Show simple item record

dc.contributor.authorBanerjee, Buddhananda
dc.contributor.authorLaha, Arnab K.
dc.contributor.authorLakra, Arjun
dc.date.accessioned2021-10-07T09:55:05Z
dc.date.available2021-10-07T09:55:05Z
dc.date.issued2020-07-06
dc.identifier.citationBanerjee, B., Laha, A. K., & Lakra, A. (2020). Data‐driven dimension reduction in functional principal component analysis identifying the change‐point in functional data. Statistical Analysis and Data Mining: The ASA Data Science Journal, 13(6), 529-536.en_US
dc.identifier.otherhttps://doi.org/10.1002/sam.11471
dc.identifier.urihttp://hdl.handle.net/11718/24271
dc.description.abstractFunctional principal component analysis (FPCA) is the most commonly used technique to analyze infinite-dimensional functional data in finite lower-dimensional space for the ease of computational intensity. However, the power of a test detecting the existence of a change-point falls with the inclusion of more principal dimensions explaining a larger proportion of variability. We propose a new methodology for dynamically selecting the dimensions in FPCA that are used further for the testing of the existence of any change-point in the given data. This data-driven and efficient approach leads to a more powerful test than those available in the literature. We illustrate this method on the monthly global average anomaly of temperatures.en_US
dc.language.isoenen_US
dc.publisherStatistical Analysis and Data Mining
dc.subjectStatistical Analysisen_US
dc.subjectData Miningen_US
dc.subjectFunctional principal component analysis (FPCA)en_US
dc.titleData-driven dimension reduction in functional principal component analysis identifying the change-point in functional dataen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record