• Login
    View Item 
    •   IIMA Institutional Repository Home
    • Faculty Publications (Bibliographic)
    • Open Access Journal Articles
    • View Item
    •   IIMA Institutional Repository Home
    • Faculty Publications (Bibliographic)
    • Open Access Journal Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Mitigation of non-CO2 greenhouse gases from Indian agriculture sector

    Thumbnail
    View/Open
    Mitigation of non-CO2 greenhouse gases from Indian agriculture sector (1.600Mb)
    Date
    2024-06-17
    Author
    Patange, Omkar
    Purohit, Pallav
    Avashia, Vidhee
    Klimont, Zbigniew
    Garg, Amit
    Metadata
    Show full item record
    Abstract
    The Indian agriculture sector is driven by small and marginal farmers and employs two-thirds of the Indian work force. Agriculture also accounts for around a quarter of the total greenhouse gas emissions, mainly in the form of methane (CH4) and nitrous oxide (N2O). Hence, agriculture is an important sector for India’s transition to net-zero emissions and for the achievement of the sustainable development goals. So far, very few studies have assessed the future trajectories for CH4 and N2O emissions from the agriculture sector. Moreover, assessment of CH4 and N2O mitigation potential at a subnational (state) level is missing but is important owing to the regional diversity in India. To fill this gap, we focus on methane and nitrous oxide emissions from the agricultural activities using 23 sub-regions in India. We use the GAINS modelling framework which has been widely applied for assessing the mitigation strategies for non-CO2 emissions and multiple air pollutants at regional and global scales. We analyze a current policy and a sustainable agriculture scenario using different combinations of structural interventions and technological control measures to inform the Indian and global climate policy debates. Our results suggest that a combination of sustainable agricultural practices and maximum feasible control measures could reduce the CH4 and N2O emissions by about 6% and 19% by 2030 and 27% and 40% by 2050 when compared to the current policies scenario with limited technological interventions. At a sub-national level, highest mitigation potential is observed in Uttar Pradesh, followed by, Madhya Pradesh, Rajasthan, Gujarat, Maharashtra, Andhra Pradesh, and Telangana. The mitigation of agricultural CH4 and N2O also has co-benefits in terms of reduced local pollution, improved health, and livelihood opportunities for the local communities.
    URI
    http://hdl.handle.net/11718/27764
    Collections
    • Open Access Journal Articles [357]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of IIMA Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV