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Introduction

Many important class of economic problems find their mathematical models.
in linsar programs with integer variables., Prominent émong theae are those that
~correspond to linegar proagrams with uariables taking only one of the values, zero
Or AN Scheduling, séﬁﬁ;ﬁcing, capital budgeting, locaticn of service centres
in a région, and many other problems éan be formulated as zerc~one programs.

In this paper, a new approach called Aggregate and Branch Methad (48M) for soluing

multi=-constraint linear programs with zero=one variables has been described.

Sgveral methods have been pruposed for reducing an integer linsar programming
problem with bdunda on the variables to an equivalent single‘consfraint problem,
The ﬁionearing work in this area was ¢ong by Matheuws in 1896. Interest.iﬁ the
topic reviyed in the seventies as teflected in the worksunf Hnthﬁnisse(1),'
Bradley (2), Padberg (6), Glover and Woolsey (3), Kendall and Zionts (5), The
motivation.ar these researchzs has besn to use efficient algorithme available for

knapsack problem to selve the original multi constraint problem,.

The motivation for ths present work is the same as described above., It

addresses though to a special class of integer programming problems in which

yariables can take a value of zero or one, The algorithm proposed in the
paper Pirst achieves an eguivalent single constraint representation of the
original multi-constraint problem and then wses a modified branch and search

routine to solve the resulting knapsack problem.
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The_algorithm

The original multi-constraint problem is:

. n
max 2: c. X, aws (1)
= ot

sete Za. X, < biFDri_-—-’I,...,m

x. =0 or 1

aij‘ > 0, bi> 0,are integers for all i and j.

The élgorithm is best explained through the following steps:

Step 1: All the inequalities are converted into sguations by adding slack

variables.
n
Max c. X, ‘ ;-o'(2)
2L %57
i=1
n
S.te j% aij x‘j + s, = b, for 121, ees M

0 or 1

x
i}

s, 2 0 are-integers

Step 2: By repeated application of any of thexmethmqs suggested for
aggregating two diophantine equations, the system of equations

is converted into an squivalent equation.
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whare 9; _ig the aggregate coefficient of the jth variable

h

k., 1s the aggregate coefficiant cf tho it glack variable

i

G is the agﬁragate value af the right hand side

Step 3: The equivalent singie gonstraint problem is broken up into swo

parts, the Main Problem and the Subproblem.

. n
Main Problem : Mex L. 6. X
j=1 J
n
8s.t, E: 9, X ,‘__‘ G g (&a)
j= ¥}
¥ = Oor i
J
; * :
Subprobliem:; The feasibility of a solution Xy to (4a) is

determined by examining whether the fellowing equation

has a Peasible sclution,

m n- *
Tlkg s =6- Fax vee (4b)
i=1 j=1

8y 2 0 aras integers



The reason for breaking up (3) into (4a) and (4b),isrthat,it'islpossible
to solve a knapsack problem with inequality constraint, and test the feasi-
bility of the sclution for the original constraint set, rather than solve a

knapsack problem witb an equality constraint atraightaway,

The branch and search method suggested by Greenberg and Hegerich(4)
could ba used for sclving (4a). .Tha feasibility of terminal solution
obtained in (4a) would then be examined by a direct substitution in the
original constraint set. 'lUhenever a feasible terminal solution botter than
the current lower bound solution is reached, the solution is recordod as the
now lower bound solqtion and the branch and search routine would continue.
If the terminal solution is not foasible but has an objoctive Punction
value greater than the one recorded ia the lower bound solution, the method

proceoeds to step 4.

Step 4t At this stage thers is a terminal soluticn to (4a) with an objeetive
function value greater than the loyer bound but which violates the
original congtraint set, It is possibie that a sub-set of thg
set of variables that constitute this terminal sclution, wou ld
give a bettor feasibls sclution. To find such a sub-set the

- following procedurc will be used:

Suppose a terminal solution with p xj squal to oﬁe has been
reachad. These variables ars first arrangsd in the ascending

order of their objective function coofficients,



Thesa xj naed not be successive in j, In order to oxplain tha procedure
it has been assumed that they are successive, Anyway, such a sequence

can always be obtained by'renumberiﬂg the variables,

After thse variables are arranged in the abcve order, the first element of
the seguence is put equal to zero (x, = 0) and the resuiting solution is
tested for feasibility, IF the sclution is feasible and has an objective
function value greater than the purrent lower bound solution, the method
backtracks to step 3. In case the soiuticn is not feasible, the procedurs
sets Xy = 0 and X, = 1 and repeats the search for better feasible sclution,
The method thus tests sclution sequences in the following order (the number

represents ths index of the variable eguated to zoro):

Y N -

P

am—

It is clear that the solutions are arranged in the desecending order of
objective function value. lhensver a better feasible solution is reached,

the lower bound sclution is updated.,
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The search for a better feasible solution continues with two variables
equated to zero. The order in which sub-sets with two variables put equal

to zaro are examined is given below:

1 2
1 3
- ”
1 p
2 3
2 4
2 p
p {p~-1)

It is quite apparent that no solution is repaated and within each sub-group
the value of the objective function is non-increasing. Whensver, the value of
the objective function falls below the lower bound value, the search moves on

to the first element of the next subgroup.

The search continues with larger number of variables equated to zero (similar

sub-grouping is done in sach case). The method backtracks to Step 3 whenever

the first solution in any sub-group has a lower objective function value than

tha current lowsr bound,




The lower bound solutiop to (4a) after all the branches have been examined

would be the optimal snlution to the original problem,

Preliminary Results

Limited computational experience with nine problems is recorded in Table 1.

IABLE 1

COMPUTATIONAL EXPERIENCE

S.No, No of No,of Total no, of No. of nodes generated
variables constraints nodes generated till optimal solution

1 8 2 18 7

2 g 2 g - 55

3 16 2 146, S 104

4 1D‘ 3 149 4

5 12 3 - 128 : ' 47

6 10 4 150 B : 63

7 10 7 362 E .. 132

8 . 10 9 354 191

9 14 B8 2392 599
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