dc.contributor.author | Banerjee, Buddhananda | |
dc.contributor.author | Laha, Arnab K. | |
dc.contributor.author | Lakra, Arjun | |
dc.date.accessioned | 2021-10-07T09:55:05Z | |
dc.date.available | 2021-10-07T09:55:05Z | |
dc.date.issued | 2020-07-06 | |
dc.identifier.citation | Banerjee, B., Laha, A. K., & Lakra, A. (2020). Data‐driven dimension reduction in functional principal component analysis identifying the change‐point in functional data. Statistical Analysis and Data Mining: The ASA Data Science Journal, 13(6), 529-536. | en_US |
dc.identifier.other | https://doi.org/10.1002/sam.11471 | |
dc.identifier.uri | http://hdl.handle.net/11718/24271 | |
dc.description.abstract | Functional principal component analysis (FPCA) is the most commonly used technique to analyze infinite-dimensional functional data in finite lower-dimensional space for the ease of computational intensity. However, the power of a test detecting the existence of a change-point falls with the inclusion of more principal dimensions explaining a larger proportion of variability. We propose a new methodology for dynamically selecting the dimensions in FPCA that are used further for the testing of the existence of any change-point in the given data. This data-driven and efficient approach leads to a more powerful test than those available in the literature. We illustrate this method on the monthly global average anomaly of temperatures. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Statistical Analysis and Data Mining | |
dc.subject | Statistical Analysis | en_US |
dc.subject | Data Mining | en_US |
dc.subject | Functional principal component analysis (FPCA) | en_US |
dc.title | Data-driven dimension reduction in functional principal component analysis identifying the change-point in functional data | en_US |
dc.type | Article | en_US |