• Login
    View Item 
    •   IIMA Institutional Repository Home
    • Faculty Publications (Bibliographic)
    • Open Access Journal Articles
    • View Item
    •   IIMA Institutional Repository Home
    • Faculty Publications (Bibliographic)
    • Open Access Journal Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    SDG implications of water-energy system transitions in India, for NDC, 2 癱, and well below 2 癱 scenarios

    Thumbnail
    View/Open
    sdg_implications_of_2021.pdf (2.689Mb)
    Date
    2021
    Author
    Vishwanathan S.S.
    Garg A.
    Tiwari V.
    Kapshe M.
    Nag T.
    Metadata
    Show full item record
    Abstract
    India needs to address the immediate concerns of water supply and demand, due to its increasing population, rapid urbanization, and growing industrialization. Additionally, the changing climate will influence water resources, which will subsequently impact the overall sectoral end-use demand patterns. In this study, we have integrated a water module with the existing bottom-up, techno-economic Asia-Pacific Integrated Model/End-use energy system model for India to estimate the future water demand in major end-use sectors under business-as-usual (BAU), nationally determined contribution (NDC), and low-carbon futures (2 癈 and 'well below 2 癈') up to 2050. We also simulate the effects of water constraints on major sectors under different climate-change regimes. Our results show that water-intensive end-use sectors, specifically agriculture and power, will face major impacts under water-constrained scenarios. Over the period between 2020 and 2050, policy measures taken under the NDC scenario can cumulatively save up to 146 billion cubic metres (bcm) of water, while low-carbon scenarios can save 20-21 bcm of water between 2020 and 2050, compared with BAU. In a water-constrained future, NDC and low-carbon futures can save 28-30 bcm of water. There is a need to increase the current water supply by 200-400 bcm. The marginal cost of installing dry cooling systems in the power sector is considerably higher than the cost and benefits of installing micro-irrigation systems with solar PV. Integrated policy coherence is required to achieve sustainable development goals, e.g., NDC and Paris Agreement goals, in both water and energy sectors. Concurrently, regulatory and economic instruments will play an essential role in improving resource-use efficiency at a systemic level, to reduce the overall water demand. � 2021 The Author(s). Published by IOP Publishing Ltd.
    URI
    https://www.doi.org/10.1088/1748-9326/ac08bf
    http://hdl.handle.net/11718/25357
    Collections
    • Open Access Journal Articles [352]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of IIMA Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV