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Abstract

In this paper we consider the well-known binary knapsack problem. We
propose a method of embedding heuristics in a branch and bound framework
to obtain solutions with profits within a pre-specified quality parameter within
very short times. Our computational experiments on the more difficult prob-
lems show that algorithm can generate solutions with profits within 0.01% of
that of an optimal solution in less than 10% of the time required by exact
algorithms based on similar principles.

1 Introduction

Given a set of n elements, where p; and w; respectively are the profit and the
weight of element j, and a knapsack of weight capacity ¢, the binary knapsack
problem (BKP) is one of selecting a subset of the elements so as to maximize the
profit P(x) = 3>77_, pja; of a solution x = (Z1,...,zn) subject to the solution
weight W(x) = 37 w,z; < ¢, where

o= 1 if element j is selected to be in the subset,
771 0 otherwise.

In this paper, we will assume that p,, w;, and ¢ are positive, w; < ¢, forj=1,... ,n,
and W(1) > ¢. We also assume, without loss of generality, that the elements
are ordered according to non-incrcasing profit to weight ratios, ties being broken
arbitrarily.

BKP is among the most widely studied problems of discrete optimization, since
many practical problems are either modelled as binary knapsack problems (for ex-
ample, capital budgeting and cargo loading) or solve such problems as subproblems
(for example, cutting stock problems).



It is well-known that the optimization version of the BKP is NP-hard (refer, for
example, to Garey and Johnson [1]). Exact algorithms to solve it are therefore based
on branch and bound, dynamic programming, or a hybrid of the two. Comprehensive
overviews of the exact solution technigues for the binary knapsack problem are
available in Martello, Pisinger, and Toth [3] and Martello and Toth [5]. Design of
heuristics for BKP, which generate feasible but usually suboptimal solutions within
short execution times is also an area of research (see Martello and Toth (5], and
Ghosh [2]). These heuristics usually perform very well in practice, and output
solutions that are very close to optimal. The theoretical performance measure for
such heuristics is usually based on their worst case performance ratio which, for
BKP, form a very weak bound on the deviation of the profit of the heuristic solution
to that of the optimal solution. Moreover such measures are heuristic-specific and
not instance-specific.

In this paper we present an algorithm a-MT1 to cobtain solutions with perfor-
mance guarantees in absolute terms. It embeds a heuristic inside a branch and
bound framework. This allows us to compute, a-posteriori, an upper bound to the
deviation of the heuristic solution from an optimal solution, in terms of solution
profits. If the deviation observed is more than an allowable limit, a backtracking
operation allows us to use the heuristic with additional constraints and generate
better solutions. Thus, in addition to the profit vector, the weight vector, and the
knapsack capacity, our algorithm takes an prescribed cccuracy parameter o as in-
put. a-MT1 guarantees that the profit (z%) of the solution it outputs for an instance
wotld satisfy the expression z*—2® < «, where z* is the profit of an optimal solution
to that instance. The term 2* — 2® will be called the achieved accuracy.

The branch and bound framework that we use is based on the well-known mtl
algorithm in Martello and Toth |6]. More sophisticated and efficient solution tech-
niques are available for solving the BKP, but mtl is easy to implement and is
sufficient to illustrate the applicability of the idea we propose and to demonstrate
the rapid reduction in execution time with increasing values of achieved accuracy.
Notice that the accuracy parameter in a-MT1 is not expressed as a percentage (as is
common in e-approximate algorithms), but as an absolute value. This ensures that
the deviation from the optimal profit can be controlled irrespective of the actual
value of the optimal profit.

In the next section we describe the algorithm a-MT1. Section 3 presents results
from computations carried out on randomly generated BKP instances belonging to
classes known from the literature to be difficult for branch and bound based algo-
rithms. We summarize our results of the paper in Section 4 and suggest directions
for future research.

2 The a-MT1 Algorithm

The a-MT1 algorithm is based on framework of branch and bound (BnB). However
a-MT1 differs from the standard branch and bound algorithm in two ways.

First, we incorporate the prescribed accuracy factor in the bounding procedure.
Consider a subset S of the set of feasible solutions, &. We first compute an upper
bound ubg to the profit of the solutions in 5. We also use a good and relatively fast
hewristic H to obtain a good solution in S. If the profit from the heuristic solution



2™ satisfies the condition: ubg — Z" < a, then we know that we have found a
solution whose profit is within a of the profit of the best solution in S.

Second, we also use a stopping condition that can stop the algorithm before it
evaluates the whole of G. At any point during the execution of a-MT1, let ub be
an upper bound to the optimal profit of the instance. If, at any subset S of &, the
heuristic H produces a solution 2™ satisfying the condition Z’ 4+ a > ub, then since
ub > z*, it immediately follows that z* — Z"* < . This implies that we can stop
the computations immediately.

The a-MT1 algorithm is based on the branch and bound algorithm mtl proposed
in Martello and Toth [6]. However, contrary to mtl in our implementation we follow
a best-first search strategy. For exact algorithms, this strategy is known to produce
an optimal solution after evaluating the least number of subproblems. However,
it requires more memory than algorithms using depth-first search strategies. Our
best-first search strategy requires us to maintain a list of subproblems (which we call
LIST), and to terminate the algorithm when the list is empty, or when the stopping
condition mentioned earlier is satisfied. In the pseudocode of a-MT1 a subproblem
is denoted by a partial solution x = (z1,... ,x,) defined on an alphabet {0,1,e}.
z; = 0 or 1 has their usual connotations, and z; = e denotes that no decision
has been made on whether or not to include element j in the solution. A partial
solution where each of the components are either 0 or 1 is called a complete solution.
The pseudocode of a-MT1 is given in Figure 1. We assumne the presence of three
procedures: ub(x}, which returns an upper bound to the profit of the best solution
from subproblem x; H(x), which returns a feasible solution to the subproblem x;
and forward-move(x), which performs a ‘forward move’ described in the branch and
bound algorithm in Martello and Toth [6]. We describe these procedures in detail
in the remaining portion of this section.

e ub(x): Upper bounds are computed in a-MT1 in the following manner (due
to Martello and Toth {6]:

Let IT = Zj:IJ=1pj, G =C= a1 W 8 = min{j : 37, w > ¢
s.=max{j:z; =, < s}, sy =min{j:z; =e,j > s}, ande=c-) ;_; w;.
Then
- P P
I et py — (W — T) =
+ Z P +maX{FTUS+ ps (u"e P)fl)s_}

1=1,r,=e

is an upper bound to the optimal profit for the given instance. Note that ub(x)
may not correspond to the profit of any feasible solution.

e H(x): The heuristic H(x) is a local search heuristic with a 2-exchange neigh-
borhood. It involves four steps. In the first step put all the elements j with
zj = 1in a set S, compute ¢, = ¢ — Zj:%:l wj, and construct a set E, of
elements j with r, = e. In the second step, we compute a greedy solution Sg
by considering the elements j € E, in the natural order and including them
in a knapsack with weight capacity ¢, whenever possible. The third step is a
local search step which starts with Sg and improves it with local search using
a 2-exchange neighborhood structure defined on the elements of E,.. The last
step constrcts the feasible solution output by H(x) by combining S and Sg.
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o forward-move(x): The forward-move procedure in a-MT1 is identical to that

in mtl. Let j = min{j:z; =e),and l = 3", _, p;. We first construct the
set N of the largest number of consecutive elements with z; = ¢ which we
can include in the knapsack without exceeding the residual weight capacity
Cr=€=3 ;=1 W Set z; =1 for each j such that ¢; € N. If Il + P(N) =
ub(x), and this value is better than the profit of the best solution found so
far, then we replace it by x, and direct a-MT1 to discard further search in the
current subproblem. Otherwise, if ¢ — ijszl w; is less than the weight of
any element in F, we carry out a dominance step, by which we try to replace
the last element in N by at most two elements that are not in N. If the result
of this dominance step is more profitable than the best solution found so far,
then the best solution is updated. The forward-move procedure returns the

modified x vector.

ﬁ—ﬁgorithm a-MT1
Input: BKP Instance I = {(p1,... ,Pn), (W1,-.. ,wy),c}, prescribed accuracy a.
Output: A solution to I within the prescribed accuracy a.

Code:

01 begin

02 ub — ub((e,e,...,e})); BestSolnSoFar — 9, BestSolnValue — —o0;

03 LIST « {(e,e,...,8)};

04  while LIST #0 do
105 begin
106 Choose a subproblem x = (z;) from LIST;
lo7 xM = (27t) = H(x);

08 if ub— P(x™) < a then (* New Stopping Rule *)
09 return x™ and stop;

10 ubye — ub(x)

11 if uby < BestSolnValue then (* Discard this subproblem *)
12 goto 28;

13 if uby — P(x™) < a then (* x™ is within the prescribed accuracy o *)
1 14 begin,
{15 Update BestSolnSoFar, BestSolnValue and ub if required;

116 goto 28;

17 end;

x «— forward-move(x);

’18

19 (* Creating new subproblems by branching *)

i 20 k «— min{j:x; =e};

21 XV x;

22 7 — O

23 LIST « LIST U {x™"};

24 XY — x;

25 T — 1

2 if W(x"*%) < ¢ then l
127 LIST « LISTU{x™¥}, l
i 28 end,
29 return BestSolnSoFar; \
L30 end. v_______ﬂj

Figure 1: Pseudocode of a-MT1.

Notice that running a-MT1 with & = 0.0 will return an optimal solution but will



make a-MT1 run like mtl, while running a-MT1 with a large value of a will make
it run like H(x), i.e. in this case like local search with a 2-exchange neighborhood.

3 Computational Experiments

We coded the algorithm in C, compiled it using the LCC compiler for Windows
NT [7], and ran it on a 733MHz Intel Pentium III machine with 128MB RAM.
The data for the instances are real-valued. There are nine different classes of ran-
domly generated BKP instances studied in the literature (see Martello, Pisinger
and Toth [4]). Four of these belong to the so-called “even-odd” classes. We did
not use them in our computations. This is because we experiment with real-valued
data, and ‘even’ and ‘odd’ concern integers only. Also, since we are concerned with
approximate solutions, even-odd problems would invariably degenerate to instances
very similar to the those of the strongly correlated class of problems. Of the re-
maining five classes, the classes of uncorrelated problems and of weakly correlated
problems are relatively easy. For our experiments therefore, we chose the following
three types of instances:

Strongly Correlated (SC) w); values are uniformly and independently distributed
in the interval [L, H]. p; = w; + 10.

Inverse Strongly Correlated (ISC) p; values are uniformly and independently
distributed in the interval [L, H]. w; = p; + 10.

Almost Strongly Correlated (ASC) w; values are uniformly and independently
distributed in the interval (L, H]. For each j, p; is uniformly random in
[w; + 98, w; + 102].

The weight capacity ¢ for each of the instances was chosen to be 0.5 Z?zl (IR

As mentioned earlier, the data for each of the instances were real-valued. In our
experience, this makes the problems more difficult to solve. For each of the three
instance types, we varied the instance sizes from 50 to 1000. For each instance size
and instance type, we generated twenty instances. The value of L and H were chosen
to be 1001 and 2000 respectively. The data range was chosen in this manner so that
the problems did not contain any element with small weights, whose presence often
makes the solution process easier.

We examine the behavior of a-MT1 in terms of the profit of the solution that
it outputs, and the size of the BnB tree that it generates to solve instances cor-
responding to different instance sizes and values of a. Since mtl is known to be
unable to solve moderate to large sized SC, ISC, and ASC type instances, we divide
these instances into two categories, small and large. The small instances are of sizes
varying from 50 to 150, and the large instances are of sizes varying from 200 to 1000.
We allow a-MT1 to solve the small instances exactly, and with o vales of 5.0, 10.0,
15.0, 20.0, and 25.0. For the large instances, we compite an upper bound ub and
use a values of 0.02%, 0.04%, 0.06%, 0.08%, 0.10%, and 0.12% of ub. a-MT1 is
allowed a maximum execution time of 10 CPU minutes for each instance and each
a value, We report the behavior of a-MT1 only for those sets where at least ten of
the instances have been solved within the given time for each o valie.



For the small sized instances, we can use a-MT1 to obtain optimal solutions.
Thus we can compute the actual deviation of the solution output by a-MT1 from
that of the optimal solution. But for the large sized instances, we cannot obtain op-
timal solutions using a-MT1 within reasonable times. For these problems therefore,
we measure deviations as a percentage of ub. These values form an upper bound
to the actual deviations from the optimal profit for these instances. Since different
instances in the same problem set have widely different sizes of the BnB tree gen-
erated by a-MT1, (the size of a BnB tree is the number of nodes in the tree,) we
present the size of the BnB tree generated for a certain « value as a percentage of
the size of the tree generated for a = 0.0. This is possible for small sized SC, ISC,
and ASC instances. For the large sized instances, we cannot solve the instances with
a = 0.0; therefore we express the sizes of the BnB trees as a percentage of the size
of the trees generated when a = 0.02% of ub. This procedure makes it impossible to
compare the percentage reductions in the sizes of the BnB trees for small and large
instances. Tables 1 through 3 present the results of our computational experience.

Let I'(n, ) be the ratio of the achieved accuracy to the prescribed accuracy for
instances of size n and a prescribed accuracy parameter «. Also let ®(n,a, ap), be
the ratio of the size of the BnB tree for instances of size n and a prescribed accuracy
parameter « to the size of the BnB tree for instances of size n and a = ag.

For SC type instances (refer to Table 1), I'(n, a) is independent of the value of
n and increases linearly with a. For small instances of SC problems, the size of the
BnB tree was fairly insensitive to increases in o vahlies for a > 15.0. ®(n,,0.0)
initially drops steeply with increasing a, but then increases at a linear rate when «
is large enough. It is also independent of n.

The behavior of I'(n, ) and ®(n, «, 0.0) for ISC type instances (refer to Table 2)
was mostly independent of n. The ISC type instances were observed to be extremely
easy for a-MT1. Firstly, the I'(n, @) values were close to 0.3 for these instances,
where they were close to 0.5 for the SC type instances. The value of I'(n, @) increased
with n for the smaller instances, but were relatively independent of n in the larger
instances. Also, when & > 10.0, small sized ISC instances led to very small BnB
trees. Large ISC instances where the data was drawn from the range [1001, 2000
were also easy to solve, and the sizes of the BnB trees for these instances did not
vary with increasing a when o > 0.1% of ub.

The behavior of a-MT1 on ASC instances (refer to Table 3) was seen to be very
different from that of the other instances that we experimented with. I'(n, a) values
were seen to be more sensitive to n than the SC and ISC type instances. Also,
$(n,25.0,0.0) were seen to be more than 0.6 for most of these instances. (Other
problem types usually had ®(n,25.0,0.0) values close to 0.1.) ®(n,«,0.0) was seen
to be increasing as n increased, and for larger instances, the size of the BnB tree
was insensitive to increases in a@ when a > 0.05% of ub. This means that a-MT1
would be less effective for larger sized ASC instances.

In summary, a-MT1 proved to be very efficient for most BKP instances (with the
exception of ASC type instances), both in terms of the quality of solutions that it
output and in terms of the reduction of size of the BnB tree during its execution. The
deviation of the solution output by a-MT1 was less than half the prescribed accuracy,
and in terms of the size of the BnB tree, for most instances, a-MT1 produced trees
with around 10% of the number of nodes present in the BnB tree for mtl when
a > 15.0. Considering the data ranges, a > 15.0 implies a prescribed accuracy
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within 0.01%, making the reduction in the size of the BnB tree very impressive. The
best results from a-MT1 were seen for ISC type of problems. This is partly because
local search with 2-exchange neighborhoods are very effective for such problems.
The worst results from a-MT1 were seen for ASC type of problems.

4 Summary and Discussions

In this paper, we present o-MT1, an algorithm which embeds a local search based
heuristic procedure within a branch and bound framework to produce a solution
whose profit is within a pre-specified amount of the profit of an optimal solution.
A characteristic of the solutions generated by a-MT1 is that their suboptimality is
insensitive to the actual numbers in the instance data for the problem. We tested
the performance of a-MT1 on a variety of difficult randomly generated knapsack
instances belonging to types well-known in the literature (refer to Martello, Pisinger
and Toth [4]). We observed that the algorithm performs well for all except the
almost strongly correlated problem instances. In most cases we found out that the
deviation achieved by a-MT1 was less than half the allowed deviation, and, when
allowed a deviation of less than 0.01% of the profit of an optimal solution, solved
problems in times that were an order of magnitude lower than the time required
by exact algorithms. We chose the mtl algorithm due to Martello and Toth [6]
as the branch and bound algorithm on which we base our a-MT1 algorithin, since
it is a typical branch and bound algorithm for binary knapsack problems. There
are more sophisticated branch and bound algorithimns, which could be used to solve
larger problems more efficiently, and a-MT1-type algorithms could be devised based
on such algorithms.

In recent times, dynamic programming based algorithms are being proposed
to solve instances of binary knapsack problems (refer, for example, to Martello,
Pisinger and Toth [4]). These algorithms are shown to able to solve several classes
of strongly correlated knapsack problems, which are traditionally difficult for pure
branch and bound based algorithms. A challenging direction of further research
in the type of algorithms that we propose here is to incorporate similar ideas into
such dynamic programming based algorithms and obtain powerful algorithms for
generating near-optimal solutions for a wider variety of binary knapsack problems.

Applying the concepts described here to find near-optimal solutions to other hard
combinatorial optimization problems is also another promising area of research.
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