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In this paper we consider solutions defined on the class of transitive tournaments. Such
solutions are essentially rank solutions i.e. solutions which depend on the ranks of the
alternatives and not on any other physical characteristic.A solution is said to be a
threshold solution, if for every feasible set of alternatives there exists an alternative such
that the solution set coincides with the set of feasible alternatives which are no worse
than the assigned alternative. We provide an axiomatic characterization of such solutions
using two properties. The first property is functional acyclicity.The second property -
requires that given any set containing just two alternatives only the aiternative with the
higher rank is selected.In order to make the presentation self contained we also provide a
simple proof of an extension theorem,which is used to prove the above mentioned
axiomatic characterization. Subsequently, we provide two theorems which characterizes
the median choice function when the universal set has atleast three alternatives.Several
examples are provided to highlight the relationship between the axioms emphasised in
this paper.It is also noted here that our second axiomatic characterisation breaks down if
the universal set contains precisely two elements.Following our discussion of the median
rank solution, we provide two more axiomatic characterizations.The first is a simultaneous
axiomatic characterization of two solutions: one being that which always chooses the
element with the highest rank from a set and the other being that which always selects the
element with the lowest rank from a set. The second is also a simuitaneous axiomatic
characterization of two solutions: one being that which always chooses the greatest
element from the median choice set of a set and the other being that which always selects
the least element from the median choice set of a set.



Threshold and Median Rank Solutions

BY
.Somdeb Lahiri
Indian Institute of Management
Ahmedabad-380 015
India.
e-mail:lahiri@iimahd.ernet.in
October 2000

Introduction The lllustrated Oxford Dictionary defines the word ‘elect’ as ‘choose’.Hence
the study of electoral processes is the study of processes relating to chosing.The idea of
a function which associates with each set and a binary relation a non-empty subset of
chosen points from the given set, has a long history whose exact origin is very difficult to
specify and in any case is unknown to the author.In Laslier [1997] can be found a very
exhaustive survey of the related theory when binary relations are reflexive,complete and
anti-symmetric.Such binary relations are called tournaments. In a related paper (Lahiri
[2000b])we extend the above set of binary relations to include those which are not
necessarily anti-symmetric.Such binary relations which are reflexive and complete are
referred to in the literature as abstract games. Peris and Subiza [1999] call such binary
relations weak tournaments. In their work they extend the analysis of uncovered solutions
from the class of tournaments(: as in Dutta [1988]) to the class of abstract games. Related
endeavours, where solution concepts have been extended from the domain of
tournaments to the domain of abstract games,are Schwartz [1986],Bordes [1983],Banks
and Bordes[1988],Henriet [1985] and more recently Lahiri [2000b].An ordered pair
comprising a non-empty subset of the universal set and an abstract game is referred to as
a subgame.A (game)solution is a function which associates to all subgames of a given
(nonempty) set of games,a nonempty subset of the set in the subgame.Lucas [1992] has a
discussion of abstract games and related solution concepts, particularly in the context of
cooperative games.Moulin [1986],is really the rigorous starting point of the axiomatic
analysis of game solutions defined on tournaments,i.e.anti-symmetric abstract
games.Much of what is discussed in Laslier [1997] and references therein carry through
into this framework.In Lahiri [2000 c],we obtain conditions that are either necessary or
sufficient for an abstract game, so that every subgame has atleast one von Neumann-
Morgenstern stable set.

In this paper we consider solutions defined on the class of transitive tournaments
(:transitive tournaments are also known as linear orders).Such solutions are known as
rank solutions, since a transitive tournament, essentially provides a ranking of
alternatives, and the chosen alternatives from a given set of alternatives depend on their
ranking. In particular we are concerned with rank solutions which may not always coincide
with chosing the “best” from the set of available alternatives. Such choice procedures are
rather common,since the concept of “chosing the best” apart from being rather myopic,
may not always be the most desirable purpose of an electoral process.Considerations
such as “representability” or “deliverability” may be more pertinent while electing a
candidate.



A rank solution is said to be a threshold solution, if for every feasible set of alternatives
there exists an alternative such that the solution set coincides with the set of feasible
alternatives which are no worse than the assigned alternative.Such solutions are closely
related to the threshold choice functions of Aizerman and Aleskerov [1995] and are very
much in evidence in real world electoral processes as for instance the Rajya Sabha i.e.
the Upper House of the Indian Parliament. In order to be elected to the upper house one
needs to secure a certain number of votes from an electoral college comprising of
parliamentarians elected according to the principle of universal adult franchise. The
process is tantamount to electing candidates who secure atleast as many votes as a
particular candidate. We provide an axiomatic characterization of such solutions using two
properties.The first property called functional acyclicity,is originally due to Aizerman and
Aleskerov [1995]. The second property requires that given any set containing just two
alternatives only the alternative with the higher rank is selected.This property is called the
binary choice property. In order to make the presentation self contained we also provide a
simple proof of an extension theorem due to Suzumura [1983] ,which is used to prove the
above mentioned axiomatic characterization.

Subsequently we focus our attention on the median rank solution. Consider the situation
where one has to choose one among three differently priced birthday cakes,to give to a
friend.lt is very likely, that in the absence of strong personal reasons, one would select the
cake whose price lies between the two extremes.A similar emphasis on the middle path is
found in the teachings of Buddha as also in Confucian philosophy.That the choice of an
alternative from a finite set of alternatives,need not result in choosing the alternative with
the highest rank,is a possibility that has been discussed in Baigent and Gaertner (1996).In
a sense this is a position on human behavior which is contrary to the received view of a
decision maker as an optimizer of some objective function that is favored for instance by
Sen (1993).That the median does not satisfy the requirements of underlying optimising
behavior has been noted by Kolm (1994) and Gaertner and Xu (1999). However, the
median is a reasonable compromise,in practical decisiom making.It however turns out to
be the result of a “ menu-based optimization exercise”.Consider for instance the problem
of chosing an individual from amongst a group of workers to supervise the work of the rest
of the workers.Suppose each worker is ranked in order of his/her popularity among co-
workers.While,a certain amount of popularity amongst ones colleagues is advantageous
and may also be required in order to get the others to work as a team, too much popularity
is generally the hall mark of a union leader and may prove to be an impediment for the
management to communicate its objectives to the workers in clear terms. Thus, when it
comes to assigning supervisory tasks, the management will be on the look out for an
individual who is neither very unpopular with his/ her colleagues nor is the person a
(potential ?)union leader. Suppose that the cost due to unpopularity is measured by the
square of the rank on the popularity scale.Suppose that there are ‘n’ workers.Then a
person whose rank is ‘X’ on the popularity scale (i.e.a greater rank corresponding to less
popularity) entails a cost of x* on account of public relations with his colleagues, and a
cost of (n+1-x)? in his/her own motivation towards managerial objectives. Since (n+1-x)*+
¥ is equal to (1/2)[(n+1)*+(n+1-2x)?],the aggregate cost is actually minimized for ‘'

being set equal to the median rank.

in Gaertner and Xu (1999) can be found a first axiomatic characterisation of the choice



rule which selects the median from a finite set of alternatives.The axiomatic
characterisation is valid for a universal set containing at least four aiternatives as Example
1in our paper points out.For universal sets containing three alternatives the above
mentioned axiomatic characterisation is no longer valid.However,decision theory as
opposed to decision algorithms,has overriding importance only when the set of
alternatives is sufficiently small.For large sets the computational complexity of a solution
may substantially offset its decision theoretic virtues.For a set containing a small number
of alternatives we may ignore computational issues and concentrate only on decision
theoretic properties.Hence, it is our view in this paper, that the real test of a theory of
decision making takes place only when the universal set of alternatives is relatively small.
In this paper we provide two theorems which characterizes the median choice function
. when the universal set has atleast three alternatives.Several examples are provided to
highlight the relationship between the axioms emphasised in this paper.|t is also noted
here that our second axiomatic characterisation breaks down if the universal set contains
precisely two elements.
Following our discussion of the median rank solution, we provide two more axiomatic
characterizations.The first is a simultaneous axiomatic characterization of two solutions:
one being that which always chooses the element with the highest rank from a set and
the other being that which always selects the element with the lowest rank from a set. This
is accomplished by using two axioms one of which is very well known in the literature on
choice theory and is due to Nash (1950).The other is a property we invoke for the
charaterization of the median rank solution.We provide this axiomatic characterization to
emphasise the generality of the property which is common in the characterization of the
median solution as well as in this theorem and to highlight the distinguishing features of
those properties which are not common to both.The second is also a simultaneous
axiomatic characterization of two solutions: one being that which always chooses the
greatest element from the median choice set of a set and the other being that which
always selects the least element from the median choice set of a set. This is
accomplished by using three axioms two of which are invoked for the charaterization of
the median choice function.Neither of these two choice functions satisfy the axiom due to
Nash which was used in characterizing the greatest and least choice functions.
In our analysis,we require that a rank solution be invariant with respect to isomorphisms
defined on the set of alternatives,which lead to corresponding changes in the ranks of the
alternatives.Hence ,it is enough to assume a fixed ranking for the alternatives in the
context of our analysis.Thus our rank solutions are equivalent to choice functions which
assign to each feasible set of alternatives,a non-empty subset.This defines in a natural
way the threshold and median choice functions,which are the primary objects of our study
in this paper.

Abstract Games

Let X be a finite, non-empty set and given any non empty subset A of X, iet [A] denote the
collection of all non-empty subsets of A. Thus in particular, [X] denotes the set of all non-
empty subsets of X. If A € [X], then # (A) denotes the number of elements in A.




A binary relation R on X is said to be (a) reflexive if V x € X : (X, x) € R; (b) complete if ¥
X,y € Xwith x =y, either (x, y) e Ror (y, X) € R ;(c) transitive if Vx, y,ze X, [(x,y) e R &
(v, 2) € R implies (x, z) € R] ;(d) anti-symmetricif [ VX, y e X, (X, ¥Y) e R&(y,X) e R
implies x = y]. Given a binary relation R on X and A ¢ [X], letR |A=R N(AxA).

Let TI denote the set of all reflexive and complete binary relations. If R e II, then R is
called an abstract game. Let IT° denote the set of all anti-symmetric abstract games, often
referred to as tournaments,and let I1' denote the set of all transitive abstract games.An
element of IT°~ IT' is called a transitive tournament or a linear order.

Given a binary relation R, let P(R) = {(x, y) e R/ (y, x) ¢ R}and (R) ={(x,y) e R/{y,x) € -
R}. P(R) is called the asymmetric part of R and I(R) is called the symmetric part of R.
Given a binary relation R on X define a binary relation T(R) on X as follows : (x, y) € T(R)
if and only if there exists a positive integer K and x;,...,xx in X with (i) x4 = X, Xk =y : (i} (%,
X%+4) € RV ie {1,..K-1} T(R) is called the transitive hull of R .Clearly T(R) is always
transitive. Further T(I(R)) c I(T(R)).

A binary relation R on X is said to be acyclic if T(P(R)) is asymmetric. It is said to be
consistent if there does not exist any x in X such that (x,x) € T(R) \T(iR)).

Given a binary relation R on X a binary relation Q on X is said to extend (be an extension
of) Rif R « Q and P(R) < P(Q).

Given A e [X], let A (A) denote the diagonal of A i.e. A (A)={(x,x)/xe A}.

The following theorem is due to Suzumura [ 1983}

Suzumura’s Extension Theorem : If R is a reflexive binary relation on X then it has an
extension Q which is a transitive abstract game, if and only if R is consistent.

A Simple Proof of Suzumura's Extension Theorem

Given a binary relation R on X and given any non-empty subset S of X, let

Max(S,R) denote {x € S/ (y, x) € P(R) implies y ¢ S}.

The following well known theorem,for which we provide a simple proof, is due to Szpilrajn
[1930}]: . -

Szpilrajn’s Extension Theorem: If R is a reflexive and transitive binary relation on X then it
has an extension Q which is a transitive abstract game.

Proof : Since R is transitive, it is clearly acyclic. Thus whenever A is a non-empty subset of
X, Max(A, R) is non-empty. Let A; = Max(X, R) and having defined A,, let A,.; = Max(X

\OAi,R). Since X is finite, there exists a positive integer r such that A, = ¢ and X = LfJA,. .
i=1 i=1

Further if i = j, then A; n A; = ¢. Define f : X - R (the set of real numbers) as follows : f(x)
=r-i+1if x € A. Suppose (x, ¥) € P(R). Then x € A, y € A implies by our method of
construction that i < j. Thus f(x) > f(y). Now suppose (X, y) € R and towards a contradiction

suppose that f(y) > f(x). Hence ify € A; and x € A, clearly j < i. Thus, A; = Max(X\ jL_JlAk,R).
k=1

X\ JUA ; is finite and R is transitive implies that there exists z € A; such that (z, x) € P(R)
k=1
(: since x € (X \ J_UlAk)\Aj). By transitivity if R, (z, y) € P(R), contradicting y € A;. Thus,
k=1

f(x) > f(y).
Let Q = {(x,y) eXxX/ f(x) > f(y)}. Thus,Q is an abstract game which extends R.



v
Proof of Suzumura's Extension Theorem :If R has an extension Q which is an abstract
game then (xx) € T(R) \T(I(R)) implies (x,x) € T(Q) \T((Q)) c P(Q), since Q is
transitive.However this is not possible since P(Q) is the asymmetric part of Q.

Now suppose that R is consistent and-reflexive.Since T(R) is reflexive and transitive T(R)
has an extension Q which is an abstract game.Thus,(x,y)eRc T(R) implies (x,y)eQ. Let
(x,y)eP(R).Thus (x,y)eRc T(R). If (yx) € T(R) then (x,x)e T(R) \ T(I(R))since
(x,y)eP(R).This contradicts that R is consistent. Thus, (x,y)eP(R) implies (X,y)e P(T(R))c
P(Q).Thus the abstract game Q extends R.

Lahiri [2000 a] provides a useful summary of related results.

Rank Solutions:

Let N denote the set of positive integers and let X ={i eN/ i < n} (:the set of first n positive

integers) for some neN with n > 3.

A rank solution is a function S :[X]x( IT" N IT%—[X] such that (i)¥(A,R)e [X]xA:S(AR) c A;

(i) VR,Qe (IT" n I if Q ={(f(x).f(y))/(x,y)eR}where f:X—X is a bijection, then VA e [X] :

S(B,Q) = {f(x)/xeS(A,R)}, whenever B ={f(x)/xeA}.

Hence in the study of rank solutions it is enough to focus our attention on R = {(i,j) eNxN/i

< jl.since given any transitive tournament Q we can always find a bijection f:X—X such

that Q ={(f(x),f(y))/(x,y)eR}.

A choice function on X is a function C:[X]—[X] such that VAe[X] : C(A) c A.

Let S be a rank solution.The choice function on X corresponding to S is a function

C:IX]-[X] such that C(A)= S(A, R ) VAc[X].In the sequel when we talk about a choice

function we will have precisely this interpretation in mind.

A choice function C is said to be a threshold choice function if (i)v Ae [X], there exists

V(A)eA : C(A)={xeA: x > V(A)}(ii) ¥ i,je X: C({i,}}) is a singleton.Clearly V(A) belongs to
C(A) whenever A belongs to [X]. The'best choice function denoted G is defined as follows:

Vv Ae [X]: G(A) = { xeA: VyeA, x >y }. Clearly G(A) is a singleton whenever A belongs to

[X].

| Axiomatic Characterization of Threshold Choice Functions :-

A choice function C:[X]—[X] is said to satisfy :

(a) Functional Acyclicity (FA) if there does not exist a positive integer K sets A,,..., A« €
(X] and R eAsuch that : (i) Vi e {1,...,K-1} :C(A) N(A-1\C(Ais1)) #=¢ ; and (ii) C(Ax)
NANC(A1)) =4

(b)Binary Choice Property (BCP) if v i,j eX : [ {i} = C({i,j)}] if and only if [i > j].

Theorem 1: A choice funnction C is a threshold choice function if and only if C satisfies
FA and BCP.
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Proof: Let C be a threshold choice function.Thus, there exists a function V : [X] — X such that :
V A e [XC(A) = { x e A/ x > V(A))}.Towards a contradiction suppose that there exists a
positive integer K, sets A;,...,Ax € [X] such that : (i) V i € {1,...,K-1} :C(A) N(Ai1\C(An1))
#¢; and (ii) C(Ax) N (A1\ C(A1)) #. Let X, eC(A) N (Aii\C(Aiy)) , fort =1, ..., K-1 and let x«
€ C(Ax) N (A1\ C(A1)) 4. Thus %, > V(A)), fort=1, .., K, V(A1 )> %, fort=1, .., K-1, and
V(A1) > x«.Thus V(A,) > V(A,)), which is clearly not possible. This contradiction implies that C
must satisfy FA.The fact that C satisfies BCP is self evident.

Now suppose that C satisfies FA and BCP. Let Rc" = {C(S)x(S\C(S)/S e[XJ} and let Q = Ax U
Rc' . Qs reflexive and by Functional Acyclicity Q is consistent. Further, P(Q)= R’ .Thus by
Suzumura's Extension Theorem there exists an abstract game Q' which extends Q. Given A
e[X], let V(A) = min {xe C(A)}. Clearly, xe C(A) implies x >V/(A). Now, suppose x € A and x >
V(A)) and towards a contradiction suppose x ¢C(A). Thus, (V(A), x) € R¢". Thus by the above
(V(A),x) e P(Q").However, x >V(A) implies by BCP that {3} = C({x,V(A)}).Thus, (x,V(A)) € R’ c
Q’, which contradicts(V(A), x)eP(Q) Thus x € A, x > V(A)) implies x € C(A).Hence, C(A) =
{xeA: x 2 V(A)}.

v

The two assumptions FA and BCP that have been invoked in Theorem 1,are logically
independent:

Theorem 2: (a) There exists a choice function C which satisfies FA but does not satisfy
BCP .Further,this solution is not a threshold solution.

(b) There exists a choice function C which satisfies BCP but does not satisfy
FA.Further this solution is not a threshold solution.

Proof : Let X ={1,2,3}.

(a)Let, C(A) = A for A € [X]. Clearly C satisfies FA but does not satisfy BCP. Further C is
not a threshold solution.

(b) Let, C(A) = G(A) for Ae [X] \ {X} and let C(X) = {1}. Clearly C satisfies BCP but not FA.
Further S is not a threshold solution. -

v

Axiomatic Chracterization of the Median Choice Function:-
The median choice function M:[X]-[X] is defined as follows: VAe[X],
M(A)={k} if () #{i eA/i<k}=#{i cA/i>k},and (b) #(A) is an odd number,

={j,k} if (a)j<k,(b) #i eAfi<j}=#{i cAli>k},(c) #(A) is an even number,and

(d) A= {i eAfi<jju {i eAi>k}o {j.k}).

Let L: [X]>[X] be defined by L(A) = {ieAf] > i,vjeA} whenever A ¢[X].L is known as the
least choice function respectively.Clearly L is a single valued choice function.Let G(A) =
{9(A)} and L(A) = {h(A)} whenever A &[X]. Let GM: [X]—[X] be defined by G(M(A)) and LM:
[X]>[X] be defined by L(M(A)) whenever A €[X].GM and LM are known as the greatest
and lowest median choice functions respectively. Thus G(M(A))= {g(M(A))} and L(A) =
{hM(A))} v A €[X].
The following axioms are due to Gaertner and Xu (1999):
Axiom 1: Vi,jeX,C ({i,j})={i.i}-




Axiom 2: Vi.j.keXwith ixjzkzi, C ({i,j,k}={i.ji.k}.
Axiom 3: YAe[X] and i eX\A,if B={i}U(A\C(A)) then C(AUB)= C(C(A)UC(B)).
Axiom 4: VAe[X],C(A)={i.j} with i =j,C(Ai})={i}.

Axiom 5: if ijk,m eX where all of them are distinctthen C({i.jk,m})={i,j} implies there
exists a e{k,m} such that ieC({i,j,a}).

Example 1:Let n=3.Let C({1,2,3})={1} and C(A)=A,otherwise.Clearly C satisfies all the five
axioms given above.

Example 2: Let C(A)=G(A), whenever Ae[X].Then C satisfies all the above axioms except
for Axiom 1.

Example 3:Let C(A)=A VAg[X].Then C satisfies all the above axioms except for Axiom 2.
Example 4:Let C(A)=A if Ac[X] and #(A)=2, and let C(A)=G(A), otherwise.Then C satisfies
alt the axioms above,if n=3 and all except Axiom 4,if n > 4.For, let A={1,2,3} and i =
4Then {1,2,4})={4}0 (A\C(A)) since C(A)={3}.Let B={1,2,4}.Thus,AuB={1,2,3,4} and
C(AuB)={4}. However C(C(A) UC(B))={3,4}»{4}=C(AUB),contradicting Axiom 3.

Example 5: Let C(A)=G(A)UL(A), YAe[X]. Then C satisfies all the above axioms except for
Axiom 4.For let A={1,2,3}. Then, C(A)={1,3}.However,C({1,2})={1,2} and C({2,3})={2,3},
contradicting Axiom 4.

Example 6: Let n = 4.Let C(A)=A if #(A) is an even number,and let C(A)=G(A), otherwise.C
satisfies all the above axioms above except for Axiom 5.For,1,2 € C({1,2,3,4}), but
1¢C({1,2,3}) and 1eC({1,2,4}),contradicting Axiom 5.

The following axiom is implied by Axiom 1:

Binary Injective Invariance (BIl): Vv i,j e X with i = j, if f : {ij }> X is one to one and order
preserving (:in the sense that f (i) > f (j) if and only if i>j),then C({f (i).f (}))= {f (k) k €
C({i.ihk

That Axiom 1 implies Bll is an easy observation.

The following axiom is crucial for what follows:

Invariance with respect to Best and Worst outcomes ( IBW): VAe[X] and for all i,j € X\A, [i
<h(A)] &[j>g(A)] implies C(A U {i,j})=C(A).

Observe that the choice function in example 1 does not satisfy IBW.

Example 7: Let C(A)=GM(A).Clearly C = M, since C({1,2}) = {2}» {1,2}=M(A) and yet C
satisfies Bil and IBW.However C does not satisfy Axiom 1.

Example 8: Let C(A)= GM(A) if 1 eM(A) and C(A)

=LM(A),otherwise. C({1,2})={2}=C({2,3}).Let f : {1,2}> X be defined by f (i) = i+1 for i
{1,2}. f is order preserving. However, C({f (1),f (2)}) #{f (k)/ k € C({1,2})} contradicting
Bll.However, C satisfies IBW.



The choice function defined in Example 2 above satisfies Bll.However it does not satisfy
IBW.

Proposition 1:Let C be a choice function satisfying {BW.Then:

(i) C(A) = C(M(A)) VAe[X];

(i) C(A) = M(A) YAe[X] with #(A) being an odd number.

Proof:Given Ae¢[X], either A=M(A) or, there exists k N and {i; eX\M(A)/ j €{1,...,2k}} such
that (@) ij > i1, Vj € {2,....2k}; (b) i; < a <iu ,Vj € {1,...k}; (¢) A= M(A) L {ij eX\M(A)/ j
e{1,...,2k}}.

If A=M(A), then C(A)=C(M(A)).Otherwise, by IBW, C(M(A)) = C(M(A) v { ik, ix-1}).By IBW,
CM(A) U { ikj ,--.lkj+1 )= CIM(A) L {41, ikjs2 ). Thus C(M(A)) = C(A).

If #(A) is an odd number,then M(A) is a singleton,whence C(M(A)) =M(A). This proves the
proposition.

v

Theorem 3 : The only choice function on X which satisfies Axiom 1 and IBW is M.

Proof: M clearly satisfies Axiom 1 and IBW. Hence let C be any choice function on X
which satisfies Axiom 1 and IBW.By Proposition 1,C(A) = C(M(A)) VAe[X],and in
particular C(A) = M(A) whenever #(A) is an odd number.However if #(A) is an even
number then M(A) is a set consisting two distinct elements,whence by Axiom 1,
C(M(A))=M(A).Hence, C(A)=M(A) VAe[X].

v

A property we invoke now is the following:

Partial Fidelity (PF): VA€[X] with #(A) > 2 and VaeX\, if [ either (a < h(A)), or (a > g(A))],
then C(Au {a}) N C(A)=¢ (: the empty set).

Progosition'2:Let C be a choice function satisfying IBW and PF and let A c X with M(A)
X\{1,n}.Then, C(A) = M(A). '

Proof. By Proposition 1,C(A) = C(M(A)) VAe [X].and in particular C(A) = M(A) whenever
#A) is an odd number.Since #(A) is an odd number if and only if M(A) is a singleton, we
need only consider the case where #(M(A)) =2.Thus let M(A)= {i,j} with i <.

Case 1: C(M(A)) = {i}. Clearly j < n and M(A)u {n} = {i,j,n}.By Proposition 1, C(M(A)u{n}) =
{i}. This contradicts PF,since then C(M(A) U {n}) n C(M(A)) = ¢ .

Case 2: C(M(A)) = {j}. Clearly 1 <i and M(A)u {1} = {1,i,j}.By Proposition 1, C(M(A){1}) =
{i}. This contradicts PF,since then C(M(A) U {1}) n C(M(A)) = ¢ .

Thus since C(M(A)) =¢, we must have C(M(A))= M(A).

v

Note : The choice function in Example 8,satisfies PF as well. Thus it satisfies IBW and PF
but not BIl. The choice function in Example 7 satisfies Bll and IBW but not PF.

Example 9:Let C(A)=A VAe[X].Then C satisfies Bll and PF but not IBW.



Theorem 4: The only choice function on X which satisfies BIl,IBW and PF is M.

Proof: M clearly satisfies Bll ,IBW and PF. Hence let C be any choice function on X which

satisfies Bil ,IBW and BF.By Proposition 1,C(A) = C(M(A)) VAe[X],and in particular C(A) =

M(A) whenever #(A) is an odd number.However #(A) is an even number if and only if

M(A) is a set consisting two distinct elements.By Propsition 2,if M(A) < X\ {1,n},then C(A)

= M(A).Hence let us assume that #(M(A)) =2 and M(A) {1,n} = ¢.

Let us first show that for all i € X, with 1 <i <n, i e C({1,i}))nC({i,n}).

Towards a contradiction suppose i ¢ C({1,i}).Thus C({1,i}) = {1}.However C({1,i.n}) = {i},

and this contradicts PF,since we get C({1.i}) nC({1,i.n}) = ¢.Thus suppose i ¢

C({i,n}).Thus C({i,n}) = {n}.However C({1,i.n}) = {i}, and this contradicts PF,since we get

C({i,n}) nC({1,i,n}) = §.Hence i € C({1,iHNC({i,n}).

~ Letf: {1,i}> X be defined by f (1) =i and f (i) = n . f is order preserving.Since i € C({1,i}),
by Bil,n e C({i,n}).Hence, C({i,n}) = {i,n}. Now let g : {i,n}—> X be defined by g (i) =1 and g

(n) =i . g is order preserving.Since i € C({i,n}), by Bll,1 € C({1,i}).Hence, C({1,i}) = {1,i}.

Now let h : {2,n}> X be defined by h (2) = 1 and h (n) = n . h is order preserving.Since

~ C({2,n}) = {2,n}, by BIl, C({1,n}) = {1,n}.

. Thus C(M(A)) = M(A) YA€[X].This in conjunction with Proposition 1, proves the theorem.

v
Example 10:Let C(A)=A if #(A)=2 and let C({i,j})= {i} if A = {i,j} with

i <).Then C satisfies PF and Bil.However C does not satisfy Axiom 1.

Example 11:Suppose n > 4. Let C(A)=A if #(A)= 1 or 2 and let C(A)= GM(A) if #(A) >
3.Then C satisfies Axiom 1 but not PF: let A = {1,2,3} and let a = 4. Then C(A)={2} and
C(AuL{4})={3} violating PF.

Remark 1: If we had not insisted on #(A) > 2 in the-definition of PF, then the modified
axiom would imply Axiom 1.This is because for i<j, C({i,j}) = {i} and C({i}) = {i} would violate
the non-empty intersection requirement in the definition of PF as would C({i,j}) = {i} and

C(ih = -

Remark 2: The assumption that n > 3 is crucial for Theorem 5.1f X ={1,2}, then C({i})={i}
for all i € {1,2} and C(X)={1} satisfies all the properties mentioned in Theorem 5.However,

CxM.

It is worth noting that both G and L satisfy the following property due to Nash (1950):

Nash’s Independence of Irrelevant Alternatives (NIIA) : (a) vV Aeg[X], # C(A) =1; (b) V
A,Be[X],with A = B,[ C(B) = C(A) implies C(B) = C(A)].

Theorem 5: The only two choice function on X which satisfy Bll and NIIA are G and L.



Proof: Let A = {1,2} and let B= {i,j} with i<j.Clearly, the function f: A —» X, where f (1) = i
and f (2) = j, is order preserving.Thus by Bil, C(A)=G(A) implies C(B) = G(B) v Be[X] with
#B =2 and C(A)=L(A) implies C(B) = L(B) ¥ Be[X] with # B =2.
Without loss of generality suppose, C(B) = G(B) Vv Be[X] with # B =2. Let D <[X] and
towards a contradiction suppose C(D)= G(D).By (a) of NIIA,
# C(D) =1. Let C(D) = {i} and let G(D) = {j}.Clearly, j>i.However, # {i,j}=2 implies that
C({i,j}) = G({i.i}) ={j}-Since, {i,j}= D and C(D) c {i,j}, (b) of NlIA implies {i}= C(D) = C({i,j}) =
G({i,j}) = {i} which is not possible since i%j.Thus, C(B) = G(B) V Be[X] with # B =2 implies
C(B) = G(B) V Be[X].Similarly, C(B) = L(B) V Be[X] with # B =2 implies C(B) = L(B) V
Be[X].
v
Remark: It is by now a standard result in choice theory that the satisfaction of NIIA by a
choice function C is equivalent to the existence of a function u: X—»>®R (the set of real
numbers ) such that v Ae [X]:C(A) = {xeA/ V yeA: u(x)2u(y)}(see Aizerman and Aleskerov
(1995) Theorem 2.10,for instance).However NIIA does not imply that the choice function
satisfies BIl. Thus there are choice functions which satisfy NIIA and yet do not coincide
with either G or L.The following example illustrates this fact:
Example 12: Define a function u: X—%R as follows:
u(k) =2k-n ,if k>g(M(X));

= n-(2k-1), if k< h(M(X));

= 0, if k= g(M(X))

= -1, if k= h(M(X))<g(M(X)).
Let C(A) = {xeA/ V yeA: u(x)>u(y) }.Clearly C satisfies NIIA.However C({1,n})= {n} and
C({1,n-1})={1} contradicting BII.

Example 13: Let C(A) =LM(A) Vv Ag[X]. Clearly, C satisfies Bll but not NIA:
C({1,2,3})={2}c {1,2} and yet C({1,2})={1}. .

Observe that neither GM nor LM satisfy NlIA.However both satisfy the following property:
Single Value (SV): V Ac[X], # C(A) =1.

SV is simply the first part of NIIA.The following provides a dual axiomatic characterization
of GM and LM:

Theorem 6: The only two choice function on X which satisfy BIl,IBW and SV are GM and
LM.

Proof: GM and LM clearly satisfy Bll ,IBW and SV. Hence let C be any choice function on
X which satisfies Bil ,IBW and SV.By Proposition 1,G(A) = C(M(A)) VAe[X],and in
particular C(A) = M(A) whenever #(A) is an odd number.By IBW, if C({1,2})={1}, then
C(A)=LM(A) VAe[X] and if C({1,2})={1}, then C(A)=LM(A) VYAe[X].This proves the
theorem.

v

It is worth noting that the results reported in this section would remain valid if we replaced
Bll by the following stronger axiom:
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injective Invariance (Il): V A € [X] if f: A > X is one to one and order preserving (:in the
sense that f (i) > f (j) if and only if i>j),then C(f (A)) = f (C(A)).

Although Il implies Bll the converse is not true.

Example 14: Let n=4 and let C(A) =G(A) if 1eA or # A =2,C(A)= L(A) otherwise. Clearly, C
satisfies Bll but not Il: C({1,2,3})={3} but C({2,3,4}) ={2} even though :{1,2,3}>X defined
by f(i) =i+1 is one to one and order preserving and f({1,2,3})={2,3,4}.
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