AHMEDABAD

Working Paper
Lg%

*



QUASITRANSITIVITY AND
MONOTONIC PREFERENCE FOR FREEDOM

By
Somdeb Lahiri

W.P.No.2000-03-11
March 2000 /5 9/

The main objective of the working paper series of the IIMA is
to help faculty members to test out their research findings at
the pre-publication stage.

INDIAN INSTITUTE OF MANAGEMENT
AHMEDABAD-380 015
INDIA




PURCHASED
APPROVAL

GRATI/EXCRANCS
rucs
acc w02 509k

VIKRAM SARABHAI LIBua4z™
L. L M, AHMEDABAD

N DS

v v g mr

4



QUASITRANSITIVITY
AND

MONOTONIC PREFERENCE FOR FREEDOM

SOMDEB LAHIRI
INDIAN INSTITUTE OF MANAGEMENT
AHMEDABAD 380015
INDIA
MARCH 2000

ABSTRACT
We consider a finite universal set of alternatives and the set of all feasible sets are simply the set of all
non-empty subsets of this universal set. A choice function assigns to each feasible set a non-empty
subset of it.In such a framework we propose and study necessary and sufficient conditions for quasi
transitive rationalizability.In a final section of this paper,we analyse necessary and sufficient conditions
for quasi transitive rationalizability of choice functions generated by a monotonic preference for
freedom.

1.Introduction: We consider a finite universal set of alternatives and the set of all feasible sets are simply
the set of all non-empty subsets of this universal set. A choice function assigns to each feasible set a
non-empty subset of it.

An interesting problem in such a context is to explore the possibility of the choice function coinciding
with the best elements with respect to a binary relation. This is precisely the problem of rational choice
theory. There is a large literature today on this topic.A comprehensive survey of the major results in
this area (;upto the mid-eighties) is available in Moulin (1985). A

In this paper, we propose a new axiom which is used to fully characterize all choice functions which are
rationalized by quasi-transitive binary relations. These "almost" transitive (: but not exactly so!) binary
relations, which are now quite popular in the literature (: see Yu [1985]), have the rather interesting
feature of revealing intransitive indifference for single valued choice functions. This phenomena has
been dealt with rather elegantly by Kim [1987]. Our purpose, is to shed new light on the problem in the
absence of the single-valuedness assumption. We, propose an axiomatic characterization which is
minimal. Several examples are provided, to show that the assumptions we use are logically
independent.

In a fina] section of this paper we address the problem concerning quasi-transitive rationalizations
of choice functions generated by what we refer to in this paper as “preference for freedom”.The
concept of “preference for freedom”,can be traced back to the modest yet significant literature on
“freedom of choice”.In the “freedom of choice” literature, the principal problem is to define a
binary relation on non-empty subsets of a given set, so as to formalize the notion of “preference
for freedom™ which any non-empty set of alternatives provides to a decision maker. Presumably,
the idea is to use this binary relation to rank opportunity sets and arrive at decisions on the basis
of such a ranking. This field has been pioneered by Pattanaik and Xu [1990], with subsequent
contributions by Pattanaik and Xu [1997, 1998], Arrow [1995], Carter [1996], Puppe [1996],
Sen [1990, 1991], Rosenbaum [1996],Van Hees [1998, 1999] , Van Hees and Wissenburg [1999]
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and Arlegi and Nieto[1999] (as also the references therein). In a related effort (Lahiri[1999]) a
necessary and sufficient condition has been proposed which answers the question arising out of
the converse problem: given a choice function, is there anything akin to a “preference for
freedom” (: however, queer that may be !) which rationalizes the observed behaviour of a decision
maker? Puppe[1996], considers a choice function which chooses only those points from a feasible
set,whose unilateral deletion from the feasible set leads to a perceived deterioration. We show that
in the framework cosidered by Puppe[1996], Chemoff’s Axiom and the Generalized Condorcet
Axiom (both celebrated in classical rational choice theory) imply our New Quasi Transitivity
Axiom, and hence as a consequence of an earlier result,guarantee quasi transitive rationalization.

2.Model Let X be a finite, non-empty universal set. If S is any non-empty subset of X, let {S] denote
the set of all non-empty subsets of S. A choice function on X is a function C : [X] — [X] such that
C(S)cS VS € [X]. Given a binary relationRon X and S € [X], let G(S,R)={x e S/(x,y) e RV
y € S}. This set is called the set of best elements in S with respect to R. Let, P(R) = {(x,y) € R/ (y,
x) ¢ R} and I(R) = {(x,y) € R/ (y, x) € R}. Given a choice function C on X, let R = {(x,y) €
XxX/x €C ({x,y})} and let Rc = U{C(S)xS/S € [X]}. Let A={(x,x)/x € X}.

The following result is well known in the literature on rational choice.

Proposition 1 : Given a choice function C on X if there exists a binary relation R on X such that C(S)=
G(S,R) V' S € [X], then R =R".

A binary relation R on X is said to be:

i) Reflexive if (x, X)) e RV x € S;

i)  CompleteifVx ye X, xyimplies(x,y) € Ror (y,%) € R.
i)  Quasitransitive if V x,y,z € X, (xy) € P(R), (y,2) € P(R) implies (x,z) € P(R).
iv) A Quasi-ordering if it satisfies (i), (ii) and (iii).
v)  Transitive fVx,y,z € X, (x,y) € R &(y, 2) € R implies (x, z)eR;
Vi) An Ordering if it satisfies (i), (ii) and (V).
A choice function C is said to satisfy:

a) Chernoff's Axiom (CA) if V S,T e [X] with S ¢ T, C(T)S < C(S);

b)  Generalized Condorcet (GC) at Rif V S e [X], G(S, R%) « C(S);
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¢) Bandopadhyay - Sengupta Acyclicity Axiom (BSAA) at Rif V S e [X],[x € S\C(S) implies
that there exist y € S with (x,y) € Rc].

Proposition?2 : Given a choice fimction C : [X] — [X] there exists a binary relation R on X such that
C(S) =G(S,R) V S € [X] if and only if at least one of the following two conditions hold:

1) C satisfies CA and GC ;

2) C satisfies BSAA.

The above results are available in Suzumura [1983] and Bandopadhyay and Sengupta [1991].

The reason why we refer to one of the axioms above as an acyclicity axiom is that if V S e [X], C(S) =
G(S,R) where R is a binary relation on X, then R must be acyclic in the following sense: there does not
exist t € N and {x'}i=1_ ,all in X such that with (x, ¥*")eP(R) V ie {1,...,t-1} with (¥, x')eP(R).

A choice function C is said to satisfy the Bando N ta i Transitivi iom (BSQTA)
ifV S e [X], [xe S\C(S) implies that there exists y e C(S) with (xy) ¢ Rc].

The following result has been established in Bandopadhyay and Sengupta [1991]:

Proposition 3: Given a choice function C : [X] — [X], there exists a quasi-ordering R on X such that
C(S)=G(S,R) ¥ S € [X] only if C satisfies BSQTA.

3.Quasi-Transitive Rationality: A choice function C on X is said to satisfy
d)  Outcasting (0)if V'S, T e [X], C(T) = S < T implies C(S) = C(T);
e) Superset Axiom (SUA) if V S, T e [X], C(T) < C(S) T implies C(S) = C(T);

f) Jamison and [ au's Quasi Transitivity Axiom (JLQTA) if
VS, T e [X], S c T\ C(T) implies C(T \S) = C(T);

2) Sen's Quasi Transitivity Axiom (SQTA)if V S,T € [X], Sc T, x,y € C(S), x # y implies
C(T) = {x}.

h)  Fishbum's Quasi Transitivity Axiom (FQTA) if V S, T e [X], [S \ C(S)] ~ C(T) # ¢ implies
C(S)\T # .

Outcasting is generally attributed to Nash [1950]; the Superset Axiom can be found in Suzumura
[1983]; Jamison and Lau's Quasi Transitivity Axiom can be found in Jamison and Lau [1973], Sen's
Quasi-Transitivity Axiom can be found in Sen [1971]; Fishburn's Quasi-Transitivity Axiom can be
found in Fishburn [1975]. The following result can be found in the above mentioned papers and in
Aizerman and Aleskerov [1995].
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Note: O need not imply CA as the following example reveals: Let X = {x, y, z}, C X) = {x, y},
C({xy}) = {x, ¥}, C({y,z} = {y}, C ({x,2}) = {z}. C satisfies O. However, {x,z} c X, x € C(X)
N {x, z} but x ¢ C ({x,2z}). Thus C does not satisfy CA.

Theorem 1: Given a choice function C on X such that C(S) = G(S,R) V S e [X], where R is a binary
relation on X, R is a quasi-transitive if and only if any one of the following holds:

i Outcasting;

ii Superset Axiom;

iii Jamsion and Lau's Quasi-Transitivity Axiom;
v Sen's Quasi-Transitivity Axiom;

v Fishburn's Quasi-Transitivity Axiom.

We now introduce a new quasi-transitivity axiom, similar in spirit to Sen's Quasi-Transitivity Axiom.
This Axiom is originally due to Nehring (1997).

New Quasi Transitivity Axiom (NQTA): A choice function C on X is said to satisfy the New Quasi
Transitivity Axiom if ¥ S € [X], [x, y € S\C(S) implies yg C(S\{x})].

We now introduce the following result:

Theorem 2: Let C be a choice function on X such that C(S) = G (S, R) V S € [X], where R is a binary
relation on X. Then R is quasi-transitive if and only if C satisfies NQTA.

Proof: Suppose C(S) = G (S, R) V S € [X], where R is a quasi-ordering on X. Let x, y € S\ C(S).
Since S is finite and R is a quasi-ordering, there exists z € C(S) such that (zx) € P(R). Thus, z € S\
{y}. Hence,x ¢ G (S\ {y}, R)=C(S\ {y}).

Now suppose C(S) = G(S,R) V S e [X] and C satisfies NQTA. Let (xy) € PR), (v,z) ¢ (P,R). Let S
= {x,y,z}. Since C(S) # &, we must have C(S) = {x}. Hence (zx) ¢ P(R). If (x,z) ¢ P(R), then

C ({xz}) = {x,z}. However, theny, z € S\ C(S) and z € C (S \ {y}), contradicts NQTA. Thus, (x,z)
€ P(R). This proves the theorem.

»

Further, by appealing to Proposition 2 and Theorem 2, we may now assert the following :

Theorem 3: Given a choice function C on X, there exists a quasi-ordering R on X such that C(S) =
G(S,R) V S € [X] if and only if any one of the following holds :

a)  C satisfies CA, GC and NQTA;
b)  C satisfies BSAA and NQTA.

4.Complete Logical Independence of CA, GC and NQTA :
Example 1: A choice function which does not satisfy either CA or GC or NOTA: Let X = {x,y,z},

€O = {x}, C ({xy}) = {xy}, C({y.z}) = {y.z}, C({xz}) = {z}, C({a}) = {a} Va € X. Since x ¢
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C({x,z}), C does not satisfy CA. Since z ¢ C(X), C does not satisfy GC; since y, z € X \ C(X) and ze
C X\ {y}), C does not satisfy NQTA. We have here a choice function which does not satisfy BSAA
either : x ¢ C ({x,z}) and BSAA implies (x,z) ¢ R.. However z € X and x € C(X), contradicting
BSAA.

Example 2: A choice function which does not satisfy either CA or GC but satisfies NQTA : X =
{xy.z}, CX) = {xy}, C ({xy}) = {xy}, C({y,z}) = {y,z}, C({xz}) = {2}, C({a}) = {a} Va e X. C
does not satisfy CA since x ¢ C({x,z}); C does not satisfy GC since z ¢ C(X). However, C satisfies
NQTA. Note C does not satisfy BSAA : x ¢ C ({x,z}) implies by BSAA, (x,z) ¢ R.. Howeverz e
X and x £ C(X), contradicting BSAA.

Example 3: A choice function which does not satisfy either CA or NQTA, but satisfies GC : X =
{xy.z}, C(X) = {x}, C ({xy}) = {x}, C({y,z}) = {y}, C({x,z}) = {z}, C({a}) = {a} V a € X. C does
not satisfy CA, since, x ¢ C({x,z}); C does not satisfy NQTA, since y, z ¢ C(X), but z € C (X \ {y}).
However, C satisfies GC vacuously. Note that C does not satisfy BSAA: x ¢ C ({xz}) and BSAA
imply (x,z) ¢ R; contradicting z € X and x € C(X).

Example 4: A choice function which does not satisfy either GC or NOTA but satisfies CA : X =
{xy,z}, CX) = {x}, C(S)=S V S € [X], S # X. C does not satisfy GC since y ¢ C(X). C does not
satisfy NQTA, sincey, z € X\ C(X) but z € C (X \ {y}). However, C satisfies CA. Note that C does
not satisfy BSAA : y € X\ C (X) implies either (y,x) ¢ R. or (y,2z) ¢ R; contradicting y € C({x,y})
andy € C ({y,z}).

Example 5: A choice function which does not satisfy CA, but satisfies GC and NQTA : X = {x)y,z},
CX) =X, C({xy}h) = {x}, C({y,z}) = {y}, C({xz}) = {z}, C({a}) = {a} V a € X. C does not satisfy
CA, since, y ¢ C({xy}). However it satisfies GC and NQTA vacuously. Note C does not satisfy
BSAA: y e {xy}\C({xy}) implies by (x,y) & R. contradictingy € X and x € C(X).

Example 6: A choice function which does not satisfy GC, but satisfies CA and NQTA : X = {x.y,z},
CX) ={xy},C(S)=S VS € [X], S # X. C does not satisfy GC, since z ¢ C(X). C satisfies CA. C

satisfies NQTA vacuously. Note C does not satisfy BSAA : z € X\ C(X) implies by BSAA either (zx)
¢ R.or (zy) ¢ R, contradicting z e C ({x,z}) and z € C ({y,z}).

Example 7: A choice function which does not satisfy NQTA, but satisfies CA and GC : X = {xy,z},
CX) = {x}, C ({xy}) = {x}, C({y:z}) = {y}, C({x.z}) = {x,z}. C satisfies CA and GC. But C does

not satisfy NQTA: y, z e X\ C(X) and yet z € C (X \ {y}). Note C satisfies BSAA.

Example 8: A choice function which satisfies CA, GC and NQTA : X = {xy,zw}, C(X) = {x,w}, C
({xy}) = {x}, C({y;z}) = {y}, C({x2z}) = {x}, C({x,w}) = {x,w}, C({zw}) = {zw}, C({y,w}) =
{y;w}, C ({xy.2}) = {x}, C({xy,w}) = {x;w}, C({xzw}) = {x,w}. C({y,zw}) = {y,w}. C satisfies
CA, GC and NQTA. Note that C satisfies BSAA as well.Let,R = {(x,x), (¥,¥), (z2), (W,W), (X,y), (¥,2),
(x%2), (XW),(W,X), (;W), (W,y), (zw), (W;2)}. C(S) = G(S, R) V S ¢ [X]. R is a quasi-ordering.
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However, (zw) € R and (w,x) € R. Yet (zx) ¢ R. Hence R is not transitive. Thus, R is not an
ordering. In view of Proposition 1, we may conclude that there does not exist any ordering on X, such
that for every S in [X], C(S) is equal to the set of best in S with respect to the given ordering.

Note: Example 1 above gives an example of a choice function which does not satisfy either BSQTA or
NQTA; Examples 2, 5, 6 above gives examples of choice functions which satisfy NQTA but not
BSQTA. Thus, in view of Theorem 1 and Theorem 2 we may conclude the following.

Theorem 4 : BSQTA implies NQTA. However, the converse is not true.

5.Relationship of NQTA with other axioms:

It may be interesting to compare the relative strengths of SQTA and NQTA.Towards that goal we
have the following result to offer:

Theorem 5: NQTA implies SQTA.However the converse is not true.

Proof : Suppose C satisfies NQTA and towards a contradiction suppose that there exists A,.B € [X]
with BcA and there exists x,y € C(B) with x # y but {x}=C(A).Since this is clearly not possible with
B=A, we must have BccA.Let A\B={x,,...,X},for some positive integer r.Clearly, y ¢ {xi,...,.X;}.
Suppose C(BU{ xi})={y} . Then x, ,x € (BU{ x;}) \ C(B{ x:1}) and x €B contradicting NQTA.Thus,
CBuU{ xi}) # {y}.Now suppose {y}#CBU{ Xi,....Xq}) for g<r.Towards a contradiction suppose,
{y}=CBUL X1,....Xg1 })-

Casel: y ¢ C(BUS Xi,....Xq})- Let z € C(BU{ x,...,X}). Thus z #y.Thus, z, X¢1 € (BU{ Xi,...,Xq+1})
\CBU{ Xi,...;Xg+1}), and z € C(BUA x,...,Xq} ), contradicting NQTA.

Case2: {y}cc C(BU Xi,....Xq}). Let z € C(BUL xy,...,Xq}), With z 2y. Thus, z, X+ €

(BU{ XiyeeerXgr1 }) \CBU X1yeriiXq1}), and z € CBUA Xy,...,Xg}), contradicting NQTA.

Hence, {y}#C(BuU{ xi,...,.X+1}).-By a simple induction argument,we may conclude that {y}#C(A).
Thus, C satisfies SQTA.

To show that SQTA does not necessarily imply NQTA, let X={x.,y,z}.Define C:[X]—[X] as follows:
CX)={x} and C(A)y=A for all A e[X]\{X}.C satisfies SQTA vacuously.However, y,z eX\C(X) and
yet, y € C({xy}), contradicting NQTA.

&

A choice function C is said to satisfy:

Generalized Axiom of Revealed Preference(GA) if [y € A \ C(A), C(A) c B] implies [y ¢ C(B)]
VA Be([X]andy € X,

Nehring’s Axiom of Revealed Preference (NA) ify € A\ C (A) implies y ¢ C(C(A) L {y} );

Aizerman and Malishevski’s Axiom (AMA) if V A, B € [X], [C(A)c Bc A] 5> [CB) cC
A];



GA and NA appear in Nehring [1997] with the latter under the name of ps ; AMA originates in
the work of Aizerman and Malishevski [1981]. This axiom has been used in Nehring and Puppe
[1999], and hence the main result reported here, has obvious implications in that paper as well.

Theorem 6:- AMA & NQTA

Proof: The fact that AMA implies NQTA is obvious. Hence let us prove the converse and that
too by induction. Thus suppose C is a choice function which satisfies NQTA. Let A, B € [X],
C(A) © B c A, and x be an arbitrary element of A \ C(A). We prove our result by backward
induction on the cardinality of B.

LetB=A\ {y} forsomey € A\ C (A). By NQTA, x ¢ C (B). Since x is arbitrary, C (B) c C
(A) whenever B=A\ {y}andy € A\ C (A).

Now suppose for any yi, ..., yr € AN C(A),if B=A\ {y, .., ¥}, thenC (B)c C(A).

Let yvi € ANC(A), yre1 € { Y15 s Vi)

Let B=A\{yi,...¥% }andthusB= B \ {yu}

By NQTA, C (B) = C ( B ). However, by the induction hypothesis, C (B ) = C(A). Hence,
C(B) < C(A).

Since the result has been proved for r = 1 and has now been shown to be true for r+ 1 if it
assumed true for r, it is therefore true in general.

»

Theorem 7:- AMA & CA & GA.

Proof: Let C be a choice function which satisfies AMA and CA. Let A,B € [X]andlety € A\
C (A) with C (A) c B. “

Consider AN B. Clearly C(A)c AnBc A. ByAMA, C(AnB)cC(A).

By CA, A N B c B implies C (B) n ( AnB) < C (A n B).

Thus C(B)n Ac C(ANnB)cC(A).

Thus y ¢ C(B).

Thus C satisfies GA.

Conversely, let C satisfy GA. Then it obviously does satisfy AMA. To show that it satisfies CA,
let A, B € [X] with A c B.Let x € C(B) N A. If x ¢ C(A), then since C(A) c B, by GA, x ¢
C(B) which is a contradiction. Thus, x € C(A). Thus C(B) N A < C(A). Thus C satisfies CA.
Y

Example 9: AMA (&> NQTA) does not necessarily imply GA: Let X={xy,z}, CX) = {x,
v} C({x, yh = {x}, C{{y, z}) = {y}, C({x, z}) = {z}, C ({a}) = {a} V a € X. C satisfies AMA
(and NQTA). However, y € {x,y} \ C({x,¥}), C(X) c {x, y} and yet y € C(X). Thus C does
not satisfy GA.
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Example 10; CA does not necessarily imply GA: Let X ={x,y, z}, C(X) = {x}, C(A)= AV
A €[X], A # X. C satisfies CA. However,y € X\ C (X), C(X) c {x, y} and yet y € C({x, y}).
Thus C does not satisfy GA. |

Theorem 8: (a) CA & AMA implies O; O implies AMA;
(b) AMA need not imply O.

Proof: (a)is easy to establish;(b)Let X = {x, y, z}, C (X) = {x, y}, C({x,y}) = {x}, C({y,z} = {y},
C ({x,z}) = {z}. C satisfies AMA. However, C(X) = {x, y} c {x, y} c X, but C({x, y}) = C(X).
Thus C does not satisfy OA.

&

We may thus state the following theorem:

Theorem 9: Given a choice function C on X, there exists a quasi-ordering R on X such that C(S) =
G(S,R) V' S e [X] if and only if any one of the following holds :

a)  C satisfies CA, GC and AMA;
b)  C satisfies GC and GA.

The following observation is worth noting:
Observation: AMA implies NA. However, the converse need not be true.

Proof: Let C satisfy NA and let A € [X],y € X withy € A\ C(A). Thus C(A) c

CA)u {y} cA. ByAMA, C(CA) U {y}) c C(A). Thus,y ¢ C (C(A) v {y}). Thus C
satisfies NA.

We show that the converse need not be true by'means of an example: Let X = {X, y, z, w}. Let
CX) ={x}; C(A)= AV A € [X] with three elements; and for all A € [X] with one or two
elements, C(A) = {x} if x € A and C (A) = A otherwise. Nowy,ze X\ C(X)and yety €

C (X \ {z}). Thus C does not satisfy NQTA, which has been shown in Theorem 1 above to be
equivalent to AMA. Yet C satisfies NA.

&

Our primary reason for invoking and emphasising NQTA is because of the significant role it plays in
obtaining a neat characterization of quasitransitively rationalizable choice functions generated by a
monotonic preference for freedom, as we shall observe later on.

The analysis of quasi-transitive rational choice acquires added relevance in view of the close
relationship that exists between quasi-transitive binary relations and the class of comparison functions
defined in Dutta and Laslier [1999].A function g:XxX—R, where R is the set of real numbers, is
called a comparison function if V¥ x, y € X, g(x,y) = - g(y,x).This obviously implies that g(x,x) =0 V x
e X

Given x, y € X, we say that x covers y via g if g(x,y)>0 and g(x,2) > g(y,2) V z ¢ X .Let P(g) = {(xy)/ x
covers y via g}and let R(g)={(x.y)/ (y.x) & P(g)}.Clearly,P(R(g)) = P(g), and it is easy to verify that
R(g) is reflexive,complete and quasi-transitive. The following observation which is proved in the



appendix implies that a choice function C is rationalizable by a reflexive,complete and quasi-transitive
binary relation R if and only if, for some comparison function g, C(S) = G(S,R(g)) V S € [X]:
Observation;: A binary relation R is reflexive,complete and quasi-transitive if and only if R=R(g) for
some comparison function g.
6.Monotonic Preference for Freedom :A binary relation 3 on [X] is any non-empty subset of [X]x[X].
Let I'={(S,S)/Se [X]}.33 is said to be reflexive if ' J . J is said to be transitive if (S,T),(T,U) €3
implies (S,U) 3. Let, M={(S,T)/TcS}. Note 'c M .that J is said to be Monotonic with respect to
Set_Inclusion MSDif Mc3.Given 3 let P(I)={(S,T) €3/(T,U)e3} and I(I)={(S,T) €3/(T,S)
€3}.3 is said to satisfy Preference for Freedom of Choice(PFC)if V Se[X] which has atleast two
elements,there exists xeS with (S,S\{x})e P(3).A binary relation Jon [X] which is reflexive,transitive
and satisfies PFC is said to be a Preference for Freedom (PF).If in addition it satisfies MIS, it is said to
be a Monotonic Preference for Freedom (MPF).
Let 3 be a MPF.Define E4:[X]—[X] as follows:
Ex(S)=S ,if S has exactly one element;

= {x eX/(S,S\{x})e P(3)},otherwise.
It is easy to see that E5 is well defined by virtue of PFC.
Let Ry ={(xy)/xe Es({x,y}).

Observation:Given an MPF 3 if there exists a binary relation R on X such that Es5(S)=G(S,R) V
Se[X],then R=Rs.

A PF 3 is said to satisfy Independence with respect to Non-essential Alternatives (INA) if (E4(S),S)
€3, for all Se[X].

Theorem 10: Let 3 be an MPF. J satisfies INA if and only if Eg satisfies NQTA.

Proof: Suppose 3 satisfies INA and towards a contradiction suppose that there exists Se[X] with

%y €S\ Ex(S) and y € E3(S\{x}).Hence xsty.By INA and MIS, (Ex(S),S) €I(3).Now, y € Es(S\{x})
implies (S\{x},S\{x,y})eP(3) and by MSI ,(S,S\{x})e3.Since x,yeS\ Ex(S), Es(S) < S\{xy}.By
MSI, (S\{x,y}, Ea(S)) €3, so that by transitivity of 3 (S, E3(S)) €P(3) contradicting INA.Hence E5
satisfies NQTA.

Now suppose Ej satisfies NQTA and let Se[X].If E5(S)=S, then clearly (Es(S),S) €3, by reflexivity
of 3.Hence, suppose Ex(S) cc S.Let S\ E5(S)={xi,...,X},for some positive integer r.By MSI and
definition of Eg, (S,S\{ y})€l(3J) for y e {xi,...,x;}. Hence if r=1, (S, E5(S)) €I(J).Thus,suppose r >1.
Suppose (S\{ ¥1,.-..¥a}> S\ ¥iseesYar1 DENI) ,V { Yipooos¥gr1} € {Xi5e.Xe} and for g=1,...,s <r-1.
Consider, S\{ y1....,Ys+1}.NOW, Vsi1 ,¥522€ (S\{ ¥1,-...¥s} \ Ea (S\{ ¥1-..,y5}). By, NQTA,

Ys2€ (S\{ Y1,-.5¥s 5¥sr1 I\ Es (S\{ y1,-.0,¥5 5¥s+1 }). Thus, (S\{ y1,--.,¥s+1}5 S\{ ¥i,...0¥s12}) €1(3).By a
standard induction argument and transitivity of I, (Eg(S),S) €3. Thus 3 satisfies INA.

»

We have already seen in Theorem 5,that NQTA implies SQTA and that the converse is not true.
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Let X={xy,z} and let 3 =M U {(S,T) €[X]x[X] /x € S and S has atleast two elements} It is easily
checked that 3 is an MPF and E+ = C, where C is the choice function in Theorem 5 which satisfied
SQTA but did not satisfy NQTA.Hence, we may assert:

Proposition 4: There exists an MPF 3 such that E4 satisfies SQTA but does not satisfy NQTA.
Theorem 11: Let 3 be an MPF such that Eg satisfies CA and GC.Then Eq satisfies NQTA.

Proof: Let 3 be an MPF such that E; satisfies CA and GC and towards a contradiction suppose that
there exists S €[X] with x,y eS\E3(S) and yet y eEx(S\{x}).Hence since 3 is an MPF:

(D) (S,S\{x})e I(3);

(2) (5,S\{yHe I(3);

(3) (S\{x}.8\{x.y})e P(3J).

Thus by transitivity of J, we get ( S\{x},S\{y})e I(J) which leads to ( S\{x},S\{x,y})e P(3), once
again by the transitivity of 3.Hence, by the definition of Es, x €Ex(S\{y}).By CA, x €Es({x,z})

Vz e S\{y} and y eEx({y,z}) Vy € S\{y}.Since, x,y eS\E5(S) by GC, Es({x.y}) = ¢, contradicting
the fact that the range of E5 does not contain the empty set.Hence E4 satisfies NQTA.

*

Corollary to Theorem 11: Let 3 be an MPF such that Ey satisfies CA and GC. Then E4(S) = G(S,
Ry) for all Se[X], and Ry is a quasi-order.

Proof: Follows easily from Theorems 3 and 11.
r

Example 11: An MPF 3 such that E4 satisfies CA and NQTA but does not satisfyy GC : Let
X={xy,z} and let I = M U {({x,y},S)/Se[X]}. I is an MPF.Now, E5(X) ={xy}, and E5(S) =S
for all Se[X] \{X}.Clearly Eq satisfies CA and NQTA.However z € E5({za}) V a € X, and yet
z € X\ E5(X) contradicting GC.

Example 12: An MPF 3 such that E4 satisfies GC and NQTA but does pot satisfyy CA : Let

X={xy,z} and let 3= MU {({x},S)/Se[X], and S has atmost two elements} U {({y},S)/ Se[X] and
x¢ S}. 3 is an MPF. Now, Ex(X) =X, Es({x,y})= {x}= Es({x.2}), Es({y,z})={y} and E5(S)=S
otherwise.Clearly Ey satisfies GC and NQTA.However,z € Es(X) {x,z}, but z € {x,z}\ E5({x,z})
contradicting CA.

Example 13: An MPF 3 such that E4 satisfies CA but does not satisfyy either GC or NQTA : Let
X={x,y,z} andlet 3= MU { ({x, ¥}, SYS e [X] } U { ({x 2}, S)V S € [X] }. J is an MPF. Now,
Es(X) = {x}, E5(S) = S otherwise. Clearly Eq satisfies CA and NQTA. However, y € E5({x, y}) N
Es ({y, z}), but y € X\E5(X), contradicting GC.
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Example 14: An MPF 3 such that Eg satisfies GC but does not satisfyy either CA or NQTA : Let
X={xy.zw} and let 3= MU { ({x, ¥z}, SV S € [X] } U { ({x, y;w}, SY'S & [X] }U {({x}, {xy}),
({x}, {y})- 3 is an MPF. Now, Eg(X) = {xy}, Es({xy}) = {x}, E5(8) = S otherwise. Clearly Eq
satisfies GC. However, w,z € X\E4(X) and w € E5 ({xy, W}), contradicting NQTA. Further,
yeEs(X) N {xy}, and yet y € {x, y}\ E5 ({x, y}), thus contradicting CA.

Proposition S: Suppose X has three or less elements. Then for any MPF 3, [Eg satisfies GC] implies
[Eq satisfies NQTA].

Proof: If X has one or two elements then NQTA is satisfied vacuously.The same is true if X has three

~ elements and E5(X) has two elements.Hence assume X has three elements and without loss of
generality suppose Ex(X) = {x}.Thus (X,{xy}) and (X,{x,z}) € I(3) and by transitivity of 3
({xy},{x,z}) € I(3) as well. Now a violation of NQTA occurs if (without generality) y € E5({x, y}) .
Thus, ({xy},{x}) € P(3) and consequently (since ({x,y},{x,2}) € [(3)).({x,2}.{x}) € P(3).
However, then z € Eg({x, z}). Since Ex({y,z}) N {y.z}# ¢, {y,2}< X\ Ex(X), leads to a contradiction
of GC, thereby proving the proposition.

»

Example 15: An MPF J such that E+ satisfies NQTA but does not satisfy either CA or GC : Let
X={xy,z} andlet 3= MU { ({y, z}, Sy S e [X] } L { ({x}, SY/ S e {{xy}.{xz},{y}.{z}}}. Jis
an MPF. Now, E3(X) = {32}, Es({xy})= {x}= Ea({x,2}), Ea({y:2})={y,z} and Eq(S) = S otherwise.
Clearly E5 NQTA. However, x € E5({x, y}) N E5 ({x, z}), but x € X\Ex(X), contradicting GC.
Further, z € Es(X)N {x,z}, but z € {x,z}\ Ex({x,z}) contradicting CA.

Example 16: An MPF 3 such that E5 satisfies both CA and GC and hence NQTA : Let 3 ={(S,T) €
[X]x[X] / cardinality of S is not less than the cardinality of T}.This is the MPF due to Pattanaik and
Xu [1990]. The corresponding Ej is easily seen to satisfy CA,GC and NQTA.The interesting thing
about this MPF is that Ry =XxX.
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Appendix

Theorem: A binary relation R is reflexive,complete and quasi-transitive if and only if R=R(g) for some
comparison function g.

Proof’ Let g be a comparison function with R(g) and P(g) being as defined in Section 4. It is easy to
see that R (g) is reflexive an complete. Hence let us show that P(g) is transitive. Let (X, y), (¥, 2) €
P(g). Thus :

(@ gx y)>0,g(y,2)>0

®) gx, W) 2 gy, w), gy, W) 2g(z W) Vwe X.

Thus g(x, ) 2 g(y, z) > 0

and g(x, w) 2 g(zz w) Vw e X.

Thus (x, 2) € P(g).

Thus P(g) is transitive.

Now let R be a reflexive, complete and quasi-transitive binary relation. Given x € X, let
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P@)={yeX/(y,x) eP®)}and IX={yeX/(y,x) €IR)}.
Let  R(x)=P(x) U I(x). Clearly R(x) # ¢, since x € R(x).
Let  A'(x)=G(R, R(x)).Having defined A'(x) fori=1, .., k, let

A*'(x) = GR, R®) (QA"(x)) )

K .
Since R(x) is finite, there exists a positive integer K : R(x) = | JA'(x) . Observe,i#j,j € { 1, ..., k}

implies A'(x) N A'(x) = ¢. Let g(y, x) = K- i if y € A'(x) < R(x).

Clearly g(x, x) = 0. Since R is complete, y ¢ R(x) implies x € P(y). Let, g(y, x) =- g(X, y) if y & R(x).
Thus g : X x X — R, is indeed a comparison function. Let (x, y) € P(R). Thus, x € P(y) and hence
g(xy) >0.Letze X\ {x, y}.

Case | :-y € R(z), x ¢ R(2).

Thus (y, z) € R and (z x) € P(R).

If (y, z) € P(R), then transitivity of P(R) implies (y, xX) € P(R) contradicting (X, y) € P(R). Thus (y, z)
€ I(R). But then (z x) € P(R) & (x, y) € P(R) implies by the transitivity of P(R) that (z, y) € P(R)
contradicting(y, z) € I(R). Hence Case 1 is not possible.

Case 2 :- y € R(z) and x € R(2). In this case, since(X, y) € P(R), the method of construction of g
shows that g(x, z) > g(¥, 2), since y cannot be chosen while x is still available.

Case 3:- y ¢ R(z) and x € R(2). in this case, g(x, z) > g(y, z) by the definition of g.

Case 4 :-y ¢ R(z) and x ¢ R(z). Thus z € P(x) and z € P(y). Now (x, y) € P(R) implies, x € P(y).
Since(z, x) € P(R) and (%, y) € P(R), if (z, w) € P(R) & (W, X) € P(R) for some w € X, then(w, y) €
P(R) as well. Thus g(z, x) < g(z, y). Hence g(y, z) > g(x, 2),since g(y, ) = g(z, y) and g(x, 2) = g(z, X).
Hence (x, y) € P(g).Thus P(R) < P(g).

Now suppose (x, y) € P(g). Thus g(x, y) > 0.

Hence x € P(y). Thus (x, y) € P(R). Thus, P(g) < P(R). This combined with P(R) < P(g) yields P(g) =
PR).

Now suppose, (x,y) € I(R). Thus x € I(y) and y € I(x). Thus g(x, y) = g(y, x) = 0. Thus, (x, y) ¢ P(g)
and (y, X) ¢ P(g). Thus (x, y) € I(g). Thus I(R) < I(g). Now suppose (x, y) € I(g). If (x, y) € P(R),
then since P(R) = P(g), (x, y) € P(g) which is not possible. Thus, (x, y) ¢ P(R). Similarly, (y, x) &
P(R). By completeness and reflexivity of R, (x, y) € I(R). Thus I(g) < I(R). This combined with I(R) <
I(g) gives us I(R) =1(g).Since R and R(g) are reflexive and complete, we get R=R(g).
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