• Login
    View Item 
    •   IIMA Institutional Repository Home
    • Faculty Publications (Bibliographic)
    • Journal Articles
    • View Item
    •   IIMA Institutional Repository Home
    • Faculty Publications (Bibliographic)
    • Journal Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Decoupling computation and data scheduling in distributed data-intensive applications

    Thumbnail
    View/Open
    Decouple_computation_Kavitha_R.pdf (100.2Kb)
    Date
    2013
    Author
    Ranganathan, Kavitha
    Foster, Ian
    Metadata
    Show full item record
    Abstract
    In high energy physics, bioinformatics, and other disciplines, we encounter applications involving numerous, loosely coupled jobs that both access and generate large data sets. So-called Data Grids seek to harness geographically distributed resources for such large-scale data-intensive problems. Yet effective scheduling in such environments is challenging, due to a need to address a variety of metrics and constraints (e.g., resource utilization, response time, global and local allocation policies) while dealing with multiple, potentially independent sources of jobs and a large number of storage, compute, and network resources. We describe a scheduling framework that addresses these problems. Within this framework, data movement operations may be either tightly bound to job scheduling decisions or, alternatively, performed by a decoupled, asynchronous process on the basis of observed data access patterns and load. We develop a family of job scheduling and data movement (replication) algorithms and use simulation studies to evaluate various combinations. Our results suggest that while it is necessary to consider the impact of replication on the scheduling strategy, it is not always necessary to couple data movement and computation scheduling. Instead, these two activities can be addressed separately, thus significantly simplifying the design and implementation of the overall Data Grid system.
    URI
    http://hdl.handle.net/11718/13635
    Collections
    • Journal Articles [3738]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of IIMA Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV