we find that there are many instants at which k > m, or there is
at least one instant at which k exceeds m by a significant amount (say three or more). We then infer
that the given problem is likely to be hard for Best_ MRS for the specified m. This serves only as a
rough guide; a better method for estimating the difficulty level when m is a small integer has not yet

been found.

2.4 Procedure GET_MEASURE: Since a fair number of the PROGEN problems are quite hard
to solve, a need was felt for a simple approximate scheme that would yicld a good upper bound on
the specified performance measure. This upper bound can be used for pruning redundant states in a
minimization problem. GET_MEASURE is an iterative algorithm that randomly generates feasible

Procedure GET_MEASURE /* Minimization problem assumed */

Step 1:  Fix the number m of parallel machines. /*mis2,3,4,5 or infinity */

Step 2: For each activity 1, 1 < i < N, in the given problem, determine its forward order
forward[i] as follows:

forwardfi] = 1 ifi=1
= max { forward[j| + 1 |jinP; } ifi>1

Step 3: Let MAX be a random integer lying in the interval forward[N] < MAX < 2*N. For
each activity 1, 1 < i < N, in the given problem, determine its backward order
backward[i] as follows:

backward[i] = MAX ifi=N
= min { backward[j]- 1!jin §; } ifi<N
/* Thus backward|i] is an integer that lics between | and a maximum value MAX that
depends on the number of activitics. We can simply take MAX = N, but the algorithm
improves slightly in performance if MAX is set to a random integer lying between
forward[N] and 2*N. */

Step4:  Let order|[1] = 1 and order{N] = MAX. For each activity i, | < i < N, randomly
generate an integer order{i} in the interval forward[i] < order{i] < backward]i],
cnsuring that order]1] > orderfj] for each activity j belonging to P,.

/* It is possible that order{i] = order{j} for two activities i and j that are unrelated in the
precedence relationship. Note that order{i] does not depend on m. */

Step5:  Assign start times to activities in increasing order of order{i], allowing at most m
activities to be processed simultaneously. Always assign as low a value to the start time
as possiblc without violating resource or precedence constraints. If two or more
activities have the same order then choose one of them randomly and assign a start time
1o it first. Repeat this step until a complete feasible schedule is generated.

Step 6: Repeat steps 3-5 for the stipulated number of iterations.

Step 7: Output GM, the lowest value of the performance mecasure obtained among all the
tterations. /* The schedule corresponding to GM can also be outputted if needed. */

()



schedules and selects the best of them. It has been found experimentally to be quite effective. When
m is infinite, it outputs optimal solutions on the RS 6000 machine in 200 iterations taking less than
0.4 scc per problem to more than half of the 680 PROGEN problems. A significant minority of the
problems requires a much larger number of iterations to attain the optimal value, and for a small
number even 20 million iterations are inadequate. But the upper bound obtained 1is always good.
Experiments were also conducted with methods such as simulated annealing [Cho and Kim 1997]
and genetic algorithms [Mori and Tseng 1997], but none of the alternative schemes could compete
with GET_MEASURE in simplicity and effectiveness.

Given a resource-constrained project as input, GET_MEASURE first computes two integer

parameters for each activity, the forward order and the backward order, where forward order <
backward order. A random integer k is generated such that: i) forward order < k < backward order,
and 1) k is greater than the order of all predecessor activities. This k becomes the order of the
activity. After the orders of all the activities have been determined, the activities are scheduled non-
preemptively in the sequence of their orders in such a way that, at every instant, at most /m activities
get processed simultaneously and all resource constraints are satisfied. This entire procedure is
iterated a given number of times, and the length of the feasible schedule with the shortest length is
outputted as the makespan of the project. The procedure can be generalized to work for any
regular performance measure.
25 Breadth MRS and Best MRS: Detailed descriptions of Breadth MRS and Best_ MRS
together with illustrative examples are given in Nazareth er al [1999]. Both are tree scarch
procedures for solving the RCPSP. A node in the scarch tree corresponds to a partial schedule. The
expansion of a node corresponds to the extension of a partial schedule by the addition of one more
activity. The immediate successors of a node correspond to the different ways in which another
activity can be added to the partial schedule. Breadth. MRS searches the tree level by level and
does not usc any heuristic estimate to guide the scarch. It uscs the notion of a Maximal Resource
Satisfying Set (MRS) to create new nodes. Each MRS corresponds to a partial schedule. When the
processing of an activity is completed, some additional activities become ready for processing, and
anew set of MRSs get created out of the pool of activities waiting to be processed. The tighter the
resource constraints, the fewer the number of activities in an MRS, Formally, an MRS A is a sct of
activities such that:

1) All the activitics in A are ready to be processed, i.c., all their predecessors have already

been processed.

VIKRAM SARABHA?P 1)
INDI AN INSTITUTE oF MAN?(?!:.'.,

VASIRAPUR AHMEDABAD- Jupase



i) The activities in A taken together satisfy all the resource constraints and so can be

processed simultaneously.

i) A is a maximal set in the sense that if another activity that is ready for processing is added

to A, the resulting set of activities fail to satisfy the resource constraints.
Breadth_ MRS uses three pruning rules to cut down the number of MRSs. These are the One Child
Rule, the Left Shift Rule and the Dominance Pruning Rule (see¢ [Nazareth er al 1999] for details).
Best_MRS is a best-first version of Breadth MRS that employs the standard makespan heuristic to
guide the search. It makes use of the same pruning rules as Breadth_MRS.

When Breadth MRS terminates we want not only the minimum makespan but also a complete
schedule that achieves that makespan. To output the schedule, the entire search tree must be stored
in memory. This increases the memory requirements shightly. Alternatively, a simple depth-first
search will find the schedule once the minimum makespan is known.

Procedure UBDP /* generalized version of Breadth MRS */
begin
mput m, U; /* m is the no of processors and U is the upper bound */

create the root state at level O in the scarch trec; put the root state in OPEN;
forL=01to N-1 step 1 begin
if there is no state in OPEN at level L then exit with output of O; /* failure */
for each state X in OPEN at level L begin
determine dpyx; /* dpx is the earliest instant at which a running activity completes */
construct Ky; /* Kx is the set of all ready jobs at instant dpx */
construct all MRSs with at most m activitics;
delete state X from OPEN;
for cach MRS A built out of Ky begin
determine makespan heuristic for A and compute estimated schedule length;
if this length is greater than U then delete A from the set of MRSs;
end,
if the One-Child Rule applics
then generate onc child state of X at level L+1 corresponding to the singular MRS
and put it in OPEN;
else for each remaining MRS A begin
if the Left-Shift Rule applies to A
then do not generate any child state corresponding to A
else generate a child state at level L+1 corresponding to A and put it in OPEN;
end,
end,
apply the Dominance Pruning Rule to all states in OPEN at level [+1;
end,
output the complete schedule associated with the state at level N;
end.



Using the notation of Nazareth er al [1999], we present in algorithmic form an enhanced
version of Breadth. MRS for m parallel machines that incorporates upper bound pruning. To
distinguish the generalized version of ‘Breadth_MRS from the earlier versions, we call it UBDP.
The upper bound U is obtained from a good approximate algorithm such as GET_MEASURE.
Such an upper bound can help a breadth-first search method to prune a large number of states. To
make effective use of this upper bound, the algorithm needs to compute the estimated schedule
length for each partial schedule; this can be achieved using the makespan heuristic as in Best_ MRS.
Note that Best MRS being a best-first algorithm is itself unable to make use of Upper Bound
Pruning. As in the original Breadth_MRS, states corresponding to partial schedules are stored in a
FIFO list (i.e., a queue) called OPEN. States are taken out of OPEN from one end and new states
are entered into OPEN at the other end. UBDP can be used even when m is infinite; we just need to
specify a large value of m, such as 20. The procedure given here assumes that makespan is the
measure, but it can be readily generalized to work for any other regular performance measure.

It can be shown that Breadth_MRS outputs optimal solutions for the makespan measure or for
any other regular performance measure. The proof is essentially identical to the one given in
[Nazareth er al 1999].

Theorem 1: For any regular performance measure, UBDP outputs optimal solutions.

Proof: See the proofs of Theorems 1-4 in [Nazareth er al 1999]. It is readily verified that these
proofs hold for any regular performance measure. We have just added one more resource type,
namely the number of parallel machines. The earlier proofs hold for any number of resource types
and thereforc remain valid even when there is a limit on the number of parallel machines. We first
establish that UBDP outputs optimal solutions in the absence of any pruning rules. We then
introduce the pruning rules one by one in UBDP and establish that the procedure continues to
output optimal solutions. The incorporation of Upper Bound Pruning only gets rid of sub-optimal
partial solutions from OPEN.

Example 1: The project shown in Figure 1 has 8 activities. There is only one type of resource with
a total availability of 7 units. The optimal schedules for m =3 and m = 2 as found by Breadth_MRS
are shown in Figures 2 and 3. When m = 3, activities 2, 3 and 4 can be processed simultaneously.
But the three activities cannot be processed together when m = 2. Hence the optimum makespan is

10 whenm=3 and 11 when m= 2.
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To find an optimal schedule, what is a good way to procecd when m is a small integer? The
following procedure gives good results. Suppose m = my < 5. Determine the makespan MS for the
given problem for some m > my, preferably for m = mg+1 but at worst for m = infinity, using the
scheme described here. MS serves as a lower bound for the solution when m = my. The upper
bound U(mg) can be set cqual to the output GM of GET_MEASURE(my). Since the upper bound
U(mg) and the lower bound MS are both known, the mean U, of the two bounds can be fed to
UBDP. If the makespan for m processors is no greater than U; then UBDP would find it.
Otherwise UBDP would indicate that no solution can be found within the given upper bound (i.e.,
it will prune all partial schedules). In the latter case, feed the mean U, of U, and U(me) to UBDP
and run it agam. This can be done repeatedly until the solution is obtained; in practice very few
iterations are necded. U, need not be set to the mean of the upper and lower bounds at start. When
the difference between the two bounds is large, the solution is generally quite close to GM, so it is

better to choosc a value for U; that is close to GM, say (GM - 2). For some problem instances
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UBDP takes too long to terminate when U, exceeds the optimal makespan. If this happens we can
abort the run and try again with U, reset to a lower value.

Example 2: To take a hypothetical example, suppose that for a given problem it is known that the
makespan is 58 when m = 5. We would like to find the makespan for the same problem when m =
4. In this case MS = 58. Consider the following two cases:

Case 1: Using GET_MEASURE it is found that GM = 58 for m = 4. Here upper bound = lower
bound = 58. By inference the makespan must be 58, so no more runs are necessary.

Case 2: Using GET_MEASURE it is found that GM = 60 for m = 4. Now run UBDP with U; =
59. If the problem gets solved then the makespan must be either 59 or 58. If UBDP is unable to
find a solution within an upper bound of 59 and OPEN becomes empty, we infer that the makespan
must be 60. In either situation no more runs are needed.

3 Experimental Results: The PROGEN problems were run on a UNIX-based RS 6000 machine
with 512 MB of main memory as well as on a Linux-based 350 MHz Pentium II PC with 128 MB
RAM. Makespan was the performance measure. The three algorithms of interest to us were the
following: i) BSP: Best_MRS as in [Nazareth er al 1999] adapted for m parallel machines with all
three pruning rules. ii) UBDP: the UBDP algorithm as given above, ie., Breadth MRS for m
parallel machines with all three pruning rules plus Upper Bound Pruning; iit) BDP: UBDP as given
above with all three pruning rules but nor with Upper Bound Pruning. All three algorithms were
programmed in C. A problem was deemed unsolved if all three of BSP, BDP and UBDP ran out of
memory during every attempt at solution; if one of BSP, BDP, UBDP ran to termination and gave
a positive output, the problem was deemed solved. The upper bound GM obtained from
GET_MEASURE run for 20,000 iterations was supplied as input to UBDP. In a small number of
cases, UBDP had to be called more than once with different upper bounds to solve the problem, as
explained in Section 2.5. The results for m = infinity were actually obtained with m set to a large
value (typically 20). Since a PROGEN problem never has more than 42 activities, and since there
are precedence and resource constraints, the number of activities that can be processed
simultaneously is never large.

Tables I and II show the numbers of problems of the PROGEN First and Second Lots that
were solved on the RS 6000. A few of the problems could not be solved for some values of m,
typically m = 3 or 4. Table III shows the problems that could not be solved on the RS 6000
machine and the corresponding values of m. A few additional problems remained unsolved on the

Linux-based PC as shown in Table IV because of memory or time constraints.

[
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Table I: Summary Results: PROGEN First Lot
Machine: UNIX-based RS 6000

Number of Problems = 480

Program/Method Number of Problems Solved
m=inf m=) m=4 m=3 m=2
Both BDP & BSP 478 472 457 384 356
BDP but not BSP 2 3 15 81 124
BSP but not BDP 0 3 4 0 0
Inference using upper bound - 0 0 0 -
UBDP but not 14 above - 2 2 7 -
Unsolved 0 0 2 8 0
Table II: Summary Results: PROGEN Second Lot
Machine: UNIX-based RS 6000
Number of Problems =200
Program/Method Number of Problems Solved
m=inf m=95 m=4 m=23 m=2
Both BDP & BSP 200 186 161 104 72
BDP but not BSP - 4 12 63 119
BSP but not BDP - 5 5 1 0
Inference using upper bgound - 2 1 0 0
UBDP but not 1-4 above - 2 13 9 0
Unsolved 0 1 8 23 9
Table III: PROGEN Problems Unsolved on RS 6000
Lot Prob Nos m
First 12, 58, 73, 79, 95, 100 3
107, 118 3,4
Second 21 2
22,25,27 2,3
23,24, 26,29 2,3,4
30 2,3,4,5
28, 39,49,72, 113, 121, 123 3
127, 151, 159, 178, 188 3
42,73, 175 3,4

Tables I-1V show that only a small number of PROGEN problems remain unsolved on the RS
6000. Out of a total of 2,400 + 1,000 = 3,400, only 10 + 41 = 51 could not be solved. The

problems arc easiest when m is infinity and hardest when m = 3; as m decreases from 3 to 2, the
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Table IV: Additional Problems Unsolved on Linux-Based Pentium PC

Lot
First
Sccond

Prob Nos m
115 3
42,49,73, 151, 188 2
28, 123 2,4
21 3,4
114, 173, 179, 180, 189 3
22,25,27 4

Table V: Runtimes on RS 6000 of BSP, BDP and UBDP: PROGEN First Lot

Time (secs)

0-1

1-10

10 - 100

100 - 1000
1000 - 10000
10000 - 100000
Unsolved

Number of Problems = 480
Number of Problems Solved

m = infinity m =73

BSP BDP UBDP BSP BDP UBDP
414 360 - 175 93 -

39 66 - 109 105 -

21 34 470 84 108 361

4 18 9 16 88 78

0 2 1 0 66 32

0 0 0 0 h) 0

2 0 0 96 15 9

Table VI: Runtimes on LINUX-Based PC of UBDP: PROGEN First Lot

Time (secs)

0-1

1-10

10 - 100

100 - 1000
1000 - 10000
10000 - 100000
Unsolved

Number of Problemns = 480 -

Number of Problems Solved
m = infinity m=3
476 406

4 57

0 7

0 0

0 10

problems again get easier. Of the 21 + 68 = 89 instances not solved by BDP or BSP, only 3 were
solved by direct inference using the upper bound, and 11 + 24 = 35 were solved by UBDP.

What do we gain by using UBDP instead of just BDP (or BSP)? Clearly, UBDP serves no
useful purpose when a problem is ecasy to solve. When problem instances are difficult, UBDP is
able to solve some instances that BDP cannot solve. Tables V and VI give the distribution of
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runtimes of BSP, BDP and UBDP on the RS 6000 machine and on the Linux-based Pentium PC
for m = infinity and m = 3. The time taken by GET_MEASURE, which lies in the range 30-50 secs
for 20,000 iterations, is included in the runtime of UBDP. So UBDP never takes less than 30 secs
on any problem. We observe that:

i) BSP is much faster than BDP or UBDP.

ity There are quite a few problems that BDP can solve but BSP cannot.

it) When the problems are very difficult, UBDP takes less time than BDP.

It follows that, given a problem of unknown difficulty, an attempt should first be made to solve it
using BSP. If m = infinity, the value of DL would provide some guidance about the difficulty level;
for 2 <m < 5, some indications can be obtained from the schedule for m = infinity. Within 600 secs
(10 mins) on the RS 6000, BSP will either solve the problem or run out of memory. In the latter
case, we should rerun the problem using GET_MEASURE and UBDP when 3 < m < §, and using
BDP alone when m = 2.

The runtime of UBDP is a function of the upper bound that is fed to it. Table VII shows how
the runtime of UBDP varies with the upper bound for four selected problems. Six values of the
upper bound were chosen. One was a very high value; at such a high value, UBDP was effectively
running without an upper bound. The five other values lay clustered around the makespan for the
indicated value of m. When the upper bound is greater than or equal to the makespan, UBDP
outputs the makespan assuming it does not run out of memory and runs to termination. When the
upper bound is less than the makespan, UBDP outputs 0 indicating that OPEN has become empty.
In this experiment GET_MEASURE played no role, so the runtime shown is for UBDP alone. We
notice that the runtime decreases steadily as the upper bound decreases. In some cases the decrease
is very rapid. For cxample, Problem 115 could not be solved by UBDP with the upper bound =
1,000, but the runtime came down to a small fractional value when the upper bound fell below the
makespan. In other cases, the decrease in runtime is more gradual (see Problem 44). Problems 95
and 99 show that the runtime is may not be small even when the upper bound < makespan.

The threc problems 107, 118 and 121 of the PROGEN First Lot form an interesting set (sec
Table VIII). These were solved using UBDP, except for Problems 107 and 118 for m = infinity
when BDP proved adequate. Whenever UBDP was run, the respective upper bound GM obtained
from GET_MEASURE when run for 20,000 iterations was supplied as input; the running time of
UBDP includes the time taken by GET_MEASURE. Among the three, Problem 121 is by far the
hardest when m = infinity. In fact, when m = infinity, UBDP takes longer to run on Problem 121



than on any other problem of the First Lot. But as m decreases, Problems 107 and 118 suddenly
become very difficult. For m = 3 and 4, UBDP is unable to solve these two problems. In contrast,
the runtime of Problem 121 increases slowly as m decreases. When m = 2, all three problems are
solved by UBDP, but Problems 107 andil 18 have much larger runtimes than Problem 121.

Why is the nature of variation of runtime with m so different for the three problems? To get an
answer we need to look at the optimal schedules for the m = infinity case. We find that for Problem
121 at most four activities are running simultaneously at any instant of time. This

Table VII: UBDP: Variation of Runtime with Upper Bound
Selected PROGEN First Lot Problems
Machine: UNIX-Based RS 6000

ProbNo m Makespan Upper Bound and Runtime

4 inf 63 Upper Bound 1,000 65 o4 63 62 61
Time (secs) 75 24 19 15 11 7.5

95 4 _ 3 Upper Bound 1,000 45 44 43 42 41
Time (secs) 6,050 1,282 779 463 212 72

9% 3 51  Upper Bound 1,000 53 52 51 50 49
Time (secs) 10,766 3,129 2,100 1,245 572 193

115 4 47  Upper Bound 1000 49 48 47 46 45
Time (secs) - 7,983 3,807 1,124 O 0

Table VIII: Runtime for Problems 107, 118 and 121
First Lot of Kalisch et al.(1995)
Machine: UNIX-Based RS 6000

Prob Runtime of BDP or UBDP in secs

No m=inf m=95 m=4 m=3 m=2

107 4.7 1,446 - - 10,546
118 0.03 6,801 - - 22,927
121 1,237 1,437 1,466 1,899 1,758

means that not more than four activities get processed simultaneously because of other resource
constraints cven when there is no restriction on the number of processors. As a consequence, the
runtime of UBDP changes only slightly as m is decreased from infinity to 4. The additional number
of MRSs that get formed as m is decreased causes the slight increase in runtime. For Problems 107
and 118, the resource constraints when m = infinity are far less tight; so these are solved readily by
BDP. At most eight activities are processed simultaneously in Problem 107 and at most 11 in
Problem 118. As soon as m is decreased to 5, the constraint on the number of processors causes a
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sudden spurt in the number of MRSs, making the problems very difficult. When » decreases to 2,
the number of MRSs gets reduced for all three problems because the constraint on the number of
processors becomes the overriding constraint and other resource constraints play a minor role.

In our experiments on the 480 problems in the First Lot of PROGEN, we were able to solve
465 on the RS 6000 machine for all values of m, i.e., for m =2, 3, 4, 5, and infinity. We examined
the nature of variation with m of the average runtime for these 465 problems. For a specific
problem instance, we expected a functional relationship of the form

T=A+exp(-B m).D (m)

where T is the runtime, A and S are real numbers independent of m, and @ (m) is a quadratic
polynomial in m (see Figure 4). Clearly, T should reach a limiting value when m is large; this
explains the exponential damping. Moreover, it was anticipated from the experimental results that 7
would have a single peak in the neighbourhood of m = 3 for most problems. For some problems
such as problem 46 of the First Lot, the runtime was greater for m = 2 than for m = 3, but the
number of such problems was very small. So the average runtime 7., for the entire lot of 465
problems was also expected to exhibit a functional dependance with m of the indicated form. Since
we had only five data points for 7,,, we made the assumption that for values of m > 9, the runtime
was the same as for m = 20. This assumption is justified because there are very few PROGEN
problems in which, when m is large, more than 8 activities run simultaneously. Performing a
regression analysis using the Statistica package, we were able to achieve an excellent fit for the
computed values of 7., by taking # =2 and choosing & (m) to be a third degree polynomial of
the form Bm’ + Cm’ + Dm + E, where B, C, D and E are real numbers independent of m. We also
obtained a fairly good fit by choosing @ (m) to be a quadratic polynomial. We preferred to study
the variation of thc average runtime rather than the individual runtimes of specific problem
instances because of the great range of values of the runtime for many of the problems. There were
quite a few problem instances for which the runtime for m = infinity was a fraction of a second,
while the runtime for m = 3 was more than 1,000 secs. Nevertheless, a good fit was obtained with
the above function for many of the individual problems, including problem 46 of the Fitrst Lot.
Why the third degree polynomtial expression for T,., gave a better fit than the quadratic expression
is still a matter of conjecture. It can be claimed however that our expectations regarding the nature
of variation of 7" with m have been largely confimed. It still remains to give a satisfactory
theoretical explanation for the observed functional dependance ol 7 on m.
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Figure 4: Variation of runtime with the number of processors

How close docs the approximate algorithm GET_MEASURE get to the makespan in a given
number of iterations? Table IX summarizes the picture when m = 4 for the problems in the
PROGEN First Lot. This is quite typical; the results are similar for other values of m and for the
Second Lot. Of the 480 problems, the makespan is known in 478 cases when m = 4, as indicated in
Tabke I; for two problems the makespan could not be determined by any method, so it was not
possible to tell whether GET_MEASURE achieved the value or not. Table IX shows that as the
number of iterations is increased starting from 1000, more and more problems are solved optimally
by GET_MEASURE. 1t is interesting to note that even when the number of iterations is only 1000,
about 63 percent of the problems are solved optimally. As expected, the runtime is linear in the
number of iterations and does not change with the problem. If GET_MEASURE is run for a
maximum of 2,000,000 iterations until a problem is solved optimally, then the makespan value is
not rcached for only 40 problems. In practice of course it would be undesirable to run
GET_MEASURE for too many iterations, sincc that would incrcase the runtime without
guarantecng an optimal solution. Since our interest lay in solving the harder problems using
UBDP, we chose to run GET_MEASURE for 20,000 iterations and supplied the resulting GM to
UBDP. For m = 4, only in nine cases out of 92 did the GM value exceed the makespan by more
than three.

The runtime of GET_MEASURE for 20,000 iterations increases slightly as m is decreased,
from 38.9 secs when m = infinity to 48.5 secs when m = 2. This runtime changes very slightly with
the problem instance. Since the makespan is larger for smaller m, GET_MEASURE at Step S has
to push activitics further to the right when creating a schedule, thereby taking more time. The



Table IX: GET MEASURE: PROGEN First Lot
Machine; UNIX-Based RS 6000

Number of Problems = 480 Number of Processors = 4
Itcrations 1,000 -~ 2,000 10,000 20,000 < 2,000,000
Avg Time (secs) 2.12 4.18 21.62 4241 -
Optimal 301 319 365 386 438
Non-optimal 177 159 113 92 40
Not Known 2 2 2 2 2

Table X: GET_MEASURE: PROGEN First Lot
Number of Optimal Solutions for Given Number of Iterations
Machine: UNIX-Based RS 6000
Number of Problems = 480

Iterations Number of Problems Solved Optimally
m=inf m=35 m=4 m=3 m=2

1-19 264 244 191 59 267
20- 199 57 61 72 75 110
200 - 1,999 32 38 56 115 29
2,000 - 19,999 53 56 67 88 15
20,000 - 199,999 24 29 33 58 18
200,000 - 1,999,999 16 18 19 32 17
Opt Not Found in 2x10° iters 34 34 40 45 24
Optimal Not Known 0 0 2 8 0

Table XI: GET_MEASURE: PROGEN Second Lot
Number of Optimal Solutions for Given Number of Iterations
Number of Problems = 2

Iterations Number of Problems Solved Optimally
m=inf m=5 m=4 m=23 m=2

1-19 104 94 61 29 112
20- 199 31 31 32 25 48
200 - 1,999 2 25 29 49 8
2,000 - 19,999 18 21 21 19 7
20,000 - 199,999 7 11 17 28 3
200,000 - 1,999,999 10 13 18 14 5
Opt Not Found in 2x10° iters 3 4 14 13 8
Optimal Not Known 0 1 8 23 9

optimal value is recached in 20,000 itcrations for 406 problems when m is infinity and 337 problems

when /m = 3. The number increases sharply to 421 when m goes down to 2, a phenomenon that is



yet to be explained satisfactorily. Tables X and XI give the number of iterations needed to reach the
optimal value for various values of m.

Does an instance of the PMRCSP get easicr to solve if all resource constraints are removed
except for the constraint on the number of processors? The answer is definitely yes when m is
infinite. But for small values of m such as 2 or 3, the problems are typically harder in the absence of
other resource constraints owing to the proliferation of MRSs. The change in the runtime of UBDP
for three typical problems is shown m Table XII. In each case, the output of GET_MEASURE was
fed to UBDP. To emphasize the change in the runtime of UBDP, the time taken by
GET_MEASURE has not been taken into account. In the Resource Constraints column, we
indicate whether other resource constraints, except for the one on the number of processors, are
present or absent. The table shows that when other constraints are removed, the problem is very
easy for m = infinity. As m decreases, in many cases the problem suddenly becomes very hard to
solve, and when m < 3, the unconstrained problem is often harder than the constrained problem.

Table XII gives the average time taken by UBDP for the problems in the First Lot with
resource constramts present and with the constraints removed, the average being taken over solved
problems only. When m = 2, the unconstrained problems frequently take too long to solve, so that
value of m is not included in the table. Again, the time taken by GET_MEASURE has been
ignored. For the unconstrained problems, the dramatic rise in the runtime as m decreases should be
noted.

The A* search algorithm of Chang and Jiang [1994] is the only other method that tries to
minimize the makespan of projects on parallel machines. However, this method assumes there are

no resource constraints. Unfortunatcly, this method sometimes takes very long to run even on casy

Table XII: Change of Runtime of UBDP with m for Selected Problems
PROGEN First Lot
Machine: UNIX-Based RS 6000

Prob Runtime of UBDP in secs Resource
No m=inf m=35 m=4 m=3 m=2 Constraints
3 0.1 0.2 1.6 18.5 177.6 Yes
3 0.0 0.2 6.2 69.5 219.7 No
82 8.6 8.6 8.6 10.3 41.7 Yes
2 0.0 0.0 0.5 120.4 851.1 No
156 0.0 20.8 320.2 119.4 2,161.3 Ycs
156 0.0 20.8 321.7 118.6 2,144.4 No

19



Table XIII: UBDP : Runtime for Constrained and Unconstrained Cases
PROGEN First Lot
Number of Problems = 480

Number Constraints Present  Constraints Absent

m of Number Time Number Time

Processors Solved (secs) Solved (secs)

Infinity 480 104 480 0.0
5 480 32.0 480 22.8
4 478 423 477 51.6
3 471 277.1 469 378.5

problems. We compared the runtimes on the UNIX-based RS 6000 of the three procedures BDP,
BSP, and the method of Chang and Jiang (CJ) on Patterson’s benchmark set of 110 problem
instances. These problems are known to be very easy. CJ was programmed in C like the other two
procedures. For BDP and BSP, the resource availability was increased to a very large number so
that no resource constraints were imposed when solving the problems. For CJ, resource

requirements and availabilities were simply ignored.

Table XIV: Patterson’s Problems without Resource Constraints
Number of Problems Solved
Machine: UNIX-Based RS 6000
Total Number of Problems = 110

No  Method Number of Problems Solved

m=>5 m=4 m=23 m=2
1. BSP 110 110 110 110
2. BDP 110 110 110 110
3. a 109 108 90 14

Table XV: Patterson’s Problems without Resource Constraints
Average Runtimes
Machinc: UNIX-Based RS 6000
Total Number of Problems = 110

No Program/Method Time to solve in seconds
m=3 m=4 m=3 m=2
max avg max  avg max avg max avg
L. BSP 001 0.00 0.02 001 471 0.08 29.25 0.61
BDP 0.15 0.00 3.00 0.03 2742 0.39 37.07 0.72

3. a 2,50543 62.18 3,558.62 88.93  2,960.99 125.08 072 0.145



As can be seen from Tables XIV and XV, CJ performs very poorly compared to BDP and

BSP. The runtime of CJ is orders of magnitudes greater than that of BSP or BDP. CJ fails to solve
many of the problems for m = 2, 3. For m = 2, its performance is particularly weak. It solves only
14 out of 110 problems. Although in Table XV, CJ scems to take less time on the average than
BSP or BDP for m = 2, this is misleading since CJ solves only the very easy problems.
4. Extensions: Section 3 provides a variety of experimental results on the PMRCSP with
makespan as the chosen measure. The measure can be changed to mean flow time by making
appropriate alterations in the pruning rules as explained in [Nazareth er al 1999]. Up to now we
have assumed that all activities are available for consideration by the scheduling algorithm at start
time. When minimizing the mean flow time, we might want to allow an activity to become available
at a later time. By the ready time of an activity, we mean the time at which it is available for
consideration by the scheduling algorithm; it is not necessarily ready for processing at that time,
since it might have predecessors that are still not processed. The flow time of an activity, which is
the time it spends in the system, equals (finish time - ready time). The algorithms BDP, BSP and
UBDP can all be modified to take account of non-zero ready times of activities. This appears at
first to be a simple feature to incorporate. But we should note that when activities have non-zero
ready times, there might be instants during the execution of a project scheduling algorithm when no
activities are in progress. The procedures have to be adjusted to take care of this possibility [ Verma
1998]. Since the activities in the benchmark problems of [Patterson 1984] and [Kolisch er al 1995]
have zero ready times, when conducting experiments a method needs to be devised for assigning
ready times to activities. One way to do this is as follows. Let us assume that the optimal schedules
for the original problems have been found for the chosen performance measure. Then the start
times of the activities in the original optimal schedules are known. For each activity, we can
multiply the start time by a random number lying between 0.75 and 1.25; the resulting value can be
assigned as the ready time of the activity. Experiments on Patterson’s problems suggest that the
assignment of non-zero ready times does not increase the difficulty level of problems {Verma
1998].

For measures such as maximum tardiness or the number of tardy jobs, each activity must be
assigned a due date. If an activity completes after its due date then it is zardy. Again, the scheduling
algorithms can be modified to work for the new measures by appropriately reformulating the
pruning rules. In experiments, due dates can be assigned to activities in the same way as ready times

are assigned, except that finish times of activities, rather than start times, would be have to be



considered [Verma 1998].

In which ways can OPT_MEASURE be improved? One issue that needs further consideration
is the computation of the difficulty level of a problem instance. A thumb rule for the m = infinity
case has been provided in Section 2.3. While this thumb rule appears to be adequate when m =
infinity, it cannot be used profitably when 2 < m < 5. No simple procedure for estimating the
difficulty level of a problem is known for such values of m. This issue is important because some
problems that are very easy when m = infinity suddenly become very hard when m is decreased to 5
or 4.

The performance of the approximate algorithm GET_MEASURE has been found to be fairly
satisfactory. But it should be possible to get results as good as those obtained from
GET_MEASURE in much less time. GET_MEASURE has one shortcoming, namely, iterations
are completely independent of each other. In Simulated Annealing, the notion of the neighbourhood
of a trial solution plays an important role in the generation of subsequent trial solutions. Is it
possible to improve GET_MEASURE by introducing the concept of neighbourhoods of trial
solutions? We have not yet succeeded in doing so.

It would be possible to incorporate GET_MEASURE in a depth-first search scheme. The
upper bound obtained from GET_MEASURE can be used for pruning unpromising states until a
better solution is discovered by the depth-first search. For example, it would be possible to combine
GET_MEASURE with the algorithm of [Demeulemeester and Herroelen 1992]. This aspect has
not yet been investigated in detail.

It was anticipated that the average runtime T of a set of problem instances would exhibit a
certain functional dependance on the number m of processors. Experimental results seem to
confirm that the conjectured functional form is the correct one. But no satisfactory theoretical
justification for this phenomenon has yet been found. This appears to be a very interesting topic for
further investigation.
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