• Login
    View Item 
    •   IIMA Institutional Repository Home
    • Faculty Publications (Bibliographic)
    • Journal Articles
    • View Item
    •   IIMA Institutional Repository Home
    • Faculty Publications (Bibliographic)
    • Journal Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A machine learning approach to solve the e-commerce box-sizing problem

    Thumbnail
    Date
    2024-09-01
    Author
    Shanthan, Kandula
    Roy, Debjit
    Akartunalı, Kerem
    Metadata
    Show full item record
    Abstract
    E-commerce packages are notorious for their inefficient usage of space. More than one-quarter volume of a typical e-commerce package comprises air and filler material. The inefficient usage of space significantly reduces the transportation and distribution capacity increasing the operational costs. Therefore, designing an optimal set of packaging box sizes is crucial for improving efficiency. We present the first learning-based framework to determine the optimal packaging box sizes. In particular, we propose a three-stage optimization framework that combines unsupervised learning, reinforcement learning, and tree search to design box sizes. The package optimization problem is formulated into a sequential decision-making task called the box-sizing game. A neural network agent is then designed to play the game and learn heuristic rules to solve the problem. In addition, a tree-search operator is developed to improve the performance of the learned networks. When benchmarked with company-based optimization formulation and two alternate optimization models, we find that our ML-based approach can effectively solve large-scale problems within a stipulated time. We evaluated our model on real-world datasets supplied by a large e-commerce platform. The framework is currently adopted by a large e-commerce company across its 28 fulfillment centers, which is estimated to save the company about 7.1 million USD annually. In addition, it is estimated that paper consumption will be reduced by 2,080 metric tons and greenhouse gas emissions by 1,960 metric tons annually. The presented optimization framework serves as a decision support tool for designing packaging boxes at large e-commerce warehouses.
    URI
    http://hdl.handle.net/11718/27539
    Collections
    • Journal Articles [3747]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of IIMA Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV