• Login
    View Item 
    •   IIMA Institutional Repository Home
    • Video Library
    • R & P Seminar
    • View Item
    •   IIMA Institutional Repository Home
    • Video Library
    • R & P Seminar
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    To explain or to predict?

    Thumbnail
    View/Open
    To explain or to predict?  (197.6Mb)
    Date
    2013-12-31
    Author
    Shmueli, Galit
    Metadata
    Show full item record
    Abstract
    Statistical modeling is a powerful tool for developing and testing theories by way of causal explanation, prediction, and description. In many disciplines there is near-exclusive use of statistical modeling for causal explanation and the assumption that models with high explanatory power are inherently of high predictive power. Conflation between explanation and prediction is common, yet the distinction must be understood for progressing scientific knowledge. While this distinction has been recognized in the philosophy of science, the statistical literature lacks a thorough discussion of the many differences that arise in the process of modeling for an explanatory versus a predictive goal. The purpose of this article is to clarify the distinction between explanatory and predictive modeling, to discuss its sources, and to reveal the practical implications of the distinction to each step in the modeling process.
    URI
    http://hdl.handle.net/11718/11817
    Collections
    • R & P Seminar [209]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of IIMA Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV