• Login
    View Item 
    •   IIMA Institutional Repository Home
    • Faculty Publications (Bibliographic)
    • Journal Articles
    • View Item
    •   IIMA Institutional Repository Home
    • Faculty Publications (Bibliographic)
    • Journal Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A MAS architecture for dynamic, realtime rescheduling and learning applied to railway transportation

    Thumbnail
    View/Open
    MAS architecture for dynamic.pdf (2.460Mb)
    Date
    2015
    Author
    Narayanaswami, Sundaravalli
    Narayan, Rangaraj
    Metadata
    Show full item record
    Abstract
    Rescheduling disrupted railway traffic is computationally hard even for small problem instances. Disruptions may not be known beforehand and can manifest themselves even when trains are en-route, and they are usually resolved by human experts. Wide geographical distribution, a dynamically changing environment, complex interdependencies between multiple components, operational criticality and uncertainty being characteristic of railway transportation, human resolutions are inconsistent, scale-inefficient and potentially infeasible with deadlocks. We present a multi-agent system (MAS) model for dynamic and real-time rescheduling (DRR) of bi-directional railway traffic on a single track in this paper. A computational framework to dynamically dispatch the disrupted trains in real-time, based on instantaneous system parameters and to reschedule conflicting trains with inherent deadlock avoidance is incorporated in the agents’ model. A learning architecture is implemented as a proof-of concept to resolve disruptions quickly and to enhance autonomy. The model is evaluated against integer optimal solutions generated by a Mixed-Integer Linear Programming (MILP) model using realistic data. Detailed discussions on architecture, implementation using JADE (Java Agent DEvelopment) toolkit, experimental results, performance analysis, evaluation of the model, insights and limitations are reported. The numerical performance measures of the model are total weighted delay of all trains at their destination terminals and computational time for resolution. The distinguishing research contributions in this paper are a MAS architecture for railway rescheduling, dynamic dispatch priority assignment using bidding and a learning procedure that enhances autonomy.
    URI
    http://hdl.handle.net/11718/17290
    Collections
    • Journal Articles [3738]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of IIMA Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV