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ABSTRACT
Two stage selection procedures are quite common. Decisions arrived at on the
basis of the composition of the binary relations in some form, is what is implemented
in such two stage choice procedures. The resulting binary relation is referred to as a
lexicographic composition of the individual binary relations.
In this paper we begin by obtaining a necessary and sufficient condition for a quasi
transitive binary relation to be transitive. Then we obtain necessary and sufficient
conditions for the lexicographic composition of two quasi transitive binary relations
to be quasi transitive. In passing it is noted that the lexicographic composition of two
transitive binary relations is always transitive. Finally, we obtain conditions for the
lexicographic composition of two binary relations to be acyclic. It is observed that if
the second stage binary relation is acyclic, then the lexicographic composition is
acyclic if and only if the first stage binary relation is. All our binary relations are
assumed to be reflexive and complete. Such binary relations are called abstract
games.
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1. Introduction :- Two stage selection procedures are quite common. For instance to be
able to graduate in a two year program, it is often the requirement that one

successfully completes the first year and then follows it by a successful completion of
the second year. In interviews we often find and initial short list of candidates whose
applications are reviewed in a second round of screening. The criteria by which
candidates are selected at each stage is summarized in a binary relation. Decisions
arrived at on the basis of the composition of the binary relations in some form, is what
is implemented in such two stage choice procedures. Aleskerov (1999) refers to the
resulting binary relation as a lexicographic composition of the individual binary
relations.

A study of optimization based on the lexicographic composition of quasi transitive
binary relations (i.e. binary relations which are representable by a vector valued
function, such that one alternative dominates another alternative according to the
binary relation if and only if the vector assigned to the first alternative is component
wise greater than the vector assigned to the second alternative;(see Lahiri (2000 a) for
a discussion of this and similar results)) was initiated by Aizerman and Malishevsky
(1986) and followed up in Lahiri (2000 b).

In this paper we begin by obtaining a necessary and sufficient condition for a quasi
transitive binary relation to be transitive. Then we obtain necessary and sufficient
conditions for the lexicographic composition of two quasi transitive binary relations to
be quasi transitive. In passing it is noted that the lexicographic composition of two
transitive binary relations is always transitive. Finally, we obtain conditions for the
lexicographic composition of two binary relations to be acyclic. It is observed that if the
second stage binary relation is acyclic, then the lexicographic composition is acyclic if
and only if the first stage binary relation is. All our binary relations are assumed to be
reflexive and complete. Such binary relations are called abstract games. A
comprehensive introduction to binary relations and state of the art results in the same
and related areas can be found in both Aizerman and Aleskerov (1995) and Aleskerov

(1999).

2. The Framework :- Let X be a non-empty finite set and let [X] denote the set of all
non-empty subsets of X. Given a binary relation R on X, let P(R) = {(x,y) € R:(y.x)¢R}
and let I[(R) = {(x,y) € Ri(y,x)eR}. P(R) is called the asymmetric part of R and R) is
called the symmetric part of R. Let A(X) = {(x,x):xeX}. A(X) is called the diagonal of X.
A binary relation R on X is said to be :

(i) reflexive if A(X)c R;

(1) complete if (XxX) \ A(X) = P(R)UI(R);
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(iii) an abstract game if it is both reflexive and transitive;

(iv) acyclic if for all positive integers n and x(1),.....x(n) in X :
[vie{1,....n-1}:(x(i) x(i+1)) e P(R)] implies [(x(n),x(1))¢P(R)];

(v) transitive if Yx,y,zeX : [{(x,y).(y.2)} c R] implies [ (x,y)eR];

(vi) quasi transitive if P(R) is transitive.

Given a binary relation R (on X) and a set H [X], let M(H,R) denote the set {xeH :
there does not exist ycH with (y,x) eP(R)}.

The following well known proposition is available in Kreps (1988):

Proposition 1: Let R be a binary relation on X. Then [VHe[X] :M(H,R) =¢] if and only if R

is acyclic.

Let B(X) denote the class of abstract games on X,A(X) the class of acyclic abstract
games on X, Tr.(X) the class of transitive abstract games and QT(X) the class of quasi
transitive abstract games. Clearly, Tr.(X) < QT(X)c A(X)c B(X).

Let R,S e B (X). The lexicographic composition of R followed by S denoted R+S =
P(R) U (I(R) n S). Clearly, P(R*S) = P(R) U (R) n P(S)) and I(R+S) = (R) N I(S)).

3. Preliminary Results:-

Theorem 1: Let R eQT(X). Then the following are equivalent :

() [(xy)eP(R), (v,2)el(R)] implies [(x,2)eP(R)};

(ii) [(x.y)el(R), (v.2)eP(R)] implies [(x,z)eP(R)];

(iif) there does not exists x,y,z,eX such that (x,y)el(R),(y,z)el(R) and (x,z)eP(R);
(iv) ReTr.(X).

Proof :- (i)—(ii) : Towards a contradiction suppose (x,y)el(R),(y,z)eP(R) and
(x,2)2P(R). If (z,x) e P(R), then since ReQT(X) along with (y,z)P(R), we get (y,x)cP(R)
contradicting (x,y)el(R). If (z,x) el(R), then (y,z)eP(R) and (i) implies (y,x)eP(R),
contradicting (x,y)el(R).Hence (x,z)eP(R). Hence (i)—(ii).

(i) (iii) : Towards a contradiction suppose there exists x,y,z eX such that (x,y)el(R).
(v,z)el(R) and (x,z)eP(R). Now (y,x)el(R), (x,2)eP(R) and (ii)gives (y,z)eP(R)
contradicting (y,z) el(R). Hence (ii)—(iii).

(il)—(iv) : Let (x,y)eR and (y,z)eR. Towards a contradiction suppose (x,2)¢R. Since
QT(X)cB(X), we must have (z,x)eP(R). If (x,y)eP(R), then since ReQT(X), we get
(z.,y)eP(R) contradicting (y,z)eR. Thus, (x,y)el(R). If (y,z)eP(R), then since ReQT(X),
along with (z,x)eP(R) we get (y,x)eP(R) contradicting (x,y)eR. Thus (y,z)el(R). But
then (x,y)el(R), (y,z)el(R) and (z,x)cP(R) contradicts (iii) (:with the roles of x and z
interchanged).Thus (x,z) €R. Thus (iii)—>(iv).

(iv)—(i) : Suppose (x,y)eP(R), (y,z)el(R) and towards a contradiction suppose
(x,2)£P(R). Then since ReQT(X)cB(X) we get (z,x)eR. If (z,x)eP(R), then (x,y)eP(R)
and ReQT(X) implies (z2,y)eP(R), contradicting (y,z)el(R).Hence (z,x)el(R). But
(v,2)el(R), (z.x)el(R) and ReTr.(X) implies (y,x)eR contradicting (x,y)eP(R). Hence
(iv)->(i).

Q.E.D.



Let ReB(X). Then an ordered triplet (x,y,z) is said to be an R-triad if (x,y).(y.2)el(R) and
(x,2)eP(R). Hence statement (iii) in Theorem 1, says that there is no R-triad. In theorem
1, we prove that a quasi-transitive abstract game R is transitive if and only if there is no

R-triad.

Theorem 2 :- Let R, SeTr.(X). Then R+SeTr.(X).

" Proof - First let us show that R«SeQT(X).

Let (x,y).(y.2)eP(R#S). Thus (x,y),(y,z) e P(R)YU(I(R)NP(S)). If (x,y).(y.2)eP(R), then
(x,2)eP(R), since ReTr.(X). Thus (x,y).(y.z)eP(R) implies (x,z)eP(R=S). If
x.y).(y.2)e(I(R)NP(S)), then (x,z)el(R)NP(S), since R,SeTr.(X).
~(%Y),(y,2) e (R)NP(S) implies (x,z)cP(R*S).

Suppose (x,y)eP(R) and (y,z)el(R)"P(S). Thus (x,2)eP(R) since (x,y)eP(R), (v.2)el(R)
and ReTr.(X). Hence (x,y)eP(R) and (y,z)el(R)NP(S) implies (x,z)eP(R#*S). Now
suppose (x,y)e(R)NP(S) and (y,z)eP(R). Then again ReTr.(X) implies (x,y)eP(R*S).
Thus (x,y)el(R)NP(S) and (y,z)eP(R) implies (x,y)eP(R+*S). Hence R*SeTr.(X).

Now let us show that there is no (R+S)-triad in X . Let (x,y), (y,2)el(R*S). Then
(x.y),(y.2)el(R)nI(S). Since R,SeTr.(X) we must have (x,z)el(R)nI(S). Thus
(x,2)el(R*S). Thus there is no (R+S)-triad in X. By Theorem 1, R*SeTr.(X).

Q.E.D.

4. Quasitransitive Lexicographic Compositions :-

Theorem 3:- Let R,SeQT(X). Then R+*ScQT(X) if and only if there does not exist an R-
triad (x,y,z) such that {(z,y),(y,x)}cS and {(z,y),(y,x)}"P(S)=$.

Proof :- Towards a contradiction suppose R+*SeQT(X) and there exists an R-triad
(x,y.2) with {(z,y).(y.x)}<S and {(z,y).(y.X)}"P(S)=¢. Suppose first that (z,y)eP(S). Then
(a)[(x.2)eP(R) implies (x,z)eP(R*S)], (b){(z.y)<l(R) and (z,y)eP(S) implies
(zy)eP(R+S)], and thus, (c) [R+SeQT(X) implies (x,y)eP(R*S)]. But (x,y)el(R) and
(x,y)eP{R#*S) implies (x,y)eP(S) contradicting (y,x)eS. Hence there does not exist an
R-triad (x,y,z) with {(2,y),(y,%)}<S and (z,y)eP(S).

Now suppose (x,y,z) is an R-triad with {(z,y).(y,X)}<S and (y,x)eP(S). Now
(a)[(y,x)el(R)NP(S) implies (y,x)eP(R=*S)],(b)[(x,z) eP(R) implies (x,z) eP(R#*S)]. Since
R+SeQT(X), we get (y,2)eP(R+S). But (z,y)el(R)NS implies (z,y)eR+*S which
contradicts (y,z)eP(R+S). Hence such an R-triad cannot exist.

Now suppose there is no R-triad such as above. Let (x, y)eP(R*S) and,(y z)eP(R*S)
Towards a contradiction suppose (x,z)¢P(R*S). Hence either (x,y)¢P(R), or (y 2)¢P(R).
Suppose {(x,y).(y.2)}c (R)AP(S). If (x,z)eP(R), then (x, 2)eP(R+&.Hence (x z)esP(R) if
(zx)eP(R), then (z,y,x) is an R-triad with (x,y)eP(S), (y.z)eS oontradlctmg our
assumption that such is not possible . Hence (x,z)l(R). But then SeQT(X) and
{(x.y).(y,2)}cP(S) implies (x,2)cP(S) and hence (x,2)e P(R*S) whlch isa gmtradlctlon
Hence either (x,y)gl(R)~P(S) or (y,2)¢l(R)NP(S). . e



Case 1- (x,y)eP(R) and (y,z)el(R)nP(S). If (z,x)eP(R), then ReQT(X) implies
(z.y)eP(R) and a contradiction. If (x,z)eP(R)u( (R)NP(S)), then (x,z) eP(R*S) which
leads to a contradiction. Thus, (x,z)el(R)\ P(S). Hence (x,2,y) is an R-triad with
(y.2)eP(S) and (z,x)eS. This contradicts the assumption about the non-existence of
such triples.

Case 2:- (x,y)e(R)NP(S) and (y,z)eP(R). If (x,z) eP(R)U(I(R)"P(S)), then (x,z)eP(R*S)
leading to a contradiction. Thus (x,z)el(R) \ P(S). Now (y,x,2) is an R-triad with (z,x) €S
and (x,y) eP(S), which is ruled out by hypothesis.

Thus R*SeQT(X).

Q.E.D.

Corollary 1 to Theorem 3:- Let ReTr.(X) and SeQT(X). Then R*SeQT(X).

Proof :- Follows directly from the non-existence of an R-triad if ReTr.(X).

Q.E.D.

Given R,S eB(X) an ordered triple (x,y,z) is said to be an R-S complex if (x,y,z) is an R-
triad such that {(z,y),(y.X)}<S and {(z,y),(y.X)}"P(S)=$. Hence Theorem 3 above says
that given R,SeQT(X),R+SeQT(X) if and only if there does not exist an R-S complex.

5. Acyclic Lexicographic Compositions :-

Theorem 4:- Let ReB(X) and SeA(X). Then [R+SeA(X)] if and only if [ReA(X)].

Proof :- Given He[X],M(H,R+S)={xcH/there does not exist yeH with (y,x)eP(R+S)}

={xeHAhere does not exist yeH with (y,x)eP(R) U(l(R)~P(S))} = M(M(H,R),S).

Now, by Proposition 1, [M(H,R*S)=¢, whenever He[X]] if and only if [R*SeA(X)].
Further, [M(H,R*S)=¢, whenever He[X]] if and only if [M(M(H,R),S)=¢, whenever
He[X]). But,[M(M(H,R),S)=¢, whenever He[X]] if and only if [M(H,R)=$, whenever
He[X]]. This is because, by Proposition 1, [SeA(X)] implies [M(H,S)=¢ whenever He[X]].
Hence, by Proposition 1, [M(H,R)=¢ whenever He[X]] if and only if [ReA(X)]. This
proves the theorem.

Q.ED.
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