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1. Intreducticn

Most of popular methods of estimating ecoromic Telaviviwiiwpe
are based upon Altken’s” generalised least squares (GLS) pio-
cedurs, For exampls, seeminglygunreifﬁed regression eguations
(SURE) estimator propossd by Zellnszr ~“is cifferent from its
ordinary least squares (OL.) counterpait bicause it utilizes the
knowledge of statistical denendence of disturbances in differ:nt
regressions, . Similarly, twolitage-least squares (28Lt) method of
estimetion proposec by Theil “or geperalized classical linea:

(GCL) estimator proposed by Basmann®(both being equivalent)

and three stage lfgst squares (L0} estimetor prcposed jointly ny
Zellner and Theil™™ may be interpretsd as generalised least
squares estimators in Aitken's sense. Logically, then, the steti-
stical properties of these estimators should have similar charac—
teristics. For ths sake of conveniencye,  shall hznceforth, call
the class of ectimstors namely, GLS, SURE, XIS, and 3:LS as
genzralisec estimators.

A survey of @ conometric literature would reveal that OLs, GLS
and SURE :stimators are unbiased and 25L: or GCL and 37 LS 2cti
mators are consistgnt. It may be pointed out that earlier invecti.
g#¥idn by Zellner showsd thst, for two equations model. SURE
estimator is“unbiased provided independent vagyiables in these
regressions mevs orthogonal but later Kakwani™ found thai *the i
estimator is unblased for M eguations model, e ven without orthoge
onality assurption, wovided the disturbances follow sontinuous
symmetric probability lavws. 3Juch uniformity is, however, lacking
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®.An garlier version of this paper was writtasn while the author was
at the Unlversity c¢f Manchester, U.X,
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if we su:vey the availabls analyses in z:spect of =fficiengy of
genceralised estimatore as cgmpared to their respective OLS counter-
perts. Cochrane and Orcutt™ analysed the efficiency of GLS
ectimator numerically by considering two variable' regression mocdel
while some other particular cases of temporal dependinge have been
discussed by Johnston™. Thece analysee indicate that efficiency
of QS estimator depends upon the magnitude of first order auto-
correlation. lghile.analysing asymptoiic'efficiency of SULE esti-
mator Zellner™" and Zellner and Huang™ found that gain in.

its efficiency: is ‘sub~tantial provided the s~t of independunt
variables in diffarent regressions were erthogonal.. Thus, if the
latter condition were cenuire, then, one may not see any advantage
in computing SURE estimator unless one's observations on independent
variables in different regressions were orthogonzl. However, in
actual practice the chance of observing orthogonality is very small.
The asymptotic effgciency of 35LS estimator has been analysed by '
Zellner and Theil "hy considering only two equations of the
complete system. They assumed one of the equations to be over=
identified and the other to be just identified and concluded that
FLS estimator of the coefficients of over-identified equation |
does not gain in its efficiency over 2SLS estimtor. They arrived
at the same conclusion by considering the complete system wheie

one bloc-of equations are just-identified and the rest over-
identified. “In the former cas:z vhen both the equations are over
identified, the authors <deduced that 3SL: estimator gains in
efficiency over XIS estimator provided the correlation coefficient
between disturbances in the two equations is not zoro. Three
points may be notad in this connsction. Firstly, the results of
asymptotic moment matrices axze not properly reportud and hence the
comparison of anoropriate metrices has not been done by the authoss
Secondly, as we shall see latzr, the 2 L3 and 3SLS estimators
themsclves are iduntical in case all the equations ‘are just-identi-
fied and therefore, equivalence of their asymptotic moment matrices
is obvious in this particulsr case. Thirdly, in case the complete
system is a mixture of just and over-identified cquations, then, in
fact, the 3515 and 251° estimetors d¢ not hove identiéal

asymptotic covariance matrix when we consider the over-ldentified
equations only and ignore the rest as concludgd by Zellnar and
Theil 19,Pp.63-69, Consequently, Narayanan's' computational
procedure of 3§E5 estimator tco bzcomes doubtful bzcaure the results
borrowed from are errongous. As rogards the fioct point in



case of SURE estimator too, the momert matrix of QL% estimator .as -
used for analysing efficiency needs some corrsction. Further, the
effect of the behaviour of independent or predetermined variables
(as the case may be) on the efficiency of geperalised ~stimstors
needs anpronriate examinztion so that the virtugs of thesgestim
mator: are not under-valuasd due to mistaken apprehensions.

The purpose of this psper 1s meinly to analyse thesc issues.
further and to straighten up 2z few minor points at aporopriate
places. In fact, we shos thet the genzralised estimator: behavs
uniformly in respsct of thelr efficiency also:af they do in case
of their cantral tendencies. First of all, in Section 2 we provide
a brief survey .of various gencralisad estimators in case of -single,
multiple regressions and simultaneous equations models and try to
discover a common feature throuchaut. Also, in casc of simultaneous
equations, we analyse 5L as wiell 3SL5 estimators under:alternative
assumptions regsrding the identifiability of all or only a part of
equztions of the complets systzm. Then, in Scction 3, we discuss
bri:fly the concepts of asymptotic covarianc: matrix and xelative
efficiency. Section 4 contains derivation of rclevant asymptotic
covariance matrices while their comparisons are made in Section B
to decide asymptotically more efficient estimators. The last
Seetion contains a discussion on th: effzet of orthogerality of
explanatory variables on the efficiency of various generalised
estimctors, :

2. A Brief Survey of Generrlised Estimator Proceduzes

We propose to restrict our discussion to linca: ecorometric
models only. As the underlying assimptions in case of estimators
undsr considerztion are too well known, we would not repsat all of
them again in this paper. However, we would specify the assimptions
regarding statistical distributions of the distrubanca tarms in
respective cases. '

2.2 Gen:ral Linear hegrussion Model

We may writs the general linear regression model as
(2.1) y = XB+u
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where y is the column vector of‘observations'on the left hand
variable, X is the TxA matrix &f obsarvations on Aexplanatory
veriables,B8 is the A xl cozfficient vactor, u 1is Txl vector of
disturbance terms and T is the size of sample.

It-is.wéll known_that i1f the disturbances are homoscedastic -
and temporally independent; i.e.,

3.
(2.2) Buu' =4 &I

whare operator E denotes mathematical expectation, @ means Kronecker
product and I is TxT identity matrix, then, OL' estimator

(2.3) bd: (x*x)“?x"y '

1s best lincar unblased estimztor of the coefficient ve¢£or B

On thgicontrarva if TV v, |
| . 11
(2.4) Buu' = : =V
VT]. san ¥,

then, instezd of b, the estimator
A ” - -
(2.5) e = (xrvix “txvly

Fal
is best lincar unbiased gstimator of vactor B. - The estimator B is
known as iitken's” gendralised least squares estimator and its
computation diaends upon the exact knowledge ‘of the covariance
matrix V. Rao™ "has shown thst if ong uscs someg estimator V of V
and obtains:the estimator

(2.8) b= (xwix) ey ly

- - .
of Pthen, b is not necessarily best linear unbiased unless V =V,



2,2, Set of Lincar Regressions hodel

Several times we have a sct of linear regressions so that
the disturbances in different egquatione exhinit considerable
d=gree of statistical dependence, We may write such a eystom of
M equations as '

{2:7) Yy = El p; +Yp = 1, seey My

whers y; is Tx; vector of observations on the dependent variable,
xa'ié‘Ti? matrix of observations on the M explanatory variables,
ﬁi is /\iXI vector of unknown coefficiznts and u, is Txl vector

of disturbance torms. We may, alternatively, groress (2.7) as

(2.8) L yR = Xepd s
where
PYy Xl...O By Yy
(2.9) vy . X =, p¥= ., and u* = .
. : . ,
\ Yi 0 ..uX, 2 a,,

If the disturbances in different regrescions ar: homoscedastic
and contamporaneously indepencent, i.e.,

(2.10) Euiut

j = d’;ixl for i = §

= 0 for 1 # 3,
then, the OL® e¢stimator b#, of B*in(2.8) could be written as

(2.11)  ba, = (xwrpw)T Xy



which can be seen to be identical to‘OLS'estimator obtaingd from

individual equations in (2.7). On the comtrary, if u; and u,

were indeperident, i:e.,

(2.12) Buju, = 6,81

173 h!

for all 4 and j running from 1 to M, ‘then, GLS 'estim tor

(2.13) g% = (g Lo “hee

is bust linear unbiased estimator f¥

(2.14) Iq ':IEQ I
and
= (643 )

(2.15) z

is MM matrix.

the matrix T were known., Zellner 12

] AV A
s,, =T lu. u,

(2.16) i3 1Y

of the elem=nt daj of the matrix
from

FaY
(2.17)°  u® = y® - X b¥,

Thus, replacing

(2.13) S = (sij)

and writing
s, = SgI

(2.19) 1

-1 e
z 1 Y

where

The stimator in (2.13) could be computed only if

‘proposed a consistent estimator

A -~ .
where ui and uj are obtained

by the matrix
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we ontain QURE estimator b# of g¥0s
(2.20) b* = ('x*'sl'lx*)‘lx* ng.l‘ly*

2.3 Simultaneous_Eyuations Model

Lot ue write 2 compl ts system of M structural eguations in
M jointly depenient and a predepnendent variables as

(2.21) Y+ XB=U

wheze Y and X ‘aie Tx and TxA melrices of observations on the
Jointly dependent and nradetermined variablss, rospectively I and B
are matrices of structucal coefficiunts and U ic¢ the TxM matrix of
structural disturbances, o

The reducad form of this system is given by

(2.22) Y = XIT + V
wherea
(2.23) 11= 5™ and v =y -l

are A xM and Tx! mairices of the roduced form COefflCl“ntf and
disturbances, respuctively,

The disturbance matrix U can be written as

(2.24) U =[ﬁl ;..5;1

where u.'s (i =1, ..., M) are each Txl column vectors vhich we
assume %o be homoschedastic and cantempdraneously dependent 3n that

(2.25) -Euiug = Glj* 21

for all valuss of & €¢—=dand j running from 1 *o M. Thus. the complete
sovarlance matrix of structural disturbances is

12.26) ™k gy = o*
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wheie 1L#is defined similer %o {2.13) and the disturbances are
supposed to be temporally independent.

2.3.1 2BLS or CCL Zstimaior

Tt i~ well known that the identifiability conditions require
the exclusion of some veriables from oach squation of the sy~ tcm.
Thus, not 21l jointly dupend‘nc and nrédatermined variables are
reoresentad in each equatiorn. Therefore, suppose my +1 < M jointly
deoendent and li <A predetemined variables snter the i~th

equation. After rearranging torms we can write the i-th equation

of the complete system (2.21) as

(2.27) vy =Y,y +X P10ty 121, eeey i

whero Y3 is the vector of T observations on the left hand sice
jointly dependunt variable, vy and Xj are Txm, ' Tx;%» matrices
of observations on the right hand jointly dependent and predeter-
mined variables, ;eSpactively,Hfi and B, are coefficient victors

and Ui is the v ctor of dicturbancz terms.

The Teduced form corx eSpondlng to Y, on the right hand side
of (2,27) may be written as

(2.28) Yi = X IIi + Vi
where IIi and Vi " are thainéa by suitable partioning:of the matric: Sy
11 and V, respectively.

If wo Jefine

2.29) z, =/, %7 and 85 = [ B
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then, the equation (2.27) may be rewritt n as

(2.30) Y; = 24 51 +ug .

The XIS estimator

el
—_ 1
(2.31) . dyg = (ziM*zi) z:{m_yi

of Si in equation

LS |
(2.32) x vi = X Zif)i + X'ul

is best lincar unbiased in ..itken's sense becauss dOi is simply

GLS estimator obtained fiom (2.32). Thd matrix #® in (2.31) is an
indempotent matrix of the form

(2.33) = X(X'X)"x.

It may be noted that equation (2.32) implies premultiplication
throughout equation (2,27} by matrix X' which is normally a singulaw
J:a‘.;ix unless T = A . One may, thers f01\,,' object to such a pro=:
“tedure. How:ver, the szme estimator d_ . could be obtained by
applying LS procedure to equation

L . = M® x .
(2.34) M*yl MRz, 5ifu1
which implies that not only right hand jointly cependant vwra.able'
but lcft hand veriabls too in equation (2,27) ara. corr.ctad for

“their stochastic parte, arising out Of the fact thzt the equation
belongs to a complets system.

Furth r, the matrix Z. is of order Txni (A, = m, + I ) and
estimator dOi vill exist if i o

{2.35) Rank (M*Zi) = n, E A T
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which is one of ths well known assumptions underlying QLS pro=
cedure applied to equation {2.34). Incidentzlly, the right hand side
of {2.35) is the order condition of identifiability of equation
(2 27}. In particular, vhen {2.27) is just-identified, i. ey

-J, then,

(2.36) dg; = ()c'zi)'lx'yi

where use has been made of (2.31) and the fact that the matrix

X'Zi is nonsingular for the just-identified cassz.

2.3.2 3BLS Estimetor

The ALS estlmator as obtainec from eguation (2.34) completely
ignores the dependance of disturbances in di £ferent equations. We
can use this informetion by following exactly the procedure of
Section 2.2. We rerrite all the equations in (2.34} as

(2.37) Hy=HZ 8 +u

-y —_ * : %

where ' [ T \ :
,M*.-.G l ’izlnilo Yl . ‘61 ‘ :Ul
; : ‘ ! i :
{ . : ! ? R S
(2. 38)1—1— . -;,z:;. Y= . i, 8= . 0 u=il : 806
| i VRN TR
;0"“”*i ,0 ZM% Yy o By |
i - L I - - = -

—

Then, GLS, procedure as applled to equation {2.37) yields the
estimator

A
(2,39} & = (Z‘Z HZ) Z‘ Z¥ -lHy

‘where use has been made of (2.25),

(2.40) EI = g I
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and I* is same as defined in {2.7). In particular, when TE=I,
then, the GS estimator & in (2.39) reduces to

(2.41)  dy = (2'12) 2y

which is in fact 215 estimator of § and could be obtaied by =
applying OLS procedure to eguation (2.37). The e_.stima\tor in (2.39)
couldlge computec only if the matrix Z¥were known. -Zzllner and
Theil™  proposed a consistent astimator 5% of I¥ ‘where the
element s*ij of :#* is defined as

S
{2.42) ng =T "ui uy

- - .
where uy and Uj are obtained from

-

d_ being same as defined in (2.41). Then, 3SLC estimstor d of Sca
b8 defined as

(2.44) o= (z's¢ tHz)zese

where matrix Zﬁl' in (2.39) has been replacad by S¥ and

{2.45) St =s5*al.

Thus, we observe a complete analogy between OLS and CLRE
estimators on the one =ide and 2515 and 3SLS estimators on the, other
provided we consider equations (2.34) for obtaining the latter
estimators and noie thet the regressors in (2.34) ars stochastic.
Further, we not:s that ‘the matrix Z 1is of size Mxn {(n = ni);

. _ i=1
thersfore, nonsingularrijty of the mairix (Z'E!f".le) implies that
(2.46) Rank (z'sf ~1HZ) =n <M~ ¢ M



-] 2

and eclusion of all the identities from the system (2.21) because
othezwise the zerc disturbances in the identities wouid Tender the
matrix S#® to be singular. The right hand side of relation (2.46)
provides arder condition of identifiability of the complete system
and would hold true provided (2.35) were true for each ecuation
i.e., each equation of the system wers identified.

2.3.3. 36l Estimators for Some Sprcial Gases of the Complete System

In this Yection we s hall consider the complete’ sys tem when ali
.or some of the equations are just identified. First of all, we
consider the case when 3ll the equations are just-~identified, i.e.,
n = M4 In that case the matrix ZF will be square and nonsingular
where

Combining (2.47) with (2.38) and (2.33) we observe that
. %
(2.48) H=F (F'F)-]‘r" 3

then, usingr(2.48) and(2.44) and remembcring that ZF is ronsindalar
we derive after some adjustment.

(2.49) d= (P-'z)""E"y
which is same as 2 SIS ‘estimators in (2.36)

Next, wé“Consider the complete system when some of its equatiens
ar2 just-identified and the:spet are over-identified. Without any

lose of genorality let us esstme that equations in {2.37) sie. arranged
in such a manner that wupper block of M, = equations are just-
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identified and the lower block of M2 equations ars ovex-identified.

We also suojose that M1+M2 = M. Further, let us-oartition the

matrices and vectors Z, F, H, d, ¥ such that upper blocks corresw-

ponding to just-identified’ ‘equations arc denoted b f s Fl, Hl, dA,

Yf and lower blocs corresponding to over-identified equations are -
dencted by 25 2, H2, dB’ yg, respectively, Cimilarly, the matrix
S* is partitioned as

i H
- 12
i swl2
(2.50) s+l o ! ) o
s#2l g
L

and the following notations are adopted for cenvenience in writing.
We write
(2.51) ¢ U 2seld op 1,5 21,2,

The; we can rewrits the normal equations corr:sponding to estim
mator d, defined in (2.44), as

o 11 1 et ly e g glZs F
2psy Mgzt + 2g'sy “H sy = zpspt vy w25yt

{2.52) ,
21 o . .
List [ ]

25 S#7°H Zfd -+ Z§'SI H2Z5 d 25 ' VI21h1yT +ZRISE szi
where use has been made of (2,90} and{2.51). Since matrix
ZtﬁSfllH Zt corresponds to juw t-itventified eguatjons. only and
therefore nonsingular., We can multiply by its inverse throughout
the upper equation of (2.52) and solve for #A in tezms of d . Then,
substituting for d in the szcond equat101 of (2.52), we obtaln

after some ad3ustment.

(2.93) o = (z8'c, d225j’45 G v



g
where :
(2.54) G = SY 2, Sf Fl (zr'sitll}:l) "lzf _.5,1,12
ind use has been made of (2.48), the nonsingularity of ‘the matrices
Fizg and zgesetly and
oo agstnzp (o op ™ 2p et ey

Further, combining (2.53) with either of the equatioris: in (2@52)

we may solve for dA

It can be easily verified that

(2.6} S‘IHF =, )1

and

(2:37) st = F) Lot (e 7

Therefore, using (2-561 aid {2.57)we have

(2.58) 62H2 S) 22,5 2%1(21'5,‘1% )L 28 12P
= 3?}22‘*;2“""?2%-‘""1 ™ o)z, Spraaten™xd
= 3122"5 - S ll)'l F,- /_5:12 a(xrx)‘lr xr 7
- AR (5;11)_-1 M2 7y
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*It is clear from (2.58) and (2.94) and dB deosends upon S?ll
and 3112 which in turn depend upon the elements of the matrix 5%
including those ones also which are computed by using 2BLC cstimates
of the residuals in the just-ienticd equations. Accordingly,
observations on all the variacles irvolved in tle just-identified
set of equations are necossarily nceded to compute dB and it will
be incorrect to compute LS estimators from the sot af avire

identifizd equations only.

3. Concepts of Asymptotic jovariance Matrix and relative zfflciency

There appears to be some confusion rcgzrding asymptotic cavariar
matrix and relative asymptotic efficlency in econometric literature.
Therefore, it may be useful to state these concepts clearly baeforc
proceeing to further analysis.,

Suppose T obszrvations ax¢ available on a variable x, following
normal probability law, and a maximum likelihood estimator bT is

obtained to estimate a parameter & of the parent population; then.

cipple 8 wéll known 9, Eection 5£.2(1) that by 1is consistent esti-

mator of € ox alternafively,

(3.1) Plimb, =@

where 'Plim' means probability limit, i.ewy the estimator cov.rages t
O in probanility. This also implies that asymptotic distribution

of b_ collapses around @ or in other words its variance tends to
zero. Thus, if there are more than one consistent estimators, say,

b and b* of the same parameter @ and based upon the same T
ogserVatlons on x then, the cholce of the bsxtt.r one would be diffi-
cult in case of large T becaus2 in that case not only biases but

(7, pp.

1 (15, PP« 68~69) and,Napayanan'

2/ See also Zellner and Thei
298-306)



variantes too would be equ1Valent for both the estimators. - On -
'théqother hand, we have seldom infinitely large semples in actual.-
practice and it is quite possible that even for finite samples the

speed of" convergence of distributicon of, say bT is more than that .

of b? as T tends to 1nc;ease. ' This speed could be better judged

if we had exect variances of the ramphng dletrloutlons of both
b and b? - For, in that cese, the re lative speed. of convergence

could have been decided by comparing actual variances for variation
in T. .Unfortunately, in most cases, actual distributions a.e not
aVallable and st best only asymptotic distributions arc known. The
oroblem is, then, to devise a method of deciding the relative

speed of converg:nce from the knowledge of. asymptotic distributions.

This is done by considiring the’ inflated estimator T%' {b -9)
whose astPtOtlc distribution (2' fection 5f.2(11)) is normal with
‘mean zero, variance [ (0)] where

(3.2) (@) = -pllm[' -1¢> 1]

and 1 is-the logarithm of 11kelihood function based ‘upon the T
observations on the variasble x. Clcarly, i (@) is a nonstochast ic
positive quantity. Therefore, even for large samples,‘'the

asymptotic variances of thne inflated estimators by and T%b%

could be computad with the help of relatiofi (3.2) and then, could
be used exactly the same way as in case of exact samplas.
It may be observed thet, for a given T,% variance of:BTsis T‘l
. . _ A
timses the variance of inflated estimator Tz'bT and therefors, we
can find .a number v, of order of smallness (T~ ) so that f

(3.3). [ i(e)/ }'.-Lt [T v]

ine numoer v_.may be used in the same sence as ZI (G_)_?'"'L bocause

the factor T-remains same for competing estimators obtained from
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a given sample. In strict s=nse, howevez, v, should not bi named
as asymptotic yariance of bT’ Lhough, forrcomparing the speeds of
convergence of alternative estimators it serves our nurpose.

Therefore, to avoid confusion, it would be bettsr 1If we cafl_va

as operational asymptotic 'variance of estimatér‘bT and rzckon that

ite asvwptotic variance is always zoro provided it is consistent

astimator of O .

These concepts could be extended in*a“sfraight forward manner
to multivariate situations. Thus, if b denctes a consistent estimw
mator of aAxl vector f of unknown ccefficients and if we canwrite

2
(3.4) (-Plim T~ 65‘—1&, L oswe A v 7
8% Tew T

then, theA XA matrix V, is defined as ope Tational asymptotic

covariance matrix of estimator b and its elements aie each ot order
of smallness (1-1).

It may be observed that the matrix in (3.4) is, in fact; thé
limiting value of the sequence ;ET% {(b=B) T"% (b=B) '} , or, in
ekher-wbrds  of asymptotic.expeéiation (4, p’1167m§£oﬁidéa
E(b-B) (bwﬁj' exists. Therzfora, we could define (4fp'1%%)

Va’ alternativel&, as

(3.5) Plim /' T (b= B"). (b= ‘S ')' -j = Lt c[ T Ua‘—/

T— ©3

subjuet to the restriction th-t tha szcond moment of exact probability
distribution of b is finite,

Fu?ther, if estimators b and b* ars-both consictent and dezivec
from a given sample of obse¢rvations, then, b is said to be asympto=
ticglly note efficient Than b* if
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{3.6) Va(.b )_2‘. Va‘(;lb,)
where Va(b).and-ua(b*j are oparational asymptotic covariarce matrices

of b and b#, respe ctively., Also, by definition

(3.7) ,va(bi)}u v, (b) <= v (b¥)=v (b) positive semi-definite.

4, Asymptotic Covariance Matrices

The estimators degcribed in Section 2 could also be inter=
prettad as naxiﬁum llkolihood ‘astimators p;evided wa assunn,
addltlonally, that the distufbance terms in models (2.1), (2.7) and
{2.21) follow suitable normal probapility laws .and consider aporopriate.
vergion of equations for constfﬁbting the likelihood functions. 1In
_ that case, as is quite well known, th: astimators_defined.in‘(2.3)
and (2,5) may"b@'obte’ned_by‘detéimining the values of vector B . for
which the functions |
(4.1) 1, =ky =4 (y=xg)' (v - Xg)
and

(4.2) 1, =k, =& (y2Kg) vy - xp)

are maximum where k®s -are independent of B, ~ If an estimator V. of
V is known, apriori, or estimated from the sample obssrvations y and.
X without making any assumption onf  then, it can be easily seen
that the estimator b, defined in (2.6), is maximum likelihood esti-
mator corresponding to function, ; '

{<.3) 13 = k 4+ (y- Xg ) 'V (y - X 5)

which can be obtained from(4.2)by substituting V = the cvallable'
dispersion matrix, in place of V- the trus dispérsionmatrix. Alter=
natively, the estimator b may be called as g_ximum likelihood esti=
mator using an estimated dispersion:matrix. © Similarly, SURE,

3/ See also Raolo for similar treatmsnt of the theory of least
squares using ane stimated dispersion matrix.
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1S and F}LS estimators, defincd in (2.20), (2.31) and (2.44) may
be interpretted as maximim likelihood estimators corrcsponding to

1ikelihood functions.

(1.0) 121, (e g )57 (0 - xepe )

(4.5) 1 = kg —F (X'y=XZ4 61)'(?{1X‘K)_1(X'Y{" AZi80 b

and
(4.-.6) -16

kg - Hiy=rz 8) s (ay - 2 5)

respectively, Thus, it can be easily verified that ESiimators”given'“

€ oy s fy
in Section 2 are consistent (9 ”CCtlQn 5F'%(lllpraujded only

consistent estimators of dispersion matrices are Used in each casc.
Accordingly, the asymptotic covariances of these estimators could
‘be worked cut as discussed in Section 3.

Throughout’ the r&maining part of this section +¢ smll be cohm
cerned with either exact or asymptotic covariance matrices. We denof

the former by Q's and the latter by Q#'s. The:covariance matrices
of bd“and_ ‘B ar: well known énd may be writien as

(4.7) Ql =7 2 (et

ahd

(4.8) Q, = (x'v"lxr'l,

respectively. In case of b, we shall derive operztional asymptotic

covariance matrix (04iCM) bccause exact distribution of by in genzraly
is known.

Using (3.4) and (4.3) we cen write

A ' Sy -
(4.9) Lt (TQg) = (Plim T71x0v "My hm e (vt
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where use has baen of Slutsky's theoxem (4?9'118),and
(4,10} Plim’ V = Vo
The notation Lt in (4.9) and also in later discussion means limi+

when T approaches to infinity. Thus, the O4LCM of estimator b ¥
may be written as

(4.11) ag =(xv"x)™

In actual m@actice, one might compute OLS estimator e¢ven
though the assumption (2.4) werc true, In that case the moment
matrix of bo will be different from Ql’ definad- in (4.7). Combining
(2.3) with (2.1) we observe that
ol N |

- = ¢ i
{4.12) h0 - 8 (x X) T X'u
and then using {2.4) we obtdin &

(413) &0, -8) (5 B ) * =) "™ = g

The derivation 0f moment metrices in case of est imators given-
in Section 2.2 follows exactly in'the same way as didcussed just
above. Thus, if Q5, Qg, and Q7 denote covariance matrix of b*,

QACM of b* and covariance matrix of b* when assimptlon {2 12) is
true, then, we have .

(4.14) @ = (x#1D" Lywy=L,
4,15 = LI i | -1
(4.15) Q¢ = (x*» : X%,

and

(4.16) @y = (xoeexm)”E e 2 (e ™

Cf (5) p.191.-Dhrymes, (4a tog has. used 51m11ar approaqh whlle.cmn-
yang
paring the eff1c1ency bf: certain structural estimators’ which ‘appe ared
after this article was complets.
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where‘ ro !
o3

llxl aasw 0 ;

. !

(4.17) = . B

. L. o

|

0 ".'"{WM |

Next, combining (-4.5) with (3.4) and (2.33) we get

1 )-1

(4.18) Lt_(mg)' Igii(PlimT" 7] Mez,

U TS TR IS
511-?11‘““ Z:.;_X)Pllm('l' X' X)PLim(T X‘Zi)

6y T LT(2ywZ,)7T

(4,ps118)

where use has. been made of Slutsky's thecrem | and

(4.19) Zi=E21=E(Yi xi) =(XIIi xi)¢

If we define a metrix Ay whose elements arc either unity or zero,
so that

(4.20) Xi = x-'hli L]

then, we can rewrite (4.19) as

(4..21‘) Z; =XC
whera
(4.22) C; = (114 Ai_)‘.



..22-_
Finally, combining (4.21) with (4.10) we obtain.

(4.23) af = ("z'i?:')

It is interesting to nols thit % remains nonstechastic aven
if the pyedetermined and jointly depen variables o the right
hand side of model {2.27) aie stochastic, ﬁ%st the same time it
may be Tememberad that Qg is the proper QACM of 2£LS estimztor d

xr ovided distutrbancd$-in difforent equatlonq in {2,34) are
really independent, as we obse rvcd in equation (2.41) while
deriving 2 SIS estimators fram 3-€1S lestimatora. . This : 18,
howevir, against the basis of simultaneous equations model in
view of-the. existenca of JGlntlY dependent variables, But one
can obtain 2 SIS estimators even thaugh assunptlon {2.29) wexe
true. In that case using (2.41) and (2.37) we obtain

ol

(4.24) d - 8 = {z'6) 2y

and the, cmmbiﬁiﬁg'(4.24)=with=(3:5)9/énd proceeding for further
simplification exactly in the same way as we did in (4.18) we
get

(4.29) Lt(1Q8) =Lt ﬁ(i'i)‘l'i"'_'ﬁf(f'f)flj

wher e

(4.26) Z = EZz

- - ——r arm—. - sr—

5/ The result reported in (13, ».56) is stochastic. But ths same
resizt as om (4,23} above could be derived from asymptotic covar-
iance matrix of 3 SIS estimator provided by the same zuthors

(13’p°60)as a particular case when we replebe-IIHB?Lah i&énﬁity
matrix, in which case the 3 TL¢ estimator i€self is Identical to
2 8IS estimator.

6/ Regarding the validity of {3.3), we may refer to Richardsan®
who has proved, for models contzining two endagenous and any
number of exogenous variables that [5(d -8) (d ~ &' is finite
for adequataly identified equations. ° ©
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From (4.20) we obtain Q#, the 0.CM of d. when (2.25) is th: %rue
assumption as
(¢.21) @ = (@D7T 2 e 7D
derive

Finally, we /' OACM ot 3SLS estimator, defined—in_{?.éd).
Combining (4.6} with (3.4} we derive”

(4.28) Lt (TQ¢,) = (Plim tr"lz"rs{'lz)'l

(LiE T atigyt

-4

where simplification has bees done similar to £hot in (4.18) and
use has been made of the fact that B 4= idempotent symmetric -
matrix and

{ 4. 29) sflﬁ =H5f‘1

besides the fact that S*% is consistent astimator of E# Thus,
GACM of estimator d may be written as

(4.30) ofy = (Zr g~

where Z is same as defined in (4.26).

S. asymptotic Efficiency of Generzlised Estimators

In our discussion s0 far, we considered two alternative osti
mators corrasponding to each one of the three types of wodels
analysed in this paper. In cach case, bithH thaes estimators are
egually acceptable for large sampl.s in view of the fact thot their
asymptotic distribytions colliapse arcund the 6orTressomdineg fve
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parameters. In such cases we use the criterion of asymptotic
efficiency for making choice between the two competing estimators
which has been alreacy discussed in Section 3.. 4 carefdl look

at the rasults in .the preﬂ?jing section would reveal that if wa
consider the aporoptiate. o tMs for oomparing asymptctic
efficiency <4n sach case, then, the z)¥gebraic forms of exprcssions
are similar in case of all the threg models:,. Therefor2, using
results, given in Section 4 and Ra'o&*D’idma 20—5 we may stazte the
theorem '

THEOREM: Under the same assumbtions @s requized for deriva-
tion of different gen=ralised lzast squares estimators and the
nototions developed in the preceding sections we have

and

(53028 > Ao

The equality signs hold only if v I, I¥ are identity metrices.

The results in (5.1) to {5.3) indicate that the generalised -
estimators are asymptotically more efficient than their OLS counterw
parts in each case and we 'do not nead any orthogonality assamption

regarding the explanatory variables,.as Zellner and Huang 14

did for proving the efficiency of SURE estimator. Further, in _

case of simultzneous equations model, the result {5.3) is true only

if all the equations of the system are over ildentifiec so that

atleast second moments of 2515 estimators exist in case of each

gguation. This is because, otherwise, uss of (3.9} for darivingm Section
Cg would not be justified. dAccordingly Zellner znd Theil's

conclusions, regarding the efficiency of XIS and 3FLS est im&tDIfsr.

7/ Note that Zellner and Huangld,p_aoé

In fact Q., should bz compared with Qg.

compared Q5 with Qg.
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are misleading:; b.cause OnCM of coefficient estimetes in case
of just-identified cquations cannot b: computad.

6e Effect of Orthogonality on Efficiency

"In this section we anelyse the éffect of orthogonality of
explanatory variables in different equations upon the efficiency
of wvarious estimators. We consider set of Tograssion sguations
and simultanecus equations models. In the first instance ws
ABsume h
(6.1) xixj =0, 1#£3 i, M
which implies.that indépendent variables in different fogressions
in {2.7) are orthogonal. Combining (6.1} with (4.15) and (4.16)
we obtaln ‘

-1
G R

(6.2) q; ~ @t~ .
.o - o
O e (O™ = )
where <5i; {i=1, .., M) sre elements along thé'diagonal of the matria
z -l T@Fs, gain in efficicnty 94 "of SURE astimét;r of coefficients

in the i-th equation over corresponding OLG estim~tor may be' written as

- NS |
(6.3) g;3 =R; Oy (XiX;)
(9, 0.226)

where

, 2 ii=-1
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which impliss that predetermined wvariables in the whole system are
parfactly uncorrelated with cach other.

If we dunote by Qfl.the O.Ci of @ stimatozr éi when (6,8) is

really false, then, following the procedure of obteining Q& we
can write

e 6 G0N S (3 T =1
(6.9) Q¥ = cf;i(zixx'zi) 7} Xx 3szi (z3 X'z} = .

Now, using result {5.1) of th~ theorem we have

(6.10) af, > @,

where use has been of the fact that we can write
' _— wl. = ol
p— 1 vt
(6.11) E = cfgi / zix(x'x) X'z 7

Furth r, using (4.21) wos observed that when (6.8) holds true theg,

- - -— - -
t 4 -— t ] t — t
(6.12) ZIxx'Z, = Zx(x'0) X'z, = Z{Z,.
Therefore, the gain in asymptotic efficiency of dOi over & N is
zero when (6.8) is true, bscause in thot case Qfl = Qg in view

of (6.12). But if X'X # I, that is, the mredetermined variables in
the complete system arz correlated, EPen, estimator dOi is definitely
asymptotically more =fficient than éi in view of (6.,10). At the
same ‘time 35IS estimators in (2.44) are asymptotically more efficient
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than XI5 estimators. doi according to relation {(5.3)¢ Thus,

we find thsot inclusion of lagged variables or, in othsr words, the
existence of correlation between different pxedetérmingd variablog
has h:althier effect on .25LS and 38LS estimators in rospect of
their asymptotic efficiency.
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