Worklng Paper

LA

- gmp sub Su |) —

Illl

11l
Wl (17

i il

XN

DATA CORRECTING: A METHODOLOGY FOR OBTAINING
NEAR-OPTIMAL SOLUTIONS

Diptesh Ghosh
Boris Goldengorin
Gerard Sierksma

W.P.N0.2002-06-01
June 2002 | 703

The main objective of the working paper series of the IIMA is to help faculty members
to test out their research findings at the pre-publication stage.

INDIAN INSTITUTE OF MANAGEMENT
AHMEDABAD-380 015
INDIA

LIMA
WP— 2 0602-0§ »)

PURCHASED
APFROVAL

GRATD/ KECMANGS

PRICE

aco me.2_505]0
VIERAM SARABRNALI AISRARY
Ln. L M, AHMEDABAD.

DATA CORRECTING: A METHODOLOGY FOR OBTAINING
NEAR-OPTIMAL SOLUTIONS

DIPTESH GHOSH, BORIS GOLDENGORIN, AND GERARD SIERKSMA

ABSTRACT. In this peper we concern ourselves with the problem of finding near-
optimal solutions to functions that are not amenable to solution by analytic means.
This means that given a function and a parameter o, we provide a technique that
yield a solution whose function value is no more than « away from the optimal value
of the function. We show how this technique can be applied to combinatorial op-
timization problems and present our computational experience with this algorithm
on benchmark asymmetric traveling salesperson problems.

Keywords: data correcting, polynomially solvable special cases, combinatorial opti-
mization, asymmetric traveling salesperson problems.

1. INTRODUCTION

Polynomially solvable special cases have long been studied in the literature on
combinatorial optimization problems (see, for example, [6]). Apart from being math-
ematical curiosities, they often provide important insights for serious problem-solving.
In fact, the concluding paragraph of (6] states the following, regarding polynomially
solvable special cases for the traveling salespéfson problem.

“... We believe, however, that in the long run the greatest importance of

these special cases will be for approximation algorithms. Much remains to

be done in this area.”
This paper is a step in the direction of incorporating polynomially solvable special
cases into approximation algorithms. We propose a data correcting algorithm — an
approximation algorithm that makes use of polynomially solvable special cases to
arrive at high-quality solutions. The basic insight that leads to this algorithm is the
fact that it is often easy to compute a bound on the difference between the cost of
an optimal solution to a problem instance, and of the optimal solution for any other
instance even though it may be hard to compute an optimal solution for the latter
instance. The results obtained with this algorithm are very promising (see the results
for the traveling salesperson problem in Section 4 in this paper, and for the quadratic
cost partitioning problem in {7]). Although we have already carried out some more
experimentation with this algorithm (see, for example, [8]), a thorough introduction
on the data correcting algorithm has not appeared in the literature. This paper fills
that gap.

The approximation in the data correcting algorithm is in terms of an accuracy
parameter, which is an upper bound on the difference between the objective of an
optimal solution to the instance and that of a solution returned by the data correcting

1

2 GIHOS! AND GOLDENGORIN AND SIERKSMA

algorithm. Note that this is not expressed as a [raction of the optimal objective value
for this instance. In this respect, the algorithm is different from common e-optimal
algorithms, in which ¢ is defined as a fraction of the optimal objective value.

Even though we use the data correcting algorithm mainly for solving NP-hard com-
binatorial optimization problems, it can be used for functions defined on a continuous
domain too. We will in fact, motivate the algorithm in the next section using a func-
tion defined on a continuous domain, and having a finite range. We then show in
Section 3, how this approach can be adapted for combinatorial optimization prob-
lems. We illustrate this adaptation with the help of an example in this section. In
Section 4 we present our computational experience with this method on asymmet-
ric traveling salesperson problem instances from the TSPLIB [11]. We conclude the
paper with a summary and discussions for future research in Section 5.

2. DATA CORRECTING FOR REAL-VALUED FUNCTIONS

Consider a real-valued function f : D — R, where D is the domain on which
the function is defined. We assume that f is not analytically tractable, and concern
ourselves with the problem of finding a-minimal solutions to the function f over D,
i.e. the problem of finding a member of {x|x € D,f(x) < f(x*) + a}, where x* =
arg minp{f(x)}, and o is a pre-defined accuracy parameter. The discussion here is
for a minimization problem, the maximization problem can be dealt with in a similar
manner.

Let us assume a partition {Dy,...,D;} of the domain D. Let us further assume
that for each of the sub-domains D; of D, we are able to find functions g; : D; — R,
which are easy to minimize over D;, and such that
(1) [f(x) g < 5 Vx €D,

We call such easily minimizable functions regular.

Theorem 1 demonstrates an important relationship between the regular functions
gi and the original function f. It states that the function value of f at the best among
the minima of all the gi’s over their respective domains is close to the minimum
function value of f over the domain.

Theorem 1. Let x{ € argmin,p,{gi(x)}, x* € argmin{f(x{)}, and let x* €
arg min,ep{f(x)}. Then N
f(x*) < f(x*) + a.

Proof. Let x} € argminyep,{f(x)}. Then for i = 1,...,p, f(x¥) ~ % < gi(xf) <
9i(x}) < f(x}) + 5, ie. f(x&) < f(x¥) + oo Thus ming{f(x)} < mini{f(x})}+ o, which
proves the result. o

Notice that x* and x* do not need to be in the same sub-domain of D.

Theorem 1 forms the basis of the data correcting algorithm to find an approximate
minimum of a function f over a certain domain D. The procedure consists of three
steps: the first in which the domain D of the function is partitioned into several
sub-domains; the second in which f is approximated in each of the sub-domains by -
regular functions following the condition in Expression (1) and a minimum point

DATA CORRECTING 3

of the regular function is obtained; and a third step, in which the minimum points
computed in the second step are considered and the best among them is chosen as
the output. This procedure can be further strengthened by using lower bounds to
check if a given sub-domain can possibly lead to a solution better than any found thus
far. The approximation of f by regular functions gy is called data-correcting, since an
easy way of obtaining the regular functions is by altering the data that describe f. A
pseudocode of the algorithm, which we call DC-G, is provided in Figure 1.

Procedure DC-G
Input: f, D, o.
Output: x* & D such that f(x*)} < min{f(x)|x € D} + a.

Code:
1. begin
2. create a partition {Ds,... ,Dn} of D;
3. for each sub-domain D;
4, begin
5. f; := a lower bound to f(x), x € D;;
6. if f; > bestvalue
7. continue;
8. construct a regular function gi(x) obeying Expression (1);
9. x{* € arg minyep,{gi(x)};
10. end;
11. bestvalue := oo;
12 if f(x{) < bestvalue;
13. begin
14. x% = Xg‘)
15. bestvalue == f(x*);
16. end; :
17. return x%;
18. end.

FIGURE 1. A data correcting algorithm for a real-valued function

Lines 5 through 7 in the code carry out the bounding process, and lines 8 and 9
implement the process of computing the minima of regular functions over each sub-
domain. These steps are enclosed in a loop, so that at the end of line 10, all the
minima of the regular functions are at hand. The code in lines 11 through 16 obtain
the best among the minima obtained before. By Theorem 1, the solution chosen by
_ the code in lines 11 through 16 is an a-minimum of f, and therefore, this solution is
. returned by the algorithm in line 17.

We will now illustrate the data correcting algorithm through an example. The
example that we choose is one of a real-valued function of one variable, since these
are some of the simplest functions to visualize.

Example 1. (Data correcting on a real-valued function of one variable)
Consider the problem of finding an o-minimum of the function f shown in Figure 2.

pNA? LIBRARY
VIKRAR sn: A s ms

‘::’:‘ APER A-UIBAIA.—M

4 GHOSH AND GOLDENGORIN AND SIERKSMA

The function is defined on the domain D and is assumed to be analytically intractable.

f(x)

NACAYY

D

FIGURE 2. A general function f

The data correcting approach can be used to solve the problem above, i.e. of finding
a solution x* € D such that f(x*) < min{f(x)|x € D} + «

Consider the partition {D1, D2, D3, D4, D5} of D shown in Figure 3. Let us suppose
that we have a regular function g1(x) such that |[g1(x) —f(x)| < §, Vx € D1. Assume
also, that x1 is a minimum point of g1(x) in D1. Since this is the best solution that
we have so far, we store x1 as an «-minimal solution to f(x) in the domain D1. We
then consider the next interval in.the partition, D2. We first obtain a lower bound
on the minimum value of f(x) on D2. If this bound is larger than f(x1), we ignore
this domain and examine domain D3. Let this not be the case in our example. So
we construct a regular function g2(x) with |g2(x) — f(x})| < 3, ¥x € D2, and find x2,
its minimum point over D2. Since f(x2) > f(x1) (see Figure 3), we retain x1 as our
a-optimal solution over D1 U D2. Proceeding in this manner, we examine f(x) in D3
through D5, compute regular functions g3(x) through g5(x} for these domains, and
compute x3 through x5. In this example, x3 replaces x1 as our a-minimal solution
after consideration of D3, and remains so until the end. At the end of the algorithm,
x3 is returned as a value of x*. ¢

There are four points worth noting at this stage. The first is that we need to
examine all the sub-domains in the original domain before we return a near-optimal
solution using this approach. The reason for this is very clear. The correctness of
the algorithm depends on the result in Theorem 1, and this theorem only concerns
the best among the minima of each of the sub-domains. For instance, in the previous
example, if we stop as soon as we obtain the first «-optimal solution x; we would
be mistaken, since Theorem 1 applies to x1 only over D1 U D2. the algorithm The
second point is that there is no guarantee that the near-optimal solution returned
by DC-G will be in the neighborhood of a true optimal solution. There is in fact,
nothing preventing the near-optimal solution existing in a sub-domain different from
the sub-domain of an optimal solution, as is evident from the previous example. The
true minimum of f lies in the domain D5, but DC-G returns x3, which is in D3. The

DATA CORRECTING 5

= Original f unction
—— Regular Function

FIGURE 3. Illustrating the Data Correcting approach on f

third point is that the regular functions g;(x) approximating f(x) do not need to have
the same functional form. For instance in Example 1, g1(x) is quadratic, while g2(x)
is linear. Finally, for the proof of Theorem 1, it is sufficient for {Dy,..., Dy} to be a
cover of D (as opposed to a partition).

3. DATA CORRECTING FOR COMBINATORIAL OPTIMIZATION PROBLEMS

The data correcting methodology described in the previous section can be incorpo-
rated into an implicit enumeration scheme (like: branch and bound) and used to used
to obtain near-optimal solwtions to NP-hard combinatorial optimization problems. In
this section we describe how this incorporation is achieved for a general combinato-
rial optimization problem. For this purpose, we define a combinatorial optimization
problem P as a collection of instances Z. An instance Z consists of a ground set
G ={ej,ey...,en} of n elements, a cost vector Cz = (c},cl,...,cl) corresponding
to the elements in G, a set S C 29 of feasible solutions, and a cost function f7 : S — R.
The objective is to obtain a solution, i.e. a member of S that minimizes the cost func-
tion. For example, for an asymmetric traveling salesperson problem (ATSP) instance
on a graph G = (V, A), with a distance matrix D = [dyj], we have G = A, c}, = dy;,
S is the set of all Hamiltonian cycles in G, and f(s) = 3., dy; for each s € S.

Implicit enumeration for combinatorial problems includes two main strategies,
. namely branching and fathoming. Branching involves partitioning the set of feasible
solutions § into smaller subsets. This is done under the assumption that optimizing
the cost function over a more restricted solution space is easier than optimizing it over
the whole space. Fathoming involves one of two processes. First, we could compute
lower bounds to the value that the cost function can attain over a particular member
of the partition. If this bound is not better than the best solution found thus far, the
corresponding subset in the partition is ignored in the search for an optimal solution.

6 GHOSH AND GOLDENGORIN AND SIERKSMA

The second method of fathoming is by computing the optimum value of the cost func-
tion over the particular subset of the solution space (if that can be easily computed
for the particular subset). We see therefore that two of the main requirements of
the data correcting algorithm presented in the previous section, i.e. partitioning and
bounding, are automatically taken care of for combinatorial optimization problems
by implicit enumeration. The only other requirement that we need to consider is that
of obtaining regular functions approximating fz over subsets of the solution space.

Notice that the cost function fz(s) is a function of the cost vector C. So if the
values of the entries in C are changed, fz(s) undergoes a change as well. Therefore,
cost functions corresponding to polynomially solvable special cases ean be used as
“regular functions” for combinatorial optimization problems. Also note that for the
same reason, the accuracy parameter can be compared with a suitably defined dis-
tance measure between two cost vectors, (or equivalently, two instances). Consider
a subproblem in the tree obtained by normal implicit enumeration. The problem in-
stance that is being evaluated at that subproblem is a restricted version of the original
problem instance, i.e., it evaluates the cost function of the original problem instance
for a subset Sy of the original solution space S. If we alter the data of the problem
instance in a way that the altered data corresponds to a polynomially solvable special
case, while guaranteeing that the cost of an optimal solution to the altered problem in
Sk is not more that an acceptable amount higher than the cost of an optimal solution
to original instance in Sy, then the altered cost function can be considered to be a
regular approximation of the cost function of the original instance in S.

For combinatorial optimization problems, let us define a prozimity measure p(Z,,
1,) between two problem instances Z; and I, as an upper bound for the difference
between fr,(s3}) and fz,(s%), where s% and s} are optimal solutions to Z; and I,
respectively. The following lemma shows that the hamming distance measure between
the cost vectors of the two instances is a proximity measure when the cost function
is of the sum type or the max type.

Lemma 2. If the cost function of an instance T of a combinatorial optimization
problem is of the sum type, (i.e. fz(s) = 2 oes cl) or the max type, (i.e. fz(s) =
MaX,, ¢s CL)then the measure

2) olZ1,T) = }_lef! —cfl

e EG
between two instances Ty and I, of the problem is an upper bound to the difference
between f7,(s}) and fr,(s3), where s} and s% are optimal solutions to Iy and I,
respectively.

Proof. We will prove the result for sum type cost functions. The proof for max type
cost functions is similar.

For sum type cost functions, it is sufficient to prove the result when the cost vectors
Cz, and Cg, differ in only one position. Let c"g = c,'f fork=1,2,...,j—1,54+1,... ,n,
and ¢;' # c;2. Consider any solution s € S. There are two cases to consider:

® ¢; € s: In this case, |f7, (s) — fr,(s) = X, cslex ~ el =le' — ¢}l

DATA CORRECTING 7

e ¢; & s: In this case it is clear that fz,(s) = fz,(s).

Therefore, |f7,(s) — 7, (s)] < 3. e it ~ ¢2| = p(Zy1,23) for any solution s € S,
which automatically implies that p(Z,, ;) as defined in the statement of Lemma 2 is
an upper bound for the difference between fz, (s}) and fz, (s%), where s% and s} are
optimal solutions to Z; and Z,, respectively. a

One way of implementing the data correcting step for a NP-hard problem instance
T is the following. (We illustrate this step in Example 3 for the ATSP.) We construct
a polynomially solvable relaxation Z; of the original instance (for the ATSP, this can
be an assignment problem with the same distance matrix), and obtain an optimal
solution x; to Z;. Note that x; need not be feasible to Z. We next construct the
best solution x to Z that we can, starting from x;. (For the ATSP, this corresponds
to a patching operation to obtain a tour from an assignment.) We also construct an
instance Z¢ of the problem, which will have x as an optimal solution. The proximity
measure p(Z, Zc¢) then is an upper bound to the difference between the costs of x and
of an optimal solution to Z. Z¢ is called a correction of the instance Z.

The following example illustrates this technique for an instance of the ATSP.

Example 2. (Illustrating data correcting step on a ATSP instance) Con-
sider the 6-city ATSP instance with the distance matrix D = [dy;] shown below. (This
corresponds to Z.)

D1 2 3 4 5 6
10 16 19 25 22
- 10 13 13 10
10 280 - 22 16 13
19 25 13 - 10 19
16 22 19 13 - 11
13 22 15 13 10 -
If we allow subtours in solutions to the ATSP, we get the classic assignment problem
relaxation. Solving the assignment problem on D, using the Hungarian method, we
get the following reduced distance matrix D¥ = [d}]. (The assignment problem with
the distance matrix D corresponds to Zy..)

19

SOV W N

DH|1 23 4 5 6
I]- 06 7 16 12
219 -0 1 4 0
3lo 18 - 10 7 3
4(8 14 2 - 0 8
551128 0 - 0
62 114 0 0 -

This leads to a solution with two cycles (1231) and (4564) (corresponding to xy).
Using patching techniques (see for example [9]), we obtain a solution (1245631) (cor-
responding to x). Notice that (1245631) would be an optimal solution to the as-
signment problem if d}, and d}} had been set to zero in DY, and that would have
been the situation, if dzs and des were initially reduced by 4 and 1 respectively, i.e.

8 GHOSH AND GOLDENGORIN AND SIERKSMA

if the distance matrix in the original ATSP instance was D® defined below. (This
corresponds to Z¢.)
DFl'1 2 3 4 5 6
- 10 16 19 25 22
19 - 10 9 13 10
10 288 - 22 16 13
19 25 13 - 10 19
16 22 19 13 - 11
13 22 14 13 10 -

Therefore DP is the distance matrix of the correction of the instance with distance
matrix D. The proximity measure p(D,D¥) = Zf___,)___jézl |dy — af| = |das — dBl +
|des — dfsl =4 +1 =5. o

DO d W =

A proximity measure is an upper bound to the difference between the costs of two
solutions for a problem instance, so the stronger the bound, the better would be the
performance of any enumeration algorithm dependent on such bounds. It is possible
to obtain stronger performance measures for ATSP instances, for example

n n
Py __ .. .- AP ._AP
(3) p1(D,D)—mm{ -21 max |dy; — dl, .21 max Id; dijl}
i= =

is a better proximity measure than the one defined in (2). However, the proximity
measure p has an interesting advantage. Consider the ATSP instance in Example 3.
The cost of patching the solution (1231)(4564) to (1245631), i.e. dys+dg—d3—des
is exactly the same as the value of p(D, D). This means that we can find out the
value of this proximity measure as a by-product of computing the best patching. This
is likely to save execution times in any implementation of data correcting algorithms.

The similarity of the data correcting step described above (and illustrated in Ex-
ample 3) to fathoming rules used in branch and bound implementations makes it
convenient to incorporate data correcting in the framework of implicit enumeration.
Figure 4 presents the pseudocode of a recursive version of branch and bound incorpo-
rating data correcting. The initial input to this procedure is the data for the original
instance Z, the feasible solution set S, any solution s € S, and the accuracy parame-
ter . Notice that the fathoming rule defined in lines 6 through 10 in the pseudocode
is the data correcting step discussed earlier in this section.

The algorithm described in Figure 4 is a prototype. We have not specified how the
lower bound is to be computed, or which solution to choose in the feasible region,
or how to partition the domain into sub-domains. These are details that vary from
problem to problem, and are an important part in the engineering aspects of the
algorithm. Note that this is just one of many possible ways of implementing the data
correcting algorithm.

We next illustrate the data-correcting algorithm on an instance of the ATSP.

Example 3. (Performance of the data correcting algorithm on an ATSP

DATA CORRECTING 9

Algorithm DC
Input: ZI,8, a. ,
Output: x* € S such that fz{x*) < min{fz(x)x € S} + «.
Code:
1. begin
2. s := a solution in &;
3. 1b := a lower bound on the value of fz(x) over S;
4, iffz(s)=1b
5. return s;
6. compute an optimal solution sy to a polynomially solvable
relaxation ¥; to Z;
7. construct a solution s to Z starting from s
8. construct an instance Z¢ that has s as an optimal solution;
9. if p(Zc,I) <
10. return s;
11 else
12. begin
13. partition & into subsets Sy and Sy;
14. 53 = DC(I, S], O(.);
15. s2 :=DC(Z, Sz, «);
16. return the better solution among sy and sy;
17. end;
18. end.

FIGURE 4. A data correcting algorithm for a combinatorial optimiza-~
tion problem with minimization objective.

instance) Consider the 8-city ATSP instance with the distance matrix D = [dy]
shown below. (This example was taken from (1], p. 381).

We use

1 2 3 4
- 211 10
6 - 1 8
5 12 - 11
1 9 10 -
1 11 9 4
12 8 5 21
10 11 12 10
7 10 10 10

N w T
= 00 00 00| en
-
W MO~
—
- = O 00 W o O~
s
I o © o = ~1 utoo

W =
et

e the proximity measure p (see Expression (2)) for data correction,

e the assignment algorithm to compute lower bounds for subproblems,

¢ a patching algorithm to create feasible solutions, and compute proximity mea-
sures, and

e the patched solution derived from the assignment solution as a feasible solution
in the domain.

10 GHOSH AND GOLDENGORIN AND SIERKSMA

In this example, we branch on the least cost edge involved in the patching operation.
(This branching rule is chosen for illustration purposes only, other more efﬁcnent

branching choices are of course possible.)
The polynomially solvable special case that we consider is the set of all ATSP

instances for which the assignment procedure gives rise to a cyclic permutation.

Using the branching rule described above, depth-first branch and bound generates
the enumeration tree of Figure 5. The nodes are labelled according to the order in
which the problems at the corresponding nodes were evaluated.

%
3B ‘y@\fﬁ;‘? 33 out
Fathomed Fathomed
Fathomed F‘a.thomed

& ont ein 78 out 78 in
thhomed Fa.thomed

Fathomed Infeasible Fathomed Infeasible

Subproblem Upper Lower Assignment Patched Cost of Revised
at node bound bound solution tour patching bound

1 oo 17 (1231)(4564)(787) {123786451) 9 26

26 21 (123781)(4564) (123786451) 5 26
3 26 26 Fathorned by bounds - 26
4 26 21 (123781)(4564) (123785641) 9 26
5 26 ‘29 Fathomexd by bounds -~ 26
6 26 T21 (123781)(4564) (124563781) 10 26
7 26 29 Fathomed by bounds - 26
8 26 21 (123781)(4564) (123784561) 13 26
9 26 34 Fathomed by bounds - 26
10 - - Fathomed due to infeasibility - 26
11 26 17 {1231)(4564)(787) (187456231) 15 26
12 26 28 Fathomed by bounds - 26
13 26 17 (1231)(4564)(787) (123564871) 19 26
14 26 30 Fathomed by bounds - 26
15 26 17 {1231)(4564)(787) (126458731) 19 26
16 26 25 {12631)(454)(787) (126458731} 11 26
17 26 32 Fathomed by bounds - 26
18 - - Fathomed due to infeasibility - 26
19 26 30 Fathorned by bounds - 26

FIGURE 5. Branch and bound tree for the instance in Example 3

Since the cost of patching equals the value of p, we can now evaluate the perfor-
mance of data correcting on this example. If the allowable accuracy parameter « is
set to 0, then the enumeration tree constructed by DC will be identical to that in
Figure 5 and evaluate 19 subproblems. But if the value of « is set to 5, then enumer-
ation along the branch “3? out” stops at node 2. In that case, DC evaluates only 11

DATA CORRECTING 11

subproblems. On the other hand, if « is set to 10, DC only evaluates one subproblem
(corresponding to node 1). ¢

The previous example shows that the data correcting algorithm can be a very
attractive alternative to branch and bound algorithms. In the next section we report
experiences of the performance of the data correcting algorithm on ATSP instances
from the TSPlib.

4. COMPUTATIONAL EXPERIENCE WITH ATSP INSTANCES

In this section we demonstrate the effectiveness of the data correcting algorithm on
some benchmark ATSP instances from TSPLIB [11]. TSPLIB has twenty seven ATSP
instances, out of which we have chosen twelve which could be solved to optimality
within five hours using a branch and bound algorithm. Eight of these belong to the
“ftv' class of instances, while four belong to the ‘rbg’ class. We implemented the data
correcting algorithm in C and ran it on a Intel Pentium based computer running at
666MHz with 128MB RAM.

Achleved Accuracy Vs Alpha for 'fiv' problems
0.07 T T T T

0.06

g
a

0.05 |- 38 —e—

0.04

0.03

Achleved Accuracy

0.02

0.01

(4] 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Alpha (as a fraction of the cost of an gptimal solution)

FIGURE 6. Accuracy achieved versus a for ftv instances

The results of our experiments are presented graphically in Figures 6 through 9. In
computing accuracies, (Figures 6 and 8) we have plotted the accuracy and deviation
of the solution output by the data correcting algorithm from the optimal (called
‘achieved accuracy’ in the figures) as a fraction of the cost of an optimal solution to
the instance. We observed that for each of the twelve instances that we studied, the
achieved accuracy is consistently less than 80% of the pre-specified accuracy.

There was a wide variation in the CPU time required to solve the different instances.
For instance, ftv70 required 17206 seconds to solve to optimality, while Tbg323 re-
quired just 5 seconds. Thus, in order to maintain uniformity while demonstrating the
variation in execution times with respect to changes in o values, we represented the
execution times for each instance for each a value as a percentage of the execution

12

GHOSITI AND GOLDENGORIN AND SIERKSMA

=

2

3 Executlon Times Vs Alpha for 'ftv’ prablems

3

T 100 N ' T " 70 —— -
£ Itved —w—
8 ftvs5 —a—
[M7 —
g et ftvas —o— T
g ftv3g —e—
£ fiv35 —a—
kel 60 |- #v33 —a— N
&

o]

@

e 40

g

4]

8 x}

o

E

=

[=

s 0

5 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
§ Alpha (as a fraction of the cost of an optimal solution)

FIGURE 7. Variation of execution times versus e for ftv instances
Achieved Accuracy Vs Aipha for rbg’ problems

0.07
LS T T T T 3
thg403 —x—
0.06 |- bg358 —&— A
bg323 —a—
> 005 =
g
8 o004 .
<
E oo -
=
S
< o0.02 .
0.0t 4

V] | - . 1 1 t i

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Alpha (as a fraction of the cost of an optimal sofution)

FIGURE 8. Accuracy achieved versus « for rbg instances

DATA CORRECTING 13

Executlon Times Vs Alpha for 'rbg’ problemns

T T
rbg443 —x—
rbg403 —w—
g358 —5—
g323 —a—

T T T T

8

8

-

(]
o

"
o

8

0
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Alpha (as a fraction of the cost of an optimal solution)

Executlon Time (as a percentage of time for optimal solution)

FIGURE 9. Variation of execution times versus a for rbg instances

time required to solve that instance to optimality. Notice that for all the ftv instances
when o was 5% of the cost of the optimal solution, the execution time reduced to
20% of that required to solve the respective instance to optimality. The reduction
in execution times for rbg instance was equally steep, with the exception of rbg323
which was in any case an easy instance to solve.

5. SUMMARY AND DISCUSSIONS

In this paper we provide an introduction to the concepts of data correcting, a
method in which our knowledge of polynomially solvable special cases in a given
problem domain is utilized to obtain near-optimal solutions with pre-specified per-
formance guarantees within short execution times. The algorithm makes use of the
fact that even if the cost of an optimal solution to a given instance is not known,
it is possible to compute a bound on the cost of the solution based on the cost of
an optimal solution to another instance. (This fact is proved for a smgle variable
real-valued function in Section 2 of the paper.)

In Section 2, we describe the data correcting process on a single variable real-
valued function. Most of the terminology used in data correcting is defined in this
section. We also provide a pseudocode for a data correcting algorithm for a general
real valued function and an example demonstrating the algorithm. In Section 3, we
show how the idea of data correcting can be used to solve combinatorial optimization
problems. It turns out that it fits nicely into the framework of branch and bound.
We also provide a pseudocode for an algorithm applying data correcting on a combi-
natorial optimization problem with min-sum objective, and show, using an example,
how the algorithm would work on an asymmetric traveling salesperson problem. In
Section 4 we describe our computational experience with benchmark asymmetric trav-
eling salesperson problems from the TSPLIB. We show that the deviation in cost of

14 GIIOSH AND GOLDENGORIN AND SIERKSMA

the solutions output by our dala correcting implementation from the optimal is about
80% of the allowable deviation, and the the time required to solve the problems to
95% optimality is about 20% of the time required to solve that particular problem to
optimality.

We have used data-correcting primarily for solving NP-hard combinatorial opti-
mization problems. In particular, we have studied the performance of this algorithm
on general supermodular and submodular functions [7], quadratic cost partitioning
problems [7], simple plant location problems [8], binary knapsack problems [5], and
in this paper, on asymmetric traveling salesperson problems. Thus much research
remains to be dane on testing the performance of this algorithm on other hard com-
binatorial problems. All our work on data correcting has implemented this method in
the branch and bound framework. However, in recent times, dynamic programming
is being used to solve large optimization problems. It would be interesting to try to
adapt data correcting to work with dynamic programming algorithms.

In addition to solving combinatorial problems, data correcting can also be used for
obtaining near-optimal solutions to problems in the continuous domain (as illustrated
in Section 2 in this paper). To the best of our knowledge, there has been no work
done in this area. This is thus another vast area of research for this algorithm.

REFERENCES

(1] E. Balas, P. Toth, Branch and bound methods, Chapter 10 in [9].

[2] R.E. Burkyard, Special cases of traveling salesman problem and heuristics, Acta Mathematica
Applicatae Sinica 6, (1990) 273-288.

[3] M. Ebben, A Data Correcting Algorithm for the Traveling Salesman Problem, Master’s Thesis,
Faculty of Economic Sciences, University of Groningen, The Netherlands, 1996.

[4] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-
Completeness, Freeman San Francisco, 1979. T

[5] D. Ghash, B. Goldengorin, The Binary Knapsack Problem: Near-Optimal Solutions with Guar-
anteed Quality, SOM Research Report, University of Groningen, 2001.

[6] P.C. Gilmore, E.L. Lawler, D.B. Shmoys, Well-solved special cases, Chapter 4 in [9].

[7) B. Goldengorin, G. Sierksma, G.A. Tijssen, M. Tso, The data-correcting algorithm for mini-
mization of supermodular functions. Manegement Science 45, (1999) 1539-1551.

[8] B. Goldengorin, G.A. Tijssen, D. Ghosh, G. Sierksma, Solving the Simple Plant Location
Problem Using a Data Correcting Approach, SOM Research Report, University of Groningen,
2001 (To appear: Journal of Global Optimization.).

[9] E.L. Lawler, J.K. Lenstra, A.H.G. Rinooy Kan, D.B. Shmoys, (Eds.) The Traveling Salesman -

Problem: A Guided Tour of Combinatorial Optimization, Wiley-Interscience, 1985.

[10] B.M.E. Moret, H.D. Shapiro, Algorithms from P to NP, Volume 1: Design and Efficiency, The
Benjamin/Cummmins Publishing Company Inc., 1991.

(11] G. Reinelt, TSPLIB 95, http://vwww.iwr.uni-heidelberg.de/iwr/comopt/soft/TSPLIB95/
TSPLIB.html, 1995.

P&QM AREA, INDIAN INSTITUTE OF MANAGEMENT, AHMEDABAD, INDIA,
E-mail address: diptesh@iimahd.ernet.in

FacuLTY OF ECONOMIC SCIENCES, UNIVERSITY OF GRONINGEN, THE NETHERLANDS.
E-mail address: {B.Goldengorin, G.Sierksma}@eco.rug.nl

PURCHASED
APPROVAL

GRATIS/RAECEANGE
PRICH
ACC MO

VIERAM EARABNMA] RIne'
Ll M ARWRCE .

R

