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ABSTRACT

A Federation Boolean Vote Aggregator allows a finite set of coalitions to
unilaterally elect any candidate from a set containing exactly two candidates.
There are several special types of Federation Boolean Vote Aggregators, all of
which share a property :the candidates are assigned weights, and for a coalition
to be decisive, it is necessary that the sum of the weights of its members exceed a
pre-assigned quota. In this paper we address the following question: When is a
Federation Boolean Vote Aggregator a Weighted Boolean Vote Aggregator ?
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1 Introduction

A model for analysing voting procedures where each individual in a society casts
a ballot and a voting operator aggregates the ballots into elected outcomes has
been modelted in Lahiri (1999,2001).A ballot is a set of alternatives chosen from
a universal set of candidates. A ballot profile associates with each voter a ballot.
A voting operator, selects a set of candidates from amongst those who have
secured at least one vote. Further we assume that if there is at least one
candidate who secures the vote of every individual, then at least one such
candidate is definitely chosen. In Lahiri (2001), one is introduced to the idea of a
vote aggregator which aggregates ballots which are singletons. This is definitely
a more realistic model of democratic exercises as we see it in practise.
However,even though singleton ballots are a realistic premise for analysis, it is
difficult to be theoretically sound and yet exclude the possibility of more than one
elected outcome. Thus for instance, under plurality it is quite possible that two
candidates receive the maximum number of votes. To accommodate such
possibilities, the concept of a vote aggregator introduced in Lahiri (2001) is set
valued. A vote aggregator is required to satisfy the rather innocuous assumption
called unanimity; i.e. if every one votes for the same candidate then that is the
only one who is elected. It is worth recalling in this context the seminal work of
Arrow, where individuals are required to vote not for a single candidate, but for a
preference ordering over the entire array of candidates. This and the related
literature find a thorough discussion in Aleskerov (1999). Essentially what each
voter votes for is a binary relation. These binary relations are aggregated into a
single binary relation. Since a binary relation is nothing but a subset of the set of
all ordered pairs of candidates, the classical framework of Arrow is more
appropriately a special case of the scenario where ballots are sets instead of
singletons. This observation can be found in Sholomov (2000).

In this paper we study vote aggregators, where each voter casts a vote for
exactly one of two candidates. The two candidates are denoted 0 and 1
respectively. Ballot profiles in such a context are called Boolean ballot profiles.
Further,such vote aggregators, which are a special case of the general model of
vote aggregators, were once again introduced in Lahiri (2001) and are called
Boolean Vote Kggregators. The Boolean Vote Aggregator we study in this paper,
namely the Federation Boolean Vote Aggregator originates in the work of
Aizerman and Aleskerov (1986,1995).Aleskerov (1999), contains an exhaustive
discussion of the related literature. A Federation Boolean Vote Aggregator



allows a finite set of coalitions to unilaterally elect any outcome. Such coalitions
are called minimal decisive coalitions. There are several special types of
Federation Boolean Vote Aggregator, all of which share a property :the
candidates are assigned weights, and for a coalition to be decisive, it is
necessary that the sum of the weights of its members exceed a pre-assigned
quota. First, there are those Federation Boolean Vote Aggregator where
coalitions can unilaterally elect outcomes if and only if they have a requisite
number of voters. A second type of Federation Boolean Vote Aggregator is an
oligarchy, where the ability to unilaterally elect an outcome is invested in a single
coalition. Finally, there is the type of Federation Boolean Vote Aggregator where
the ability to unilaterally elect an outcome is invested in a single individual. Such
Boolean Vote Aggregators are called Dictatorial Boolean Vote Aggregators.

In this paper we address the following question: When is a Federation Boolean
Vote Aggregator a Weighted Boolean Vote Aggregator ?In the process of
answering this question we exploit the formal similarity of a Federation Boolean
Vote Aggregator, with a simple game due to Shapley (1962) and the formal
similarity of a Weighted Boolean Vote Aggregator with a weighted voting game.
The unique property which is necessary and sufficient for a Federation Boolean
Vote Aggregator to be a Weighted Boolean Vote Aggregator is called robustness
in this paper. This property is similar to the concept of trade robustness that was
introduced by Taylor and Zwicker (1992), and which was shown by them to be
necessary and sufficient for a simple game to be a weighted voting game. In our
context what robustness implies is the following: Suppose we are given a
collection of Boolean ballot profiles ( each profile being possibly repeated
several times) all of which lead to candidate one being elected. Suppose there is
a second collection of Boolean ballot profiles ( each profile being possibly
repeated several times) such that each voter votes for candidate one the same
number of times as before.Then there must be at least one profile in this new
collection which elects candidate one.

In Sholomov (2000), a discussion of Weighted Vote Aggregators,resticted to
Arrowian domains, can be found. Sholomov asserts that a social decisison
function (i.e. a Vote Aggregator which maps a profile of binary relations to a
binary relation) with domain consisting of all profiles of binary relations which are
semiorders has its range in the set of all acyclic binary reaitions, if and only if it
can be expressed as the intersection of a social decision function which is a
Weighted Vote Aggregator and a social decision function which satisfies
binariness, neutrality to alternatives and non-imposition. The author further
asserts that a monotone social decision function with domain consisting of all
profiles of binary reiations which are semiorders has its range in the set of all
acyclic binary reaitions, if and only if it can be expressed as the intersection of a
social decision function which is a weighted Vote Aggregator and a monotone
social decision function which satisfies binariness, neutrality to alternatives and
non-imposition.

The analytical framework in which aggregation rules are studied in this paper is
similar to a device which is referred to in classical choice theory as a choice
function. A comprehensive survey of rational choice theory ( i.e. the theory
concemed with specifying conditions on a choice function under which there
exists a binary relation of a desired type whose “best” elements from a given set
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of alternatives, coincide with the elements chosen by the choice function) till the
mid nineteen eighties is available in Moulin (1985).

2 The Model

Let n be a natural number. Let N = {1,....n} be the set of agents or voters. Let X
={0,1}.Let P(X) denote the power set of X, i.e. the set of all subsets of X.
Let X" denote the set of all functions from N to X.Any element S =(S;,...,S,) e X",
is called a (Boolean) ballot profile. A Boolean Vote Aggregator (BVA) is a
function C : X" »P(X) such that (1) C(S) crange (S); (2) if there exists xeX
such that if ¥ ie N :S;=x, then C(S)= {x}.
Thus an element which appears on no ballot is never chosen and an element
which appears on the ballot of every individual is invariably chosen.The latter
_property is known as unanimity. As a consequence of our unanimity it easily
follows that given any x € X, there exists Se X" such that {x} = C(S) : simply take
VieN ,Si =X
GivenTe XVandx eX, letr(xT)= [{ie N/x e Ti}l i.e. the cardinality of the set {i
e N/ x e T}.In the sequel we will be considering the following properties of vote
aggregators:
Monotonicity : Let x € C(S) and let Sand Te X" with{ie N/x=S}c{ie N/x
=T} Thenx e C(T).
Neutrality: For all S € X" : C(E-S)={1-x/xe C(S)}.
Robustness : Let m be a natural number and let S*,....S™and T',..., T" X" be
such that VieN : [{k / S =1}|=|{k / T =1}|. Further, suppose that Yk {1,...,m}:
1 €C(S").Then, there exists k €{1,...,m} :1 eC(T").
Given a collection Q = {w;,...,w.} of nonempty subsets of N, let W(Q) = {w' c N/
w c W, for some weQ)} and L(Q)={w' c N/w' ¢ W(Q)}. Clearly, L(Q) contains the
empty set. Given x eS and S X", let W(x,S) = {icN/ S; = x}.
Definitions of Boolean Vote Aggreqgators :
a) C is said to be a Federation BVA if there exists Q = {w,..., W}, a collection of
nonempty subsets of N, such that vV S eX :C(S)= {xeX  W(x,S)eW(Q)} .
b) C is said to be an oligarchy if C is a Federation BVA with Q = { w, }.
¢) C is said to be a k-votes BVA ( : where ‘K’ is a positive integer with k <n)
if C is a Federation BVA with Q = { w ¢ N/ w has exactly k elements}.
d) C is said to be Dictatorial BVA if there exists i € N ( : called a dictator) such
that v Se X" :C(S) = S.
e) C is said to be a weighted BVA (WBVA) if there exists a function v :N - X {0}
(:where ¥ is the set of natural numbers) and a natural number « (called the

quota) such that VSeX" :(a) 1C(S) ifand only if 3 S.v()2x; (b) 0cC(S) if

andonlyif 3 v(i) -> _ Sv()>«.
The following theorem has been proved in Lahiri (2001):

Theorem 1 L A BVA satisfies monotonicity and neutrality if and only if it is a
Federation BVA.

The following observation is easy to verify:



Proposition 1 : Let C be a WBVA. Then C satisfies robustness.
Proof : Let C be a WBVA.Then there exists a function v :N = X{0} and a

natural number x such that vSeX" :(a) 1eC(S) ifand only if 3" S,v(i)> «; (b)
0eC(S) if and only if ZieNv(i) -ZiENSiv(i)z k. Let m be a natural number and let

§'....8"and T',..., T"eX" be such that vk {1,...,m} :1 eC(S").Further, suppose
that VieN : [{k / S5 =1} =|{k / T =1}|. Towards a contradiction suppose that for
alt k €{1,...,m} it is true that 1 ¢C(T*). Now, Vk €{1,...,m} :1 eC(S*) implies that
vk €{1,....m}: Y _ Siv(i)>«.Further, V k €{1,...,m} itis true that 1 ¢C(T")

implies that vk €{1,...,m} : ZEN Tv(i)<x. Thus D ZieN T v(i)<mx . Thus, mk >
k=1

ZENv(i)i TE = ZiGNV(i)Zm:S? =iZieNS!‘v(i) , contradicting that Vk €{1,...,m}:
k=1 k=l k=1

¥ Stv(@)2x. Thus, there exists k {1,...,m} such that 1 eC(T").
QE.D.

3 The Characterization Theorem
The following lemma is crucial in what follows:

Lemma 1 :- Let ialjx , =b;,1=1,... k be a system of ‘K’ equation in ‘n’ unknowns
=1

and suppose a;, b; are all rational for i=1,.. k ; j=1,...,n. Let (x;,...,x;) be a solution

for the above system of equations. Then given >0, there exists a solution

(%,5...X, ) with all co-ordinates rational such that ,l(x{ X)Xy K )| <.

Proof :- f n=1, then a, x] =b,, i=1,... k with all a5, b;, i=1,... k rational implies
X, b whenever ;0. If a4=0Vi, then b=0 Vi and hence we can choose any
a; .
X, e(x,‘ -g,X; + e)i, rational to solve the system. In either case the theorem is true

for n=1. Suppose the theorem is true for 1,2,...,n-1 where n-1>0. Let f‘_aﬂx i=b;,
=1
i=1,.... k be the system as desired and let (x;,...,x;) solve the system. Without

loss of generality suppose an=0. Let x,,=1[bk —n)i]a,q.x J}. Since the real valued
a =

exists 5>0:

function (yx,..., Yn1 ) ]—-)L[bk - nz_lakjy j],with domain R™ is continuous,there
a =1
l(y,,...,yn_l)-(x,',...,x;_lj

k
1 .
|<8 - t—[bk —}:akjyi— X,
ak
Consider thg system,

¥.C,x, =B, i=1,...k where C=0 =B, for j=1,..n-1 and Cy=a;-2=a, ,
px a,

€
<—.
n

Bi=b; - —b—k— fori=1,... k-1, j=1,..,n—1.

Ay,



Now nfa..xf +—a—‘”—[bk -nfaij:.:l =b, fori=1,... k-1
=l a j=t

3
kn

Z(a,j —é’ln-akj)x; =b, —ia—“‘—bk fori=1,....k-1.

kn a’h‘l
«.(x},....x;_, ) satisfies the new system. By the induction hypothesis there exists
(X,--.X,.,) with all co-ordinates rational such that

oo Eu) = (500

|<min{§-,8}. Let x, = —l—[bk —n}i’akjij]. Clearly x, is
2 a, =

rational since it is obtained from ||(%,....,X,.,). Further, [%, - x;| < £
n
_ e WP LR e\ 2 g Togr g ¢g?
e L B L S Rt

LI = 1 a1 S
<—=<e. Now X, =—{b, - Ta,x, |implies
=

. e o

f:a,q.’ij =b, . For i<k,
P

n-1 a'm _ ain -1 n-1 ain _ ain
_2 aij— ‘aj X'i =bi"—"—‘bk. _Za,jxj—z-——ajszbi___bk or
H ™ Ay = Fla,, a,,

n-1 b L . 5 . .
YaX, +amli—“—— ):aijj} =b; i.e,, Ya;X, =b,. Hence if the theorem is assumed
Fl a, 1

true for 1,...,n-1 with n-1>0, then it is true for n. We have already shown that it is
true for 1. Hence it is true for all n.

QE.D.

Proposition 2 :Let C be a Federation BVA which satisfies robustness.
Then, C is a WBVA.

Proof .- We prove this proposition by induction on n = # N.If N is a singleton,

we have N={1}.By unanimity, {1} = Q.Let v.N-X {0} be defined by v(1)=1

and '

let x=1. Then clearly, vSeX" :(a) 1eC(S) if and only if ZieNSiv(i)Z x; (b)
0eC(S)ifandonlyif 3 v() - Sv(i)2x.

Suppose the proposition is true for #N=1,...,r-1, where r is any natural

number.

Let #N=r. For wc N, let e,:N—{0,1} be defined by e.(i) =1 if iew, e.(i) =0, if

iew.Thus 1.& C(e,) whenever w eW(Q) and 1¢C(e,), whenever w eL(Q).

LetA={ D't e, /t, €[0]Vw e W(Qand Y t, =1} and

weP(Q) weP(Q)
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B={ yt.e, /t, €[01lVw e(Q)and Tt = I}

wel(Q2) wel(Q)
Both A and B are non-empty convex subsets of R". Let x €A and neB with

x=Yt,e, = Xt,e, =mn and t, being a rational number for all weQUL(Q). By
weQ wel(Q)

Taking the LCM of the denominators we may assume that vV weQuL(Q),

t, =2« where KeX and nye N{0}. Thus ¥n, A = ¥, =K. Taking ny
K wehd wel(2)

copies of w for each we QUL(Q2) we get a violation of robustness.

Now suppose,

%bt"e“' - Yt,e, =0,and

weL(Q)
2t =1= Xt
weQd wel(Q)

has a non-negative solution.
L Yte, - Xt,e,=0,and
€Q

tv:,>0 wf:;((‘)])
Tt,=1= YTt
weld wel(Q)

t1y>0 te>0
has a strictly positive solution.
Hence by Lemma 1, Yt.e, - Xt,e, =0,and

WE! weLl(Q)
tw>0 tw>0

yt,=1= >t,
w weL(Q)
L ty >0

has a strictly positive solution all whose co-ordinates are rational. Thus,

Tt.e,— >t,e,=0,and
weld weLl(Q)

T, =1= T,
weQ

weL(Q)
has a non-negative solution all whose co-ordinates are rational,
contradicting what we obtained earlier in the proof. Thus AnB=¢. By the
separating hyperplane theorem for non emty compact convex sets, there
exists pe RN\{0} such that p.x>p.nV(yx,n)eAxB. Thus
p.es>p.ewV(W,W)eW(Q)xL(Q).
Suppose for some jeN:p; <0.
Case 1 :- There exists we Q such that jew. Let wew\{j}. Thus, w'e L(Q2) and
p.(ew-ew)=p;<0 contradicting what we obtained above.
Case 2 :- There does not exist we Q such that jew. Hence, for all we W(Q), w \{j}
e W(Q).Without loss of generality suppose j = n. Let W(Q) = {w \{n}/w € W(Q)}.
Thus #(N{n})=n-1=and it is easily verified that the Federation BVA defined as :[V S
eX™: C(S)= {xeX I W(x,S)eW(Q )}] satisfies robustness. Then by the induction
hypothesis , there exists a function v’ :N\{n} = & {0} and a natural number «x such
that such that vSeX™* :(a) 1e C(S) ifand only if " S,v'(i)=x; (b) 0 C(8) if

andonlyif > v'(i) -Y.  Sv'(i)=x.



Let viN—N{0} be defined by setting, v(i)=v'(i)¥i e N\{n}, and v(n)=0. Then it is
easily verified that vSeX" :(a) 1eC(S) if and only if 3" S,v(i)> ; (b) 0eC(S) if

andonly if " v(i) -  Sv(i)>x.

Hence pe % \{0}. Clearly there exists p € R\ \{o} with all co-ordinates rational
such that min{p.e, /w € Q} > max{p.e, / w e L(Q)} . By multiplying the numerators
of p by the LCM of the denominators we get v :N—-NX{0} such that

min{ > v(i)/ w € Q} > max{Z v(i)/ w e L(Q)}. Let xk =min{ X v(i)/ w € Q}. Thus

vSeXM: 1eC(S) if and only if ZENSiv(i)z x.Since C is a Federation BVA, C
satisfies neutrality. Hence, 0eC(S) ifand only if " v(i)->__ S,v(i)> . The
proposition stands established by a standard induction argument.

QE.D.
Propositions 1 and 2 combined together, constitute a proof of the following theorem:
Theorem 2 :A Federation BVA C is a WBVA if and only if C satisfies robustness.

in view of Theorems 1 and 2 the following characterisation theorem for a WBVA is
immediate.

Theorem 3 : A BVA C is a WBVA if and only if C satisfies monotonicity, neutrality
and robustness.

Example 1: Let C(S)= {xeX/w cW(x,S) },V S eX" , for some non-empty subset w
of N. Clearly C is an oligarchy. Define v :N — X{0} as follows:v(i)=1 if icw, v(i) =0
ifigN \ w. Let x = #w. Then, vSeXxM :(a) 1eC(8) if and only if Zie NSiv(i)z K

(b) 0eC(S)ifandonly if 3 v(i) ->_ S;v(i)>«.

Example 2: Let k be a positive integer less than or equal to n and let C(S)= {xeX/
|W(x,S)| =2k },v S eX". Clearly C is a k-votes BVA. Define v :N — X{0} as
follows:v(i)=1 if VieN.Let x = k. Then, vSeX" :(a) 1eC(S) if and only if

Y Siv)=x; (b) 0eC(S) ifand only if 3" v(i) -D_ Sv()=«x.

Example 3: Let ieN and let C(S)= {xeX fie W(x,S) },V S eX".Clearly C is a
Dictatorial BVA. Define v :N — R {0} as follows:v(j)=1 if j=i,v(j) = 0 if j = i.

Let x = 1.Then, vSeX" :(a) 1eC(S) if and only if ZieNSiv(i)z x; (b) 0eC(S) if and
only if ZieNv(i) -ZaeNSiv(i)Z X.

Note:In some senses,an oligarchy is a basic unit of any Federation BVA.For, let
C(S)= {xeX I W(x,S)eW(Q)},V S eX" where Q = {ws,...,wg} is a collection of
nonempty subsets of N.For i €{1,...,q}, let vi: N = X{0} be defined as follows: v; (j)
=1ifjew,vi(j)=0ifj e N\w, .Fori €{1,...,q}, let ;= #w,. Thus, [weW(Q)] if and



only if [w=$, wcN and [Jiefl,....q}: Tv,(j) 2 «,] ] In view of this observation, the

jew

following theorem stands established :

Theorem 4 : Let C be a Federation BVA. Then, there exists a natural number k and
WBVA's C,,...,Ck such that vV S eX" :C(S)= U { C;i(S) i &{1,....k}.

Let C be a Federation BVA. Then,min {k/ V S eX" C(S)=u { Ci(S) Vi €{1,...k}: Ciis
a BVA } is called the dimension of C, and is denoted by k(C). Clearly k(C) is always

greater than or equal to one,and is equal to one if and only if C is a Weighted voting
operator. Thus the dimension of an oligarchy,a k- votes BVA and any Dictatorial BVA

is one.However it is easy to provide examples of a Federation BVA for which k(C) is
greater than one.

Example 4: Let n = 2k for some positive integer k. Let Q = { wc N/ w = {2j-1,2j}, for
somej € {1,...,k}}. Let C be a Federation BVA such that vV S eX" :C(S)= {xeX /
W(x,S)eQ}. Towards a contradiction suppose that C is a WBVA.Then, there exists a
function v :N — R {0} and a natural number x such that [weW(Q)] if and only if
[wzp, weN and 3 v(i) > x]. Thus, v(1) + v(2) > «, v(3) + v(4) = x, since both {1,2} and

{3,4} belong to Q. Hence either v(2) + v(3) > x or v(1) +.4) > . Thus,either {2,3} or
{1,4} belongs to W(Q)), contradicting our definition of Q. Thus, C is not a WBVA.
Forie{1,...,k}, let vi: N = X {0} be defined as follows: v;(2i-1) = v;(2i)=1 vi(j) = 0 if
e N{2i-1,2i}.Fori €{1,...,q}, let x;= 2. Thus, [weW(Q)] if and only if [w=$, weN and
[Fiefl,... .k} 2 v,(j) 2k,] 1 Infact,it is possible to establish via an induction

JEW
argument that k(C) = k. For k =1,2 it is easy to verify that k(C) = k. Assume that k(C)
=k, for k =1,...,r-1> 2.Let, k=r and towards a contradiction suppose that k(C} <r.
Thus, for i €{1,...,k(C)} with k(C) < r, there exists functions v;: N = X{0}and a
natural number «; such that [weW(Q)] if and only if [w=$, wcN and
Biefl,...k(O}: Tv,(j) 2x,] 1.Since, Q = { we N/ w = {2j-1,2j}, for some j e {1,...,r}},
jew

the}e exists ji, j €{1,...,r} with j; = and h €{1,...,k(C)}, such that (a) vp (21 - 1) +
V(2 ]1) 2 xn (D) Va(2]2-1) + Va(2 ]2) 2 kni(C) [Z v, () <X, if w gP(€))]. By symmetry
jew

of the problem under consideration, we may let j; =1 and j;=2.Thus for k = 2, k(C) =

1, which is not possible. Thus, k(C) = r. By a standard induction argument, it follows
that k(C) = k for every natural number k.
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