• Login
    View Item 
    •   IIMA Institutional Repository Home
    • Faculty Publications (Bibliographic)
    • Journal Articles
    • View Item
    •   IIMA Institutional Repository Home
    • Faculty Publications (Bibliographic)
    • Journal Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Modelling and coherent forecasting of zero-inflated count time series

    Thumbnail
    View/Open
    Modelling and coherent forecasting.pdf (691.3Kb)
    Date
    2014
    Author
    Maiti, Raju
    Biswas, Atanu
    Guha, Apratim
    Ong, Seng Huat
    Metadata
    Show full item record
    Abstract
    In this article, a new kind of stationary zero-inflated Pegram’s operator based integervalued time series process of order p with Poisson marginal or ZIPPAR(p) process is constructed for modelling count time series consisting a large number of zeros compared to standard Poisson time series processes. Several properties like stationarity, ergodicity are examined. Estimates of the model parameters are studied using three methods of estimation, namely Yule–Walker, conditional least squares and maximum likelihood estimation. Also h-step ahead coherent forecasting distributions of the proposed process for p = 1, 2 are derived. Real data set is used to examine and illustrate the proposed process with some simulation studies.
    URI
    http://hdl.handle.net/11718/13515
    Collections
    • Journal Articles [3738]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of IIMA Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV