• Login
    View Item 
    •   IIMA Institutional Repository Home
    • Faculty Publications (Bibliographic)
    • Journal Articles
    • View Item
    •   IIMA Institutional Repository Home
    • Faculty Publications (Bibliographic)
    • Journal Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Modeling landside container terminal queues: Exact analysis and approximations

    Thumbnail
    Date
    2022-06-07
    Author
    Roy, Debjit
    Ommeren, Jan-Kees van
    Koster, René de
    Gharehgozli, Amir
    Metadata
    Show full item record
    Abstract
    With the growth of ocean transport and with increasing vessel sizes, managing congestion at the landside of container terminals has become a major challenge. The landside of a sea terminal handles containers that arrive or depart via train or truck. Large sea terminals have to handle thousands of trucks and dozens of trains per day. As trains run on fixed schedule, their containers are prioritized in stacking and internal transport handling. This has consequences for the service of external trucks, which might be subject to delays. We analyze the impact of prioritization on such delays using a stochastic stylized semi-open queuing network model with bulk arrivals (of containers on trains), shared stack crane resources, and multi-class containers. We use the theory of regenerative processes and Markov chain analysis to analyze the network. The proposed network solution algorithm works for large-scale systems and yields sufficiently accurate estimates for performance measurement. The model can capture priority service for containers at the shared stack cranes, while preserving strict handling priorities. The model is used to explore the choice of different internal transport vehicles (with coupled versus decoupled operations at the stack and train gantry cranes) to understand the effect on delays. Our results show that decoupled transport vehicles in comparison to coupled vehicles can mitigate the external truck container handling delays at shared stack cranes by a large extent (up to 12%). However, decoupled vehicles marginally increase the train container handling delays at shared stack cranes (up to 6%). When train arrival rates are low, prioritizing the handling of train containers at the stack cranes significantly reduces their delays. Further, such prioritization hardly delays external truck containers.
    URI
    http://hdl.handle.net/11718/25662
    Collections
    • Journal Articles [3738]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of IIMA Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV